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Abstract

In this paper we define a congruence relation for regular terms of finite SPBC, by means
of which we may identify those processes that have the same behaviour, not only in terms
of the multiactions that they can perform, but also for the stochastic information that
they have associated. In order to define this equivalence relation we need to consider an
adequate semantics for the synchronization operator, as well as a new labelled transition
system for regular terms of finite sPBC.
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1 Introduction

Petri Box Calculus (PBC) is a process algebra where the real parallelism of concurrent systems
can be naturally expressed [3, 5, 6, 7, 8, 10]. The main property of PBC is that its operators
are selected in such a way that it is relatively easy to define a denotational semantics based on
a class of labelled Petri net, called bozes. With this purpose synchronizations are separated
from the parallel operator, by including a new operator (sy), in contrast to the way in which
the synchronization is handled in classical process algebras, such as CCS [14], where the
synchronization is embedded in the parallel operator.

PBC can be extended by including time or probabilistic information, with the goal to
describe a wider class of systems, such as real-time systems and fault-tolerance systems. We
may find in the literature two timed extensions of PBC, namely tPBC [9] and TPBC [13],
which consider a deterministic model of time. In a previous paper [12] we presented a first
version of sSPBC, which is a stochastic extension of PBC.

In sPBC we consider that multiactions have associated Markovian stochastic delays, which
are interpreted as the time that must elapse until the corresponding multiaction can be exe-
cuted (computed from the instant in which it was activated), but the execution of multiactions
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takes no time. Therefore, in sSPBC each multiaction has associated a random delay, which
follows a negative exponential distribution. Thus, a (basic) stochastic multiaction is repre-
sented by a pair <«,r>, where a represents a (classical) multiaction of PBC and r € R
is the parameter of the associated exponential distribution. Moreover, in case of conflict we
adopt the race policy, i.e., whenever two or more stochastic multiactions are possible, the
fastest one is executed, in the same way as this race policy governs the dynamic behaviour of
stochastic Petri nets [1].

The denotational semantics of SPBC is defined using as semantic objects a special class of
stochastic Petri net, which are called s-boxes. Note the main consequence of the introduction
of a continuous distribution (negative exponential) to measure delays of multiactions: the
probability for two or more stochastic multiactions to be executed at the same time is zero;
and the same is true for stochastic Petri nets: two or more transitions have zero probability
to be executed in parallel (even if they are simultaneously enabled). As a consequence, we
get a total order semantics, i.e., a semantics that satisfies the Total Order Assumption (TOA)
[2]: all execution sequences of observable multiactions are totally ordered by precedence, in
contrast to the partial order semantics (true concurrency) exhibited by PBC. But notice
that we still have a certain degree of parallelism at the low level, because we are dealing with
multiactions (multisets of actions), and thus, a process evolves by executing a multiset of
actions in a single step.

In our previous paper [12] our goal was to keep as far as possible, both the syntax and
the operational behaviour of the operators of PBC, but extending them in the adequate way,
according to the stochastic interpretation. For instance, for the new multiactions generated
by the application of the synchronization operator, we needed to select a new parameter for
the corresponding exponential distribution and several criteria could be applied to do it. We
concluded that a good option could be to take as the value of the parameter the least of the
values involved in the synchronization, which at the intuitive level could be interpreted as
taking the delay of the slowest of the values involved in the synchronization as the delay of
the new multiaction (capturing the synchronization). But with this definition we found some
problems in order to define an adequate stochastic equivalence relation, which motivated a
new proposal for the synchronization taking into account the so-called conflict rates (see
[11]). However, this is not the only change required to obtain a congruence relation, and we
show in this paper that we need to introduce some new rules in the operational semantics
of sPBC, as well as a new special kind of transitions. With the new rules we will be able to
distinguish between processes that reach their final state and those that are not able to do
that. With the new special transitions we will be able to capture those pairs of stochastic
multiactions that could be executed in parallel. They will be called ghosts transitions, since
they will not be used to evolve in the labelled transition system in the usual way; they are
only included in order to identify that information.

The paper is structured as follows: in Section 2 we present an overview of the syntax and
the operational semantics of finite SPBC. In Section 3 we define the congruence relation, as
well as some previous equivalence relations, in our way to obtain this congruence. Finally,
Section 4 contains some conclusions and the future work.



2 Finite Stochastic Petri Box Calculus

2.1 Syntax

From now onwards we will use the following notation:

A will be a countable set of action names. Va € A, 3a € A, such that a # a and Q= a,
as in CCS [14]. Letters a, b, a, ... will be used to denote the elements of A.

e L =B(A), will represent the set of finite multisets of elements in A (multiactions).

e We define the alphabet of a € £ by: A(a) = {a € A|a(a) > 0}

—

e Relabelling functions f : A — A, which preserve conjugates, i.e.: Va € A, f(a) = f(a).
We only will consider bijective functions.

e We define the set of stochastic multiactions by SL = {<a,r> |a € L,r € Rt}
We allow the same multiaction a € L to have different stochastic rates in the same
specification.

e Synchronization of multiactions:
B _ ] ab)+p0) -1 ifb=aVvb=a
@ ®a f =des v, where: y(b) = { a(b) + B(b) otherwise

which is only applicable when a € @ and @ € , or @ € @ and a € .

Static s-expressions are used to describe the structure of a concurrent system, while
dynamic s-expressions describe the current state of a system (they correspond to unmarked
and marked Petri nets, respectively). As a system evolves by executing multiactions, the
dynamic s-expression describing its current state changes; this is captured by means of both
overbars and underbars that decorate the static s-expression. Static s-expressions of sPBC
are those defined by the following BNF expression:

E := <a,r> |E;E|EQE|E|E|E[f]|Esya|Ersa | [a: E]

where <a,r>€ SL stands for the basic multiaction (simultaneous execution of all the ac-
tions in «, after a delay that follows a negative exponential distribution with parameter r).
E\ ; E stands for the sequential execution of Ey and Es, while E; O Es is a choice, [f] is the
relabelling operator, and rs the restriction over the single action a. The parallel operator, ||,
represents the (disjoint) parallel execution of both components, as in PBC, i.e., there is no
synchronization embedded with it. Synchronization is captured by the operator sy, thus the
process E sy a behaves in the same way as E, but it can also execute some new multiactions,
generated by the synchronization of a pair of actions (a,a). Finally, [a : E] is a derived
operator (scoping), which is defined by [a: E] = (E sy a) rs a.

We will denote static s-expressions by letters: FE, F, E;,..., and the set of static
s-expressions by StatFEzpr. However, we need to restrict the syntax of sSPBC to those terms for
which no parallel behaviour appears at the highest level in a choice. This restriction slightly
reduces the expressiveness of the language, although we could prefix parallel operators ap-
pearing at the highest level of a choice by an empty multiaction, the rate of which could



be adequately selected in order to preserve the probability of execution of the multiactions
involved in the choice. Terms fulfilling this restriction will be called regular terms, and the
operational semantics is only defined for them. This restriction is introduced in order to
guarantee that the order in which the rule for the synchronization is applied does not affect
the final value that we obtain for the rate of the new stochastic multiaction.

Then, a regular static s-expression F is a static s-expression of sPBC, which fulfills for
all static s-expressions F;,i = 1,2,3,4, and op € {sy, rs, [.]}:

E 75 (E1||E2)|:|E3
FE 75 Op(EIHEQ)DE3
E # (op(Er||E2); E3) D Ey

E # Es0O(E | E»)
E 75 E3|:|0p(E1||E2)
E # By O (op(E2| E3); E4)

The operational semantics of sPBC is defined by means of dynamic
s-expressions, which derive from the static s-expressions, but annotating them with either
upper or lower bars to indicate the active components at each instant of time.

G:= E|E|G;E|E;G|GUE|EOG|G|G|G[f]|Gsya|Grsalla:q]
where E denotes the initial state of E, and E its final state. We will say that a dynamic
s-expression is regular if the underlying static s-expression is regular. The set of regular
dynamic s-expressions will be denoted by ReDynFExpr.

2.2 Operational Semantics

The operational semantics of SPBC is defined in a very similar way to that of [3, 4, 6, 8]
to define the operational semantics of PBC. We firstly present the inaction rules. They are
introduced to establish the active components of a regular dynamic expression and they will
capture the equivalence of regular dynamic s-expressions. Inaction rules for sPBC are those
defined in Tables 1 and 2.

EF-LEF EF Y ET EF- Y% B F
EOF % EOF EOF % EOF eoF % gor EorF % EOF
BF-LEF  EBE-SEF EA-SEN EN-SES
Esyal)Esya Esyal)Esya Ersa - Ersa Ersa-"s Ersa

Table 1: Inaction rules (I)

Definition 1 Whenever G and G’ are in ReDynExpr, such that G 2, G’', we say that G’

is an immediate derivation of G. Furthermore, when G L G L Go L L G', we
will say that G’ is a derivation of G. O

Definition 2 We say that a regular dynamic s-expression G is operative if it has no deriva-
tions. We will denote the set of all the operative regular dynamic s-expressions by
OpReDynEzpr. 0



Vope{;,0,G-5G Vopel,0},d-La a o
0p(G.E) > op(G'.E)  op(E,G) > op(E,G") Gl -5 G'lf]
G La Gy L @ Vop € {sy, rs}, G -5 @&
G1]Gs % G |G- G1]|Gy % Gy ||G) op(G,a) -5 op(G', a)

Table 2: Inaction rules (II)

Definition 3 We define the structural equivalence relation for regular dynamic s-expressions
as follows: 0 0\,
= =def (—> U <_)

We denote the class of G with respect to = by [G]=. O

Rules defining the stochastic transitions are those presented in Table 3, together with
those corresponding to the synchronization operator, which will be described in detail later.
We assume that all dynamic s-expressions that appear on the left-hand sides of each transition
in the rules are regular and operative.

G2 @ H % g
B S1 S2
®) Zas 28 <ayr> (51) G F 2 G\ F (52) E:H Y g, i
<a,r> <a,r> <a >~
(Rs) —C O —aigan) mo —Eonl— @) 0O
Grsa —= G'rsa G[f] G'lf] GOF G'OF
H ™% g e=gel H ™Y g
(E2) <a r> / (C]') <a,r> (Cz) <a r> '
EOH EOH G|H =5 G'|H G||H %5 q||H

Table 3: Rules defining the stochastic transitions (I)

Observe from Table 3 that we are considering a total order semantics, and thus in order
to define the semantics of the synchronization we need to capture all the possible sets of
bags of stochastic multiactions that can be executed concurrently for any operative regular
dynamic s-expression.

Definition 4 We define BC' : OpReDynEzpr — P(B(SL)), as follows:
e If G € OpReDynEzpr is final (i.e. G=E), we take BC(G) = 0.
e If G € OpReDynEzpr is not final:

- BC(Ka,m>) = {{<a,r>}}
— If v € BC(G), then for every non-empty submultiset -y; of v we have ; € BC(G).

- If v € BC(G), then: v € BC(G;E), v € BC(E;G), v € BC(EOG),y €
BC(GOE), v € BC(Grsa) (whena,a ¢ A(%)), v € BC(G sya), f(y) € BC(G[f]).



— If vy € BC(G), v2 € BC(H), then v, + v, € BC(G| H).

— v €BC(Gsya), and <a,r1>, <fB,r9> € 7, with a € A(a), and a € A(S), then:
v € BC(Gsya), where: v = (v + {<a®, 8,R>}) \ {<a,m1>,<B,79>} and
R is the rate for the new stochastic multiaction, which will be defined later (see

rule Sy2 in Table 4).
a

In order to define the new rates for the stochastic multiactions generated by synchro-
nizations we need to identify conflicts. Concretely, we define for every operative regular
dynamic s-expression GG the multiset of associated conflicts for every instance of a stochas-
tic multiaction <a,r>; executable from G. We will denote this multiset of conflicts by
Conflict(G,<a,r>;), although we will omit the subindex i if it is clear which instance of
<a, > we are considering.

Definition 5 We define the following partial function:
Conflict : OpReDynExzpr x SL — B(SL)

Conflict(G, <a,r>;) defines the multiset of stochastic multiactions <a,7'> in conflict with
G for the instance 7 of the stochastic multiaction <, 7>, which must be executable from
G. We define this function in a structural way, but let us observe that in this definition G
cannot be final (G # E), because we are assuming that <«,r> is executable from G.

1. Conflict (<o, >, <a,r>) = {<a,r>}
2. If <a,r> is executable from G, and C = Conflict (G, <a,r>), then:

a) Conflict (G; E,<a,r>) = Conflict (E;G,<a,r>) = C,
b) Conflict (G| H, <a,r>) = Conflict (H||G,<a,7>) = C,
If a,a ¢ A(a), then Conflict (G rsa,<a,r>) = C,
For a bijective function f, Conflict (G[f], <f(a),r>) = f(C),
For the choice operator we need to distinguish the following cases:

- G #E, Conflict( GOF,<a,r>) = Conflict(FOG,<a,r>)=C

- fG=E, Conflict(GOF,<a,r>)= Conflict(FOG,<a,r>) =

C + {<a,rj> |3 H,; € OpReDynEzpr , H; = F and H, it G H! |}

(f) Conflict (G sya,<a,r>) = C,

(
(
(c
(d
(e

3. Let <ay,r1>, <ag,m9> € BC(Gsya), a€ Alay), a€ A(az) and
Gsya <01 Ba ag, 2> G’ sya obtained by applying the rule Sy2 . Then:
Conflict (G sy a, <oy ®q s, R19>) =

{ <a1 &, az, R;j> | <aq,r;>€ Ch, <ag,T;>€ Cy, with
Rij = Ti ] . ng%ré {er(Gsya,<a;,ri>)} |}

cr(Gsya,<ai,r1>) cr(Gsy a,<asz,r2>)
considering: C; = Conflict(G sy a, < a;,r; >), i = 1,2, and cr(G,<a,r >;) (conflict
rate) for G and <a,r>; defined by:

cr(G, < a,r >;) = Z T}

<a,rj>€Conflict (G,<a,r>;)



Notice that Conflict(G,<a,r>;) is a partial function, it is only defined if <a,r>; is
executable from G, and it is well defined. The only case requiring some explanations is
that of G sy a with a stochastic multiaction obtained from a synchronization: <oy &, ao,
R12>, since we have to compute cr(Gsy a, <aj,r;>), for i = 1,2, and we need the multiset
Conflict(G sy a, <a;,r;>) for that. Thus, this is a recursive definition, and the base case is
that of a stochastic multiaction that was executable from G.

Rules for the synchronization are shown in Table 4. Observe that we take as rate of
the new stochastic multiaction the minimum of the conflict rates of <ay,7m1 >, <ag,r9>,
weighted by a factor, which is introduced in order to guarantee that the equivalence relation
that will be introduced in Def. 11 is a congruence (see Example 5). For short, we will
denote the synchronization of two stochastic multiactions < aq,r1 >, <ag,79 > as follows:
<a1,71> ©q <9, r2> .

<a,r>
(Sy1) G<Z>>H
Gsya — Hsya

(Sy2) Let {<aq,m>,<ag,m9>} € BC(Gsya), a € Alay) , a € A(az), then

* <a2,r2>

<aq,r1>
Gsya = Glsya(i)) 1sya —= Grsya
<a1@qas , R>
=

Gsya Giasya

— T1 T2 . , . .
R = cr(G sy a,<ai,r1>) er(G sy a,<az,r2>) ZTLL%,{% {CT(G sy a, <ay, ’I“Z>)}

Table 4: Rules for the synchronization operator

Example 1 Let us consider the following operative regular dynamic s-expression:
G = (<faat. >0 <{a,a},ro>)l(<faa}, ra>0 <{b}r4>)) sy a
From the previous definition we have:
Conflict(G, <{a,a},m>) = {<{a,a},r1>,<{a,a},ra>}

C’onﬂict(G,<{a,d},r2>) = {<{a7d}7711>7<{a7d}a'r2>}
Conflict(G, <{a,a},r3>) = {<{a,a},r3>}

Therefore:
<da,a},r1> @4 <{a,a},rs>=<{a,a}, R1>
<da,a},ro> By <{a,a},r3s>=<{a,a}, Ry>

where R; = —Tl’jﬁm . :—g -min{r; +ro,73}, and Ry = Tl’fm . :—g -min{ry + ro,r3}

Then, we may obtain now: Conflict(G,<{a,a}, R1>) = {<{a,a}, R1>,<{a,a}, Ra>},
and cr(G, <{a,a}, R1>) = min{ry +ro,73}. O



Definition 6 Let G € ReDynFEzpr be, we define the set of all dynamic s-expressions that
can be derived from [G]= by:

[GY ={G}U{H' € ReDynExpr|3 < ai,m1 >,...,< au,m, >€ SL with
G=G """ G =@ "% ... G1=G,_, "™ H=H)}

|

Let us now see that for any regular operative dynamic s-expression G of finite PBC,
and any bag of concurrent stochastic multiactions of GG, then any serialization of it can be
executed from G.

Lemma 1 Given a regular operative dynamic s-expression G, v € BC(G), and any serial-
ization of the stochastic multiactions of v: <ay,7r1> ... <ap,r,>, there exists a transition
sequence:

G U gy (L) 6 TR Gy (D e (Dyrar | T @

n
Moreover, all dynamic s-expressions G’ thus obtained are equivalent with respect to =.

Proof: By structural induction on the syntax of G, the base case (a simple stochastic
multiaction) is trivial. A simple application of the induction hypothesis solves the choice,
sequential composition, restriction and relabelling. For the parallel operator the only case
requiring some comments is when v = y; + 2, with 4 € BC(G1), 72 € BC(Gg), but in
this case we may apply the induction hypothesis to both of them, to get two sequences of
transitions which can be combined in the adequate way, because the evolutions for both
components are independent.

The case of the synchronization operator, i.e., when G = Gy sy a, is somewhat more
involved, and we need to distinguish the different cases that may occur:

e If v € BC(G), the result is immediate, by applying the induction hypothesis.

o If v = (v1 +{<a1,r1> By <ag,m2>})\ {<au,r1>, <ag,ro>}, with 4 € BC(G), and
a € A(ay),a € A(ag), then it could be the case that v, € BC'(G1) or it could also have
been obtained in the same way, by joining some multiactions; but this procedure cannot
be applied infinitely, and therefore we may apply a new induction on the number of times
that we have applied the synchronization of actions. So, our base case is y; € BC(G1),
for which we may apply the hypothesis of the first induction, considering a serialization
in which <ai,r1> and <aso,ry> appear one before the other. Although this sequence
starts from G, the same could be obtained starting from G sy a (rule SyI), and then,
by applying rule Sy2, we get a sequence of transitions that corresponds to the given
serialization of . In fact, it should be noted that the order of the remaining stochastic
multiactions in 7; is unimportant, and thus, for any serialization of v we may obtain
the corresponding transition sequence.

For the inductive case, we now have, as hypothesis, the property holding for v, €
BC(G sya), which allows us to argue along the same lines as in the base case, by
considering a serialization of ;. The only difference is that in this case the sequence

of rules that we obtain starts directly from G sy a, instead of from G.
O



Furthermore, for any serialization of y € BC(G), the multiset of conflicts for any stochas-
tic multiaction of 7y is preserved along its execution. We need the following previous lemma
in order to prove this fact.

Lemma 2 Let G € OpReDynExpr be and v = {<ay,r1>,<ag, 19>} € BC (G), with:

<ai,r1>

G H(-Ly g <25~ g,

Then: Conflict (G, <ag,re>) = Conflict (H*, <ag,r9>).

Proof: By structural induction on the syntax of G:

e Base case: G = (| Ga, where Gy, G2 € OpReDynExpr, < ay,r; > is executable
from G and <asg,r9> is executable from G5. Thus:

G =G| Gy "7 G| Go(-5)* G (|G 2257 Gl || Gy

Taking H = G || G2, H* = G* || G2 and J = G'* || G, we obtain:

Conflict (G || Ga, <ag,re>) = Conflict (Ga, <ag,r9>) =
Conflict (GY' || Ga, <ag,r9>) = Conflict (H*, <ag,19>)

e General case: A simple application of the induction hypothesis solves the sequential
composition, restriction or relabelling. For the choice operator, i.e., either G = G'OF
or G = FOG', notice that G' # E, for a certain E, due to the syntactical restriction
that we have introduced, because we are considering a parallel behaviour in G. Then,
we just need to apply the induction hypothesis for G’. Let us now consider G = G’ sy a,
this case is a bit more involved, and we need to distinguish the following cases:

— If y € BC(G'"): immediate, by applying the induction hypothesis.

— If v ¢ BC(G'): In this case at least one of the involved stochastic multiactions
has been obtained by using rule Sy2. Then, we can proceed by induction on the
number of times that this rule has been applied. For simplicity, we only consider
the case in which <as, 79> has been obtained by applying Sy2, (for <ay,rm1> we
could reason in the same way, and if both have been obtained by using that rule,
we could apply a double induction):

+ Base case: <ap,To>=<ah, TH> B, <ah,rH>
Then, {<aq,r1>,<db,rh> <dly.ri>} € BC(G'), and

<ahy,Th>®a <aly,rh>

G’:G'sya<%>H'sya(l>)*H/*sya =H" J sya=J

We apply the induction hypothesis for {<a,r1>,<ab, >} and
{<ai,r1>,<al,ri>} from G’ to obtain:

Conflict(G, <oy, 75>) = Conflict(G', <ab,rh>) = Conflict(H'*, <aly,1%>),
Conflict(G, <aly,r4>) = Conflict(G', <aly,r4>) = Conflict(H *, <ali, rli>)

Therefore, by definition of Conflict:
Conflict (G, <daly, 5> B, <aly,r4>) = Conflict(H*, <ay, rh> By <cly,5>)

10



* General case: We are now supposing that:
! ! n n
<Qg,19> =<y, T9> By <y, T9>

where <o, rY> is obtained by applying Sy2 n-1 times. Then, by the internal
induction hypothesis:

Conflict(G, <aly,r4>) = Conflict(H*, <aly,r5>)
and using the external induction hypothesis we may conclude:
Conﬂict(G,,<a’2,ré>) = Conflict(G', <dly,H>) =
Conflict(H *, <ah,rh>) = Conflict(H*, <o, 5>)
Therefore:
Conflict(G, <o, rh> @, <y, r4>) = Conflict(H*, <cly,rh> B, <aly,r8>)
O

Corollary 1 Let G € OpReDynEzpr and v = {< ay,r1 >, < q9,79 >,...,< Qp, Ty >} €
BC (G), with:

G G (L) e T2 Gy (-Dyras 2T (e, T
Then:  Conflict (G, <a;,r;>) = Conflict (G}_,, <oy,r;>), fori=2,...,n
Proof: Immediate. 0

Corollary 2 Given a regular operative dynamic s-expression G, v € BC(G), and any seri-
alization of the stochastic multiactions of v: <aq,r1> . <ag,19> ... <ay,r,> there exists
a transition sequence:

G U7 Gy (L e T2 oy (Dyras 2y (e

with Conflict (G, <a;,r;>) = Conflict (G}_{,<aj,1i>), fori=2,...,n
Moreover, all dynamic s-expressions G’ thus obtained are equivalent with respect to =.

<Qp,Tn>

Gl

Proof: It is an immediate consequence of the previous corollary, and lemma 1. O

Let us now see how we can compute the rate of the stochastic multiaction that we obtain
after a number of synchronizations.

Proposition 1 Let G be a regular operative dynamic s-expression, v = {< aj,r1 >,
<ag,rg >, ..., < ap,ry, >} € BC(G), and a serialization of 7, for which we may apply
n — 1 times rule Sy2:

G U gy (Lyrar Ty ST g,
thus obtaining a single transition: G <b.K> Gy .
Then:
= (T - ). min_ {er(G.<agre>)}

r(G, <oy, T>) k=1,...,n

Furthermore, cr(G, <8, R>) = kmin {er(G, <ag,m1>)}

=1,...,n

11



Proof: We apply induction on n:

e Base case: (n=2)

We are applying Sy2 once. Thus, we have: {<ay,r1>,<ag,re>} € BCO(G), and:

G U5 Gy (-Lyrar 2 G,
Then:
71 T2 .
R= -min{er(G, <ay,r1>), cr(G,<ag,m2>)}

er(G, < ai,r >) ' er(G, < ag,r9 >)

Furthermore, applying the definition of Conflict for a synchronization we may easily
conclude that cr(G,<fp, R>) = m%ré {er(G, <aj,ri>)}.
i=1,

e General case: Sy2 has been applied n — 1 times (n > 2), and we must have:
<ﬁa R> = <ﬁla R1> @a </327 R2>

where <31, R1> has been obtained after k—2 synchronizations, and <fs, Ro> after n—k
synchronizations. Then, we may apply the induction hypothesis for both, obtaining:

Bl
|
—

Ty ]
R = ‘ o
1 cr(G, <oy, mi>) iil,’rr.b.z.:rli—l {C""( , <, Ty )}

)

Il
—_

3

T .
Ry = . G s
> Sk er(G<auri>) imken {er(@, <airi>)}
and:
er(Gy<pr, Bi>) = min {cr(G, <aj,ri>)}
CT(G7<525R2>) = min {C’I"(G,<O{i,’r’i>)}

i=k,..,n

According to the definition for the synchronization, the rate for the new stochastic
multiaction is computed as follows:

= Rl R2 ) . .
R = cr(G,<p1,R1>) cr(G,<pBa2, R2>) HI {er(G,<Bi, Ri>) }

Hence:

_ - Tk . )
= (Zl-l C’I"(G, <Oék,’l"k>)) k:nfllzln,n {CT(G’ <Ckk,’}"k>)}

And: cr(G,<B,R>) = kznin {er (G, <ay,r>)}

=1,...,n

|

Consequently, for all the possible transition sequences obtained by serialization of +, if we
can apply rule Sy2 a number of times until reaching a single stochastic multiaction, we have
that it does not matter the order in which rule Sy2 has been applied, neither the transition
sequence used, i.e., we will always obtain the same stochastic multiaction.
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Corollary 3 Let G be a regular operative dynamic s-expression, v = {< aq,r1 >,

<ag,r9>, ..., <ap,rn,>} € BC(G), and two permutations of theset {1,--- ,n}: {i1, -« ,in}
and {ji, - ,jn}. Assuming that there are two serializations:
<Qiy,Tig > <Qig,Tip > <Oy 5Ty >
G ST gy (Dyrgr TR S g
<@g, ,T5, > <Ay ,Tjo > <Qjp sTjn >
G ST gLy SRR S
From which we may apply n—1 times the rule Sy2 (for the same actions aq, ..., a,_1, possibly

repeated, but the same number of times for both cases), thus obtaining a single transition

<Bi,Ri> <B;i,R;>
for each case: G %% Gp and G TG

Then: G,, = G;l and <fB;, Ri>=<p;,R;>.

Proof: We obtain G, = Gj, from Corollary 2, and f; = f; from the definition of the
synchronization operator on multiactions. Finally, R; = R; is obtained from the previous
proposition. 0

2.3 Labelled transition system

Definition 7 We define the labelled (multi)transition system of G € ReDynEzpr in the
Plotkin’s style [15]: ¢s(G) = (V, A, vg), where:

o V={[H]=z|H €[G)} is the set of states.
e vy = [G]= is the initial state.

e A is the multiset of transitions, given by:

<a,r>

A= (Hlz,<a,r>,[J]2)|HE[G) N H = J |

In order to compute the number of instances of each transition ([H]=, <a,7>, [J]=) in
A, we take into account that we may have several different ways in order to derive such a
stochastic transition (Corollary 3). Then, we will only consider one of these stochastic tran-
sitions, which can be made by enumerating the stochastic multiactions from left to right, in
the syntax of the s-expression. Then, when we apply rule Sy2, the new stochastic multiaction
can be annotated with the concatenation of the numbering of the corresponding stochastic
multiactions involved in the synchronization, but if we detect that this numbering has been
previously obtained, by a previous application of rule Sy2, although in different order, this
new stochastic transition would not be considered.

For any labelled transition system ts = (V, A, vg), we will denote by (v, a, w) the addition
of the rates for all the edges labelled with « connecting v with w:

r(v, o, w) :Z{] rj| (v, < a,r; > w) € Al

When (v, < a,s >,w) € A, Vs € R, we take (v, a, w) = 0. -

Notice that the race policy governs the dynamic behaviour of the system when two or more

stochastic multiactions are simultaneously enabled, i.e., when several stochastic multiactions
are possible, the fastest one will win the race. Owing to the fact that we use exponential
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distributions and the race policy, t}f stochastic process associated with the evolution of
every regular dynamic s-expression £ is a Continuous Time Markov Chain (CTMC). The
corresponding CTMC of E is obtained easily from ¢s(E) (see [12]).

3 Equivalence Relations
We can define an isomorphism between two transitions systems, in the following way:

Definition 8 Given two labelled transitions systems (V!, Al, v}) and (V2, A%, v3), we say
that they are isomorphic if there exists a bijection h : V! — V2, such that h(v}) = vZ and
Yo,w € VL VI € SL : (v,1,w) € A if and only if (h(v),l, h(w)) € A%, with the same number
of instances. 0O

However, as it occurs in PBC (see [6]), this simple notion of isomorphism is not a con-
gruence in sPBC, as the following example shows:

Example 2 Let £ =< {a},m71 > be and F =< {a},m >;< {b},ro > rs b. We may
construct ts(E) and ts(F):

ts(E) _ :< a,ry > @ ts(F) _ .< a,ry >.

Both labelled transition systems are isomorphic, but if we consider:

E, = <A{a},r1 >;<{c}t,rs>
Fy = (<{a},r1 >;<{b},ra > rsb);< {c},rs >

we obtain that ¢s(F;) is not isomorphic to ts(F}):

o —~ < a,r1 > <cry > . <a,rg>
a

According to the previous example, and following the same ideas as in PBC, in order to
solve this problem we have to distinguish between dynamic s-expressions that reach its final
state (as E), and those that will never reach its final state (as F). Then, we extend the
labelled transition system with two new transitions (rules of Table 5), namely Skp and Rdo
(we take a rate 0 for Skp, which intuitively means that it will be never executable, and we
take a rate oo for Rdo, which means that it is immediate).

kip,0>

(Skp) E“"N7E
(Rdo) E TN F

Table 5: Rules Skp and Rdo
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We will denote by tso(F) the new labelled transition system that we obtain considering
also these two new rules. For instance, we may obtain ¢so(E) and tso(F'), for E, F defined
in Example 1:

< skip,0 > < skip,0 >
o <a,ri > _ <a,r >
tso(E) = tso(F) = @
X ; L
< redo, o0 > < redo, o0 >

However, this definition is not yet enough to obtain a congruence in sPBC, the reason
is that we have a total order semantics, and we cannot distinguish between parallelism and
choices, as the following example shows:

Example 3 Let us consider:

E =<{a},r > | <{a},r>
F =<{a},r >;<{a},r> 0O < {a},r >;<{a},r >

tso(E) and tso(F) are isomorphic, but taking By = E sya and Fy = F sya, we obtain that

tsa(FE1) and tso(F)) are not isomorphic:

< skip,0 > < skip,0 >

< redo, o0 > < redo, o0 >

It seems, therefore, that we need some additional information in the labelled transition
systems, which allows us to identify those transitions that have been obtained from a parallel
operator, and consequently, usable for a later synchronization. Thus, we include a new
kind of transitions, which we have called ghosts, since they cannot be used to evolve in the
labelled transition system in the usual way. Our intention with these new transitions is just
to annotate in the labelled transition systems the possible executions of pairs of stochastic
multiactions in parallel.

Actually, we only need to capture the possible execution of two stochastic multiactions in
parallel, and thus, we distinguish these transitions just annotating the stochastic multiactions
over the arrow:

<ai,ri>||<asre>
1 -=2 2

The rule that introduces this new kind of transitions is presented in Table 6, where G is
an operative regular dynamic s-expression. Notice that for each concurrent bag {< ay,r >,
< ag,ry >} € BCO(G) there are two possible derivations:

<ai,r1> || <azre> <az,r2> || <airi>

-—> Gy and G -2 Go
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Then, in the labelled transition system we will only include one of them, in the same way
as we did with synchronizations.

(ghost) Let {< ai,m >, < ag,re >} € BC(G)

<o¢1,1"1>

Gi (%) GF S5 g,

<ai,r1> || <azre>
—>

G

2

Table 6: Ghost transition rule

We now define the new transition system of E, for every regular static s-expression E,
taking into account the ghosts and the Skp and Rdo transitions.

Definition 9 Let E be a regular static s-expression. We define the new transition system of
E, nts(E), by nts(E) = (VU{[E]=}, AU Ay, U A, vp), where ts(E) = (V, A,vp), and:

e Ay = {([E]=, < skip,0 >,[E]=), ([E]=, < redo, 00 >,[E]=)}

o A= { ((H<ar> | <fos> o) | HeE), B 75" )

Using this new transition system we may introduce a new isomorphism ():
Definition 10 For any regular static s-expressions F; and FEs, with:

nts(B1) = (VEVU{[Ei]=}, APr U AR U AE1 vEl), with ts(E;) = (VE, AP o)
nts(Fa) = (V2 U {[Ey)=}, AP> U AE2 U AE° &), with ts(Ey) = (VE2, AP2 v}?)

We say that E; = E, if there is a bijective function h : V1 U {[Ei]=} — VP2 U {[Es]=},
such that

o h(vg") = v, h([Ei]=) =
. ‘v’vEl, wht e v,

(P, <a,r>,wP) € APt if and only if (h(v®1), <a,r>, h(w1)) € A2,

with the same number of instances.

(WP, <a,r> || <B, s>, wP) € Afl if and only if (h(v"1), <a,r> || <B,s>,
h(w")) € A}, with the same number of instances. 0

Example 4 Let us consider the same processes of Example 3:

E=<{a},r>| <{a},r>
F =<{a},r >;<{a},r> 0 < {a},r >;<{a},r >

We show nts(E) and nts(F) in Figure 1.
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< redo, oo >

Figure 1: nts(E) and nts(F)

Consequently, it follows that F 2 F. 0O

This equivalence is basically the same isomorphism that we had in plain PBC. However, we
would like a new equivalence, less restrictive, in which two static s-expressions are equivalent
if, at the functional level they can make the same multiactions and, at the performance level
they have isomorphic CTMCs. Thus, with this new equivalence we will be able to identify
the following s-expressions: <o,y ., r;> and <a,ri> O... 0 <a,r,> .

Definition 11 Given two regular static s-expressions F, Fs, and:

nts(Ey) = (VE U {[Ey]z}, APt U AB1 U AE1 vEl), with #s(

Ey ) = (VF, AP vEl)
nts(Bp) = (VE U {[By)=}, AP U AE: U AE’ £2), with ts(

Ey
Ey) = (VB2 AF2, vy ‘)

We will say that Ey and Ey are stochastically equivalent (Ey ~ Es) if and only if there is
a bijective function ¢ : VF1 U {[Ey]=} — V2 U {[Ey]=}, such that:

o $([Erlz) = [Eo]= and ¢([E1]=) = [Ep]=
e Va € SL, Vo!, w' € VE with ¢(v!) = 02, p(w!) = w? € VE2:

— r(v', a,w!) = r(v?, o, w?).

- If (v, < a,r > || < B,re >, w') € AT, then:
x (vh,<a,r >,z') € AP
x (vl < B, >,yt) € A
* 351,50 such that (v, < a,s51 > || < 8,50 >,w?) € Af% with:
(v2, < a, 81 >, (xt)) € AP2 A (02, < B,s9 >, p(y')) € AP2
— If (v, < a,s1 > || < B, 52 >,w?) € A} then:
x (v2, < a,s; >,7%) € A2
x (v, < B,s9 >,1°) € AP2
* Jrq,r9 such that (v1 <a,ry > || < Byre >, wh) € Afl, with:
(o', < a,r >, ¢ (22) € AP1 A (v, < B,re >, 071 (1?)) € AP
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Example 5 The following regular static s-expressions are stochastically equivalent:

Ey =<{a},1> 0 <{a},1>

Ey =<{a},2> ~
Fy, =<{a},1> 0 <{a},2>

F, =<{a},3> ~
Furthermore, we also have E || F1 ~ E || Fy, and E ~ F, where E = (E\ || F1) sy a, and

F = (Es || F») sy a. Their new transition systems, nts(E) and nts(F') are shown in Figures 2
O

and 3.

< skip,0 >

< redo, 00 >

Figure 2: nts(E)

< skip,0 >

<al>|<a2>
<1< a2~

< redo, 00 >

Figure 3: nts(F')
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Ghosts transitions have been only introduced for pairs of concurrent stochastic multiac-
tions, instead of any possible bag of them. In the following proposition we show that as a
consequence of the syntactical restriction that we are considering, with this information we
are able to identify all the intrinsic parallelism of two equivalent s-expressions.

Proposition 2 Let E;, Fo, be two regular static s-expressions such that Fy ~ Es, and H; €
OpReDynEzpr, such that Hy € [E;). Then, for any v, = {| <aj;,r; >}, € BC(H;) there
is a regular operative dynamic s-expression Hy € ¢([Hi]=), and a bag v» = { <ay, 7>}, €
BC(H,).

Actually, if ([Hl]E, <y, T >, [Hl,i]E) € AEI, then ([HQ]E, < oy, rg >, ¢([H1,Z]E)) € AEQ,
fori=1,...,n.

Proof: We apply induction on n:

e Base case: (n =2).

From { <aq,7r1>,<ag,ro> |} € BC(Hy), we conclude that there is a ghost transition
([Hi)=, <aq,m1> || <ag,re>,[Hi]=) in nts(E).

Then, from Def. 11 we have the corresponding ghost transition in nts(Es):

($([Hi1]=), <an,mi> || <oz, 15>, $([Hi]=))
with (¢([H1]E)a <ai7T;>7¢([H1,’i]E)) € AE2’ for 1 = ]-a2
Therefore, v9 = { <oy, >, <ag, 74> | € BC(Ha), for some Hy € ¢([Hpl=).

e General case: (n > 2)

We have v = y11 + {<apn,r, >}, where v ={ <ay,ri> [}?;11. By the induction
hypothesis we may find an operative dynamic s-expression Hy € ¢([Hi]=) and v1 2 =
{ <ai, > }"_1 € BC(Hy), such that whether ([H]=, <aj,7i>,[Hy;]=) € A" then
([HQ]E, <C¥Z’,’)"£>, gﬁ([Hl,l]E)) € AEQ, for 1 = 1,...,n—1.

Furthermore, using again Def. 11 we may conclude that for each i € {1,...,n — 1}
there is an operative dynamic s-expression Hy; € ¢([Hi]=), such that {| <oy, 7} >,
< ap,rh, > |} € BC(Hz;). In fact, if ((Hilz,< an,rn >,[Hinlz) € AP, then
([Hol=, <am, 7>, ¢([Hinl=)) € A2

Consequently, and due to the syntactical restriction introduced, we may conclude that
{ <aj,ri> |}, € BC(Hy), for some Hy € ¢([H;]=) (otherwise we would have some

parallel behaviours in the arguments of a choice operator).
O

In order to prove that ~ is really a congruence we need three previous lemmas:

Lemma 3 Let E be a regular static s-expression, H € OpReDynExpr, with H € [E), and
v =A{<ay,r1>,<ag,s1>} € BC(H). B
If we have the following transitions in nts(FE):

(Hlz, <on,ri>,[J]z) € AP, i=1,....,n
([Hlz,<ag,s;>,[Tz) € AF, j=1,....m
([H]z, <ai,ri> || <ag,s1>,[K]=) € AY
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Then, for any ¢ € {1,...,n}, and any j € {l,...,m}, there is a ghost transition
(Hlz, <o, ri> || <ag,s;>,[K]=) € A}

Proof: If <aj,r;>,<asg,s;> cannot be executed concurrently from an operative dynamic
s-expression H; ; = H, we have a conflict between them. Furthermore, <ay,71>, <ai,r;>
are in conflict, as well as <ag, 51>, <ag, s>, due to the syntactical restriction. Taking into

account that <ay,r1> and <as, s1> can be executed concurrently, we obtain a contradiction,
because we can conclude that <aj,7;> and <as, s;> can be executed concurrently. 0

Lemma 4 For any regular operative dynamic s-expression G, any stochastic multiaction
<a,r> executable from G, and Conflict(G, <a,r>) = {<a,r>,<a,r1>,...,<a,r,>}, we
have:

For each <a,r;>¢€ Conflict(G, <a,r>) there exists G; € OpReDynEzpr, with G; = G,
<a,r;> executable from G;, and Conflict(G;, <a,r;>) = Conflict(G, <a,r>).

Proof: By structural induction on the syntax of G.

e Base case: G = <o, r>. Immediate.

¢ General case: A simple application of the induction hypothesis solves the sequential
composition, restriction, parallelism and labelling.

For the choice operator, (G = G1OF or G = FOG;), we need to distinguish two
cases:

— If G, £ E, for any regular static s-expression E, we just need to apply the induction
hypothesis.

— If G = E for some regular static s-expression E, we also distinguish:

x If <a,r;>€ Conflict(G1,<a,r>), then we can apply the induction hypothesis
to conclude the property.

x If <a,r;>¢ Conflict(G1,<a,r>), then there exists H;, operative, H; = F,
such that <a,r;> is the only stochastic multiaction executable from H; (due
to the syntactical restriction), so if we consider G; = E O H;, it follows that
G; is operative, G; = G and Conflict(G,<a,r>) = Conflict(G;, <a,r;>).

The case of the synchronization operator, i.e., when G = G1 sy a, is somewhat more
involved, and we need to distinguish the following cases:

— If <a,r> is executable from G1, then we just need to apply the induction hypoth-
esis.

— Otherwise, if <a,r> comes from the application of rule Sy2, we can proceed by
induction on the number of times that Sy2 has been applied.

20



x Base case: <, 7> comes from the application of Sy2 once. If we consider:
<a,r>=<aq,r'> B, <ag, ">
Then, {<ay, ">, <ag, ">} € BC (G sya) , and thus:
Gisya <(ﬂ>l> G% sya(i))* G’%* sya <Oﬂ;> G’%z sya
We have:
C1 = Conflict (G sya,<ay,m'>) = Conflict (G1,<ay,r'>)

and by corollary 1:

Cy = Conflict (G sya, <ag,r">) = Conflict (G} sya,<ag,r">) =
Conflict (G1, <ag,r">) = Conflict (G1,<ag,r">)

If <a,ri>€ Conflict (G, <a,r>), then <a,r;>=<a;,r.> ®, <ag,r! >
with <aq,7, >€ Ci and <ag,r! >€ Cy. In G we must have a parallel
behaviour, in consequence, we may apply the induction hypothesis on the
components of this parallel behaviour in order to conclude that there exists
G, operative, Gy, = Gy, such that {<ay, 7>, <ay,r!>} € BC (G,,) with:

Conflict (Gy,,<ai,r.>) = C1,  Conflict (Gy,,<ag,r)!>) = C9
then, taking G; = G\, sya, it follows that G; is operative, G; = G, <a,r;>
is executable from G; and:
Conflict (G, <a,r;>) = Conflict (G, <a,r>)
* General case: <a,r> has been obtained applying Sy2 n times. Then:
<a,r>=<ay,r'> @, <ag, ">

where < ayi,7’ > has been obtained applying Sy2 k times, and < ag,r” >
has been obtained applying Sy2 n-k-1 times. We may apply the induction
hypothesis for <y, 7> and <asg, ">, and conclude the proof as in the base
case.

|

Lemma 5 Let Fy, F9, be two regular static s-expressions such that Ey; ~ FEo, Hy, H) €
OpReDynExpr, such that Hy € [E1), Hy € [Eq), ¢([Hil=) = [Hj]=, and < aj,r > is
executable from Hj.

Then, there exists < aq, 79 > executable from Hy = HJ, such that:

er(Hy, < ay,r >) = er(Ha, < aq,r9 >)

Proof: We have ([Hil=,< ai1,71 >,[Ji]=) € APt and due to the syntactical restriction
for all edges ([Hi)=, <ai,7m;>,[J1]=) € AP we have: <ay,r;> € Conflict(Hy, < ay,r1 >).
However, we may have some other edges leaving [Hi]=, labelled with <ay,7*>, which reach
nodes [J{]=, with J; Z Jj.

In order to distinguish if <ay,r* >€ Conflict(Hy,< aj,71 >) we just need to check if
there is a ghost transition: ([Hil=,< ay,m1 > || < ai,r* >,[J{]=z). If we may find such a
ghost transition, <aq,r*> will not be in Conflict(Hy, < 1,71 >).
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Then, we may compute cr(Hy,<aq,r1>) as follows:

cr(Hy, < oy, >) = r([Hil=, a1, [1]=) + r([Hi=, a1, [J])=)
[J1]=€L

where L = {[J]l= € VB |J # J|,3([Hil=,< ai,r* >,[Jl]=) € AFL and for all
([Hil=, < a1, >, [N]z) € A" A([Hil=, < oq, 15 > || < on,r* >, [J)]2) € AP}

Let us now consider ¢([Hy]z) = [H}]= and ¢([J1]z) = [J2)=.

Since r([Hi)=, a1,[J1]=) > 0, we must have a stochastic multiaction <ay,r9>, which is
executable from Hs, with Hy = H), and:

er(Hy, < a1,rp >) = r([Halz, o0, [B]=) + > r([Ha)=, an, [J3)=)
[Jol=€l/

where L' = {[J}]= € VP2 |Jy, £ J}, I([Holz, < ai1,7** >,[Jh]=) € AP2 and for all
([Halz, < au1,75 >, [a]=) € AP A([Ha=, < an,ry > || < oo, r** >, [J)]=) € AP ).
Using Def. 11 we can conclude that r([Hi]=, a1, [Ji]=) = r([Hz]=, a1,[J2]=), and L' =
¢(L) = {#([J1]=) | [Ji]l= € L }. Therefore:

er(Hy, < aq,r >) = er(Ha, < aq,r9 >)

In the following theorem we prove that ~ is a congruence relation:

Theorem 1 Let E;, Eo, E be regular static s-expressions, such that F; ~ Es, and nts(E) =
(VEU{[E]=}, AP U AL U AP of), nts(By) = (VP U{[Ey]=}, APr U AEY U APY ), and
nts(Bz) = (VP2 U{[By]=}, AP U A2 U AP2 o).
Then:

(1) El;ENEQ;E and E;ElNE;EQ

G) E|E~E|E ad B||E ~E|E

(ili) E4OFE ~ E,0F and FEOE, ~ EOE,

(iv) Ei[f] ~ Es[f], for a bijective relabelling function f

(v) Eisya ~ Essya,forac A

(vi) Eyrsa ~ Esrsa, forae A

Proof: Let ¢ be the bijective function that ~ provides for us for Fy and Es.
(i) Let Fy = E1; E be and Fy = Ey; E. We can obtain nts(F)) and nts(Fs), as follows:

nts(Fy) = (VI U{[F]=}, ATV U AR U AD ofY),  where  ts(Fy) = (VI AT o)
Vi ={[H;E)= | Hi € [E1) } U{[E;;Gl= |G € [E) }
A = ([Hy; El= ,< ayr >, [Ji; El=) | ((Hi)= , < a7 >, [J1]=) € AP |+
{ ([B1;Gl= < a,r >, [Bi; =) [ (Glz , < ayr >, [J]=) € AP |}
Al = (([F]=, < skip,0 >, [Fi]=), ([Fi]=, < redo,00 >,[Fi]=)}
Ail ={ ([Hl,E]; ,<a,r> || <B,s>,[Ji; El=z) | ([Hi]z , <a,r> || <B,s>,[1]=) € AE1 I+
. { (By;Gl= ,<a,r> || <B,s>,[Bi; J]=) | ([Glz , <a.r> || <B,s>,[J]z) € A ﬂ
vy' = [Fi]=

Note that in V1:
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- [Ey; E)= = [Ey; E]= because Ei; E = Ey; E
- [Fi)= = [E1; E]= because F| = E; E

- [Fi]= = [E1; E]= because F| = E; E

Analogously:

nts(Fy) = (V2 U{[Fy]=}, AT U AL U A2 0f?),  where ts(Fy) = (V12 A2 v[?)
VP = {[Hy; El= |Hy € [E2) } U{[E2; Gl= |G € [E) }
A2 = ([Hy; El= , < a,r >, [Jo; El= ) | ((Ho)= , < a7 >, [Jo]=) € AP2 | +

1 ([B2;Glz , < a,r >,[Fa; J)=) | ([Glz , < a7 >,[J]=) € AP}

Al = (([R)=, < skip,0 >, [Fy]=), ([Fh]=, < redo, 00 >,[Fh]=)}

Al = ([Hg, El=,<a,r> || <B,5>,[Jo; E]= ) | ([Ha]= , <a,7> || <B,s>,[Ja]=) € AEZ b+
{ ((B2;Gl= . <a,r> || <B, s>, [Ey; J]=) | ([Glz , <a,r> || <B,s>,[J]z) € A I}
= [Fy]=

With [Ey; El= = [Eg; El=, [F2]= = [Bp; El=, and [Fy]= = [Ey; El=.
We define p : VT U {[Fi]=} — V2 U {[F)=}, in the following way:
- If [H]= € V™ and §([Hi]=) = [Ha)=, then ¢([Hy; El=) = [Ha; El=
- ¢([E1;G]=) = [E2; Gl=, where G € [E)
- o([Fl=) = [R)=

It is immediate to check that ¢ is well defined, it is a bijection, and ¢([Fi]=) = [F}]=.
e Let us consider an edge e of A"*. We may have two cases:

—e= ([H;; El=z ,< a,r >,[J1; E]=), with ((Hi]=z,< a,7 >,[J1]=) € A1,
Taking ¢([Hy]=) = [Ho)=, $([1]=) = [Bl= , then ([H; El=) = [Hy; Bl and
o([J1; El=) = [J2; El=.
From Fi ~ FEs,we have:
r([Hi; El=, 00 [J1; El=) = r(His,e0[h]s) = r(Hoz, e [l)=) =
r([Ha; El=, o, [Jo; E]= ).
It is also immediate to check that r([Hy; E]l=,«,[Ji;E]=z) = 0 if and only if
r([He; Fl= , o, [Jo; E]=) = 0.

—e= ([E;;G)=,< a,r >,[Ey; J]=), with ([G]=,< a,r >,[J]=) € AF.
In this case we have: ([El, Glz) = [E2Gl=, o(E;J]z) = [ElJ]=,
r([Br; Gl=, . [By J]=) = r([Gl= s o =) = r([By; Gl= o, [Ba; J]= ) -
It can be easily checked that r([El, Gl=, ,[El,J];) = 0 if and only if

r([E2; Gl= o, [E; J]=) = 0.
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e Let us consider an edge e of A5 1. We have also two cases:

), with ([Hi]z, < a,7 > || < B,s >,

—e=([H;;Elz, < a,r > || < B,s >,[J1; E]=
. ¢([1]=) = [J2]=, then o([Hy; El=) =

[ 1]=) € AJt. Taking ¢([Hi]=) = [Ha]=
[Hy; El= and o([J1; E]=) = [J2; E]=.
Furthermore, if ([Hy; El=,< a,r > || < 8,5 >,[J1;E]=) € A}, with ([Hi]=,
<a,r>|<B,s>[J]z) € AgEl, then from E; ~ Es:

L ([Hil=, <a,r>,[H]] =) € AP:

2. ([Hi)=,<B,s>,[H]] =) € A

3. Ir', s such that ([Hol=z ,< a,r’ > || < 8,8 >,[]]=z) € AgE‘~’, with:

([Ha]=, < a,r' >, ¢([H{]=)) € AP, and ([Hal=, < B,s' >, ¢([H{]=)) € A™.

Then, we conclude:

1. ([Hi; El=,<a,r>,[H[; E] =) € AT

2. ([H1; E)=,<B,s>,[H]; E] =) € Al

3. ', " such that ([Ho; El=z ,< a7’ > || < B,8 >,[J;El=z) € Ag‘z, with:
([HZaE]E ’ < a’,’,,l >a¢([HiaE]E)) € AFQ, and
([Ho; El=, < B, s' >, ¢([HY; E]=)) € A™.
— e=([E1; Gz, <a,r> || <B,s>,[E1; J]=) with ([G]z,<a,r> | <B,s>,[J]=z) € AgE.

This case is symmetric to the previous one.

Notice that the proof for the edges of A" and Ag 2 is identical'.

The proof of E; E; ~ E; Ey is analogous.
(ii) Let Fy = Ey | E and F» = Es || E be. In this case we have:

nts(Fy) = (VI U {[F]z}, AT u AD UAF1 Jopt),  where ts(Fy) = (VI AT olh)

VI ={[H|G= | Hi€[E) and GE[E)}
AR ={ ((H|G]z . < ayr >, [1|G]2) | ((Hi]= . < ayr >, [I]=) € AP | +
{ (H1lGl= < eyr >, [Hi][J]=) [([Gl= , < a,7 >, [J]z)GAE h

Agh = {([F1)=, < skip,0 >, [F]=), ([Fi=, < redo, 00 >, [F1]=)}

Al = ([Hll\G]za<Oé,?“> | <B,s>, [J1||G]_)|([H1]_,<a r> | <B,s>,[N]=) € AP h+
{ (Hi||G)=, <a,r> || <B,5>,[Hi||T)=) | ([Gl=, <a,r> || <B,5>,[J]=) € AT |} +
{ (H1lIGl= , < ayr > || < Bys >, [N|J]=) [ ((Hi]= , < a,r > [Ji]=) € AP and
([Gl=,<Bys> [Jz) € A |}
Fi _
vy = [Fi]=

With [Fl]z = [E_lﬂﬁ];, and [F1]= = [E1[|E]=.

!The same occurs in the remaining operators, so in the following cases we will just describe the proofs for
edges in A™ and A]".
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nts(Fy) = (V2 U{[Fy]=}, AT U AR U A2 0f?),  where ts(Fy) = (V12 A2 v{?)
V% ={[H|Glz | Hp€[E2) and G€[E)}

A" = ([Ho|G)= , < ayr >, [B||Gl=) | ([Ha)= , < ay 7 >, [Jo]= ) € AE2 P+
{ ([Hzl\G]:a<a?“> [Ho|J]=) | ([Glz , < a,r >, [J]=) € AP |}

Al = (([R)=, < skip,0 >, [F2]=). ([Fa]=, < redo, oo >, [F]=)}

AP = ([HQHG]*7<O‘ > || <B,5>, [L|Gl=) | ([Hol=, <a,r> || <B,s>,[J]=) € A [} +
{ (H2l|Gl=, <, r> || <B, s>, [Ha|J)=) [ ([G]= , <e,r> || <B,s>,[J]=) € AJ | +
1 ([Hao||Glz s < a,r > || < By5 >, [ ]| J]=) | ([Halz , < a,7 > [Jo]=) € AP2and
([Gl=, < B,s > [J]=) € A" |}

= [Fy]=

With [F3]= = [E»| El=, and [B)= = [B| E)=.
We define p : VT U {[Fi]=} = V2 U {[F)=}, in the following way:

- V[H]= € VP, o([H1]|G]=) = [H2||G]=, where ¢([H]=) = [H)=.
- e([FAl=) = [Bl=.
¢ is well defined, it is a bijection, and ¢([Fi]=) = [Fy]=.

e We have again two possible cases for the edges of A, in both of them we can repeat
a reasoning similar to that one followed in case (i), obtaining:

= r([HllGlz &, [1|Glz) = r([Ha||G= s o [12]|G]= )
= r((HllGl= . [HiJ]=) = r([H2||G]= ; o [Ha || T]= ).
with ¢([H1)=) = [Hal=, and ¢([Ji]=) = [Jo]-=.
e For the edges in Ag ! we have three cases:
H\||Gl=, <a,r> || <B,5>,[1]|G]=), with ([Hi]= ,<a,r> || <B,s>,[J1]=) € A}

Hi||Gl= ., <a,r> || <B,s>, [Hi|lJ]= ), with ([G]= , <a,r> || <B,s>,[J]=) € AP

- (1
- (1
— (H1||Glz,<a,r> || <B,s>,[Ji||J]=), with ((Hi]=,<a,r>,[]1]z) € AP' and
([G]=,<B,s>,[J]=) € A".

—_ ~—

The two first cases are analogous to those of case (i). For the third case, from E; ~ F,
we may find 7’ such that ([Hs]=, <a,r'>, [J2]=) € AP2 and thus:
([H2llG)=, <a,r'> || <B,s>,[]|T]=) € Ag®.

(iii) Let F; = EyOF and F, = E5; O F be. We have:

nts(F) = (VI U{[Fi]=}, AT U ARV U AT of),  where  ts(Fy) = (VI AT of)
VA ={[Hi0E)= | Hi€[B)}U{[EO0G]= | GelE)}
I=
)

A = ((HiOE)z ,<a,r>,[J1OE]2) | ((Hi]=z ,<a,r>,[J1]=) € APt |} +
{ ((B18G)= ,<a,r>,[E1O]J]2) | ([Gl= , <a,r>,[J]=) € A" |

Apt = {([F1]=, <skip,0>,[F1]=), ([Fi]=, <redo, 00>, [F1]=)}

AF1 { ([H, DE]_ <a,r> || <B, 5>, [J1 OE=)|([Hilz ,<a,r> || <B,s>,[h]=z) € AP | +
{ ([E\OG]= ,<a,r> || <B,s>,[E10J]=) |([Glz ,<a,r> || <B,s>,[J]=) € AV }

= [Fi]
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Note that in V1:
- [Fl]z = [E_IDE]E = [El DE]E
- [&]E = [&DE]E = [El DE]E

nts(Fy) = (V2 U{[Fy]=}, AT U AL U A2 0f?),  where ts(Fa) = (VI2, Af2 v[?)
Vi ={[H,0F]= | Hy€[B)}U{[E0G= | GEe[E)}
AP = ([HyOE)= ,<a,r>,[JL, 0E)=) | ([Hs)= , <a,r>,[J]=) € AP | +

{ ([E20G)= ,<a,r>,[B0]J)=) | ([Glz , <a,r>,[J]=) € AF |}

ALz = {([Fyl=, <skip,0>, [Fy]=). ([Fal=, <redo, 00>, [F]=)}

A52 ={ ((H2 O El= ,<a,r> || <B,5>,[J D E]=) | ([Ha)= , <a,r> || <B,s>,[J]=) € AP |} +
{ (B2 O0G]z ,<a,r> || <B,s>,[E20J]=) |([Glz , <a,r> || <pB,s>,[]J]z) € Af I
[FQ]E

With [Fyl= = [B3 0 El= = [B, O B)=, and [Fy)= = (B, O F]- = [E; D E]-.
We define p : VT U {[Fi]=} — V2 U {[F)=}, in the following way:
- V[H\]= € VB, ([H, O E]=) = [Hy O E=, where ¢([H]=) = [Ho)=.
- $([B10G)) = [B> D G-
- e([FAl=) = [Bl=.
¢ is well defined, it is a bijection and o([F1]=) = [F]=.
e Let us consider an edge e in A, We may have the following four cases:

[HiOFE)= ,<a,r>,[J10E]=), with Hi ZE, V (Hi = E| A J; £ E)).
[F10G)= ,<a,r>,[E10J)=),withGZEV (G=E AN JZE).
[HiOE)=,<a,r>,[Ji0E]=), with Hy = Ey, and J; = E

[F10G)=, <a,r>,[E;0J]=), withG=E, and J = E.

(
(
(
(

The two first cases are solved using a similar reasoning to that one followed in (i) and
(ii). The third and fourth cases are similar, so we only show the proof for the third one:

r((HyDEl=, o, [1 D Elz) = r([Brl=, o, [B1]=) + r([E]=, o, [E]=) =
r([Eal=, o, [Eo)=) + r([E]=. . [E]E)_: r([E2 D El=, 0, [Ey D El=)=
T([HQ O E];, a, [J2 O E];), VHQ = EQ, VJQ = E2
e For the edges in Ag ! we have again two possible cases:
- ((Hi B Elz,<a,r> || <B,s>,[J1 OG]=z), with ([Hi]z,<a,r> || <B,s>,[1]=z) € AEI.
- ([F1OG)=z, <a,r> || <B,s>,[F1O0J]=), with ([G]z,<a,r> || <B,s>,[J]=z) € A
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Both are immediate, and they can be solved with a similar reasoning to that one followed
in (i) and (ii).

(iv) Let Fy
follows:

= E;[f] and F, = E5[f] be. In this case nts(F;) and nts(Fy) are obtained as

nts (1) = (V7 U{[FR]=}, A7 U AR U AR ofh),  where  ts(FR) = (V1,47 o)

VA ={[m[fl= | Hi€[E)}

Al = {I ([_LIl [f”E ,<f(0£),7‘>, [Jl [f”E ) | ([Hl]E a<&71>7 [Jl]E) € AP [%

Af'rl = {([Fl]Eﬂ <skip,0>, [&]E)a ([&]Eﬂ <redo, 00>, [Fl]E)}

Aﬁgl ={ (H[fll= . <fla),r> || <f(B),s>, [N [fl]=) | ((Hil= . <a,r> || <B,s>,[i]=) € A7 |
A

Note that in V1:

- [FI]E = [E_l

- [A]

=B

e
e

nts(Fy) = (V2 U{[R)=}, A2 U Al U Al2, ve?),  where ts(Fy) = (VT2 A vl?)

VPR ={[H:[fll= | H)€l[E2)}
A ={ ((H:[f]lz . <f(a),r> [L[f]]l2) | (Ho)z . <a.r>,[h]z) € AP |}
Afv? = {([FQ]Eﬂ <skip, 0>, [&]E)a ([&]Eﬂ <redo, 00>, [FQ]E)}
Aﬁ? ={ ((H2[f]l=, <f(a),r> || <f(B), s>, [R[f]]=) | (Ho]= , <o,r> || <B,s>,[Jo]=) € Ag> |
v = [F]=
With [B]= = B [f]]=, and [B]= = B [f]]=.
We define p : V1 U {[Fi]=} = V™2 U {[F,)=} in the following way:
o V[Hi]= € V', o([H: [f]]=) = [H2[[f]]= . where ¢([H\]=) = [H3]=.
o o([F1]=) = [F2]=

It is immediate to check that ¢ is well defined, it is a bijection, and ¢([Fi]=) = [F»]=.

e Let us consider an edge of A", ([Hy[f]]=,<f(a),r>,[J1 [f]]=), where:

([Hi=,

r((H[f])=, f(a), [1 [f]]=
r(iH2[fl]=, f(a),[J2 [f]]=), where ¢([Hi]=) = [Hs]=, and ¢([/1]=)

<a,r>,[J1]=) € A1, We have:
) =r(Hil=, o [Nh]=) = r([Ha]=, o, [2]=) =

e FEdges of A5 ! must have the following form:

where (

((Hi [fll=, <fla),r> || <f(B),s>,[]1[f]]=)
[Hi=, <a,r> || <B,s>,[1]=) € A"

Then, using Fy ~ Fo, and taking into account that f is bijective we can easily conclude
the property for E;[f] and E3[f].
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(v) Let F; = Ey sya and Fy = Fy sy a be, with a € A. We have:

nts(F1) = (VI U {[Fi]=}, A" U AL UAgl,véml), where ts(Fy) = (VI ATt olh)

Vi = {[Hisyal= | Hy€[E1)}

A = ([Hysyal=,<a,r>,[Jisyal=) | ([Hi]=,<a,r>,[Ji]=) € AP } +
{ ((Hisyalz,<a1 &g oo, Ria>,[Jisyal=)|a € A(a1),a € A(aa),
{<aq,r>,<ag,r9>} € BC(H; sy a) with
Hlﬁ/ q SUL Gisya=Gysya* Qe Jysyal

Af;"l = {([Fl]Eﬂ <skip, 0>, [&]:)a ([&]:ﬂ <redo, 00>, [Fl]:)}

AV ={ ([Hisyal=,<a,r> || <B,s>,[Jisyal=) | ([Hi]z,<a,r> || <B,s>,[]=) € AJ }+
{ ([Hysyal=,<a1 @, ag, R12> || <B,s>,[J1syal=z)]|a € A(a1),a € Aas),
{<ai,r>,<ag,re>,<B,s>} € BC(H; sy a) with

Hisya <Oﬂ>l>Glsya—Glsya <OQ—’>M>G25ya—G25ya* ﬁ?ﬁsyaﬂ

™ 2

: - min {er(Hysya, <oy, 7ri>
cr(Hy sya, <ai,r>) cr(Hysya, <ag,m2>) i:1,2{ (Hisya,<ai,ri>)}

Note that in VI
- [FI]E = [E_lsya]g

- [Fil==[E1syal=

nts(Fy) = (VP2 U{[Fy]=}, AT U AR U A2 0f?),  where ts(Fp) = (VT2, A2, v{?)

VI = {[Hysyal=| Hy € [Eo)}

A2 = ([Hysyal=z,<a,r>,[Jasyal=) | ([Ha)=, <a,7>,[J]=)
{ ([Hasyal=,<a; &4 ag, Rio>,[Jasyal=)|a € Alay),a
{<ai,m1>,<ag,r9>} € BC(Hj sy a) with
Hysya — Sanny> G sya=Gisya* SR> g, syal

A ={([Fl=, <skip,0>,[F3]=), ([F2]=, <redo, 00>, [F2]=)}

Ag‘—’ ={ ([Hesyalz,<a,r> | <B,s>,[Jasyal=) | ([Ha]z, <a,r> | <B,s>,[J2]=) € AgE2 I+
{ ((Hasyalz,<a1 ®q ag, R19> || <B,s>,[Jasyal=)|a € Alan),a € A(az),
{<ay,r>,<ag,ry>,<f,s>} € BC(Hs sy a) with

APz 4

€
€ A(ag),

Hs sya Sanny> Gisya=Glsya * SQ212> G sya=Ghsya* <P Jasya l}
where
r T .
Ry = ! 2 min {cr(Hs sy a, <aj,ri>)}

er(Hsy sy a, <oq,m1>) . cr(Hs sy a, <ag,r9>) =192
With (F)- = [ sy al=, and [Fy)- = [By sy a]-
We define o : VIT U {[F]=} — VI? U {[F]=}, in the following way:
o V[Hi]= € VP, o([Hy syal=) = [H2 sy al=, where ¢([Hi]=) = [Ho]=.

® @([ﬂ]z) [F2]E
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Note that ¢ is well defined, it is a bijection and p([F1]=z) = [Fa]= .

e Let us consider an edge e of Af1. We have again two possible cases, the first one
corresponds to one stochastic multiaction executable from [H;]=, and the second one
corresponds to a stochastic multiaction obtained by synchronization. Nevertheless,
notice that as a consequence of the syntactical restriction that we have imposed, we
cannot obtain two edges connecting the same pair of nodes, one obtained according to
the first case, and the other one according to the second one. Then, we can see each
case separately:

—e=([Hysyal=,<a,r>,[J1 syal=), with ([Hi]=, <a,r>,[J1]=) € AP,
Taking ¢([H1)=) = [Ha]= and ¢([J1]=) = [J2]=, we have:

r((Hisyal=,a,[Jisyal=) =r(Hiz,a [Ni]z) =
T([HQ]E y & [JQ]E) = T([HQ sY a]E y & [JQ sY a]E)
—e=([Hisyalz,<ay &, ag,Ri9>,[J1syal=z), witha € A(ay),a € A(ag),
{<ai,r1>,<ag,s1>} € BC(Hy sy a) with
<o 1, 1>
Hisya

We apply induction on the number of times that we have applied the rule Sy2:

Gisya=Gysya* i Jisya

Base case: Sy2 has been applied once. In this case: {<ay,m1>,<ag,s1>} €
BC(Hy), and we will have:

Conflict(Hy, <aq,r1>) = Conflict(Hy sya,<ay,r>) = {<ay,r1>,...,<aq,m,>}
Conflict(Hy, <ag, s1>) = Conflict(Hy sy a,<ag,s1>) = {<ag,$1>,..., <, $p>}

Therefore, we have the following transitions:

([Hl]_,<041,7’1> || <ag, 81>, [Jl] ) € AgEl

([Hi)=, <ai,r>,[Gr]=) € APy, ((Hy syal=, <aq,ri>,[Gisyalz) € AT, i=1,...,n
([Hy ],,<a2,8j>, (G =) € APY, ([Hy syal=,<ag,s;>,[G) sya)=

(G ]2, <ag,s;>,[J1]=) € AP, ([Gysyalz, <ag,s;>,[Jisyal=) € AT, j=1,...,m9
([G" =, <ai,ri>, [J]=) € AP (G sya)=, <aq,ri>, [J1 syal=) € AT, i=1,....m

with n > ny and m > msy. Applying Lemma 3 we may generate ny - mo pos-
sible synchronizations, taking each pair (<aq,r;>, <ag,s;>), for i =1,...,nq,
j =1,...,ma. Then, for each one of these pairs (<a1,r;>, <ag,s;>) we obtain a
transition ([H; sy a]=, <a1@q 00, R;jj>,[J1 sy al=) € AF1 where R;; can be written
as follows (using Lemma 4):
T SJ
= —- -min{crl, cr2
Y erl er2 { }
where crl = er(Hy sy a,<ai,r1>), and cr2 = cr(Hy sy a, <aw, $1>).
Consequently:

r 3 .
r([Hisyal=, a1 ®q a9, [J1syal=) = Z R;j = — - — -min{crl, cr2}

i=1..n1 crl cr2
j=1l..m2
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In ts(F,), using Def. 11 we conclude that there exists Hy € OpReDynExpr,
¢([H1])=) = [H2)=, and that we have the following edges:

([Ho]=, <ai,ur> || <ag,v1>,[J2]=) € AgE2

([Hy)=, <ai,u;>,[Go]=) € AP2, ([Hy sya)=,<an,u;>,[Gosyal=z) € A2 i=1,...,p
([Hal=, <ag,v>,[Gh]=) € AP2 ([Hysya)=, <ag,v;>,[GYysyal=) € A2 =1, ¢
([Ga)=, <ag,v;>,[J2]=) € AF> ([Gasyal=, <ag,v;>,[Jasyal=) € AP =1, ¢
(1G]

Conflict(Ha, <ai,u1>) = Conflict(Hy sy a,<ai,u1>) = {<oq,u1>,...,<ai,up>}
Conflict(Hy, <ag,v1>) = Conflict(Hs sy a,<ag,v1>) = {<ag,v1>,...,<ag,v,>}

with p > p; and ¢ > ¢o. Therefore, using again Lemma 3 and Lemma 4, we have
p1 - g2 possible synchronizations. For each one of these pairs (<o, u;>, <ag,vj>),
we have ([Ha sy a]=, <ai @4 a2, Si;>,[J2 sy a]=), where:

Uj Uy

TRy -min{crl’, cr2'}

ij

where:
crl’ = er(Hy sy a, <ag,u1>)
cr2’ = cr(Hs sy a, <ag,v1>)

From Lemma 4 and Lemma 5 we have now that: cr! = cr1’ and cr2 = cr2'.

Finally, from Ey ~ E5, we have: ¥ = 12] u; and § = Z vj, and thus:
1=1...p1 2

j=1l.p
r([Hasyal=, a1 @, ag, [Josyal=) = . IZP Sij = #;, . %;, -min{erl’, er2'} =
=1...p1
j=1l...q2

r([Hy syal=, a1 @4 ag, [J1 syal=)

General case: We assume now that e has been obtained applying n times the rule
Sy2, i.e, the stochastic multiaction is obtained as follows:

(<B1,71> Ba - Ba <BksTk>) Do (<Brt1,Tkr1> Ba - Ba <Pt Tnt1>)

Therefore, we may apply the induction hypothesis for both parts, and then, with a
similar reasoning to that used in the base case we may conclude the property.

On the other hand, if r([Hy sy a )=, o, [J1 sy a]=) = 0, we can repeat a similar reasoning

in order to conclude that r([Hysyal=,a,[Josyal=) = 0, where ¢([H;]=) = [Ho]=,
¢([J1]E) = [JQ];.
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e Let us consider an edge e of A5 1. We have again two cases:

—e=(Hysyal=,<a,r> | <B,s>,[J1syal=), with ([Hi]=z,<a,r> || <B,5>,
[Jl]E)EAEl-

It is immediate, taking into account that Fy ~ Fs.

—e=([Hysyal=,<a,r> || <B,s>,[J1 sy a]=), where: <«,r> has been obtained
by synchronizing the stochastic multiactions {< a;,7; >}, and < 8,5 > has
been obtained by synchronizing the stochastic multiactions {<f;,s; >} with
n +m > 1. Therefore:

m
j:l’

{<a1,m1>, ..., <ap,rn>,<B1,81>, ..., <Bm,sm>} € BC(H])
where H{ = Hy, and thus, from Prop. 2 we can obtain:
{<aq,ri>, .. <an, Th>,<B1,81>,...,<Bm,sm>} € BC(H))

for some H!, € ¢([H1]=). Taking now <, r'> the stochastic multiaction that we
can obtain by synchronizing all the stochastic multiactions in {<a;,7,>}" ;. and
<f,s'> that one obtained by synchronizing {<f;, s;>}7.,, we have:

{<a,r'>,<pB,s'>} € BC(H} sya)
Therefore, there is a ghost transition:
([Hy sy al=, <a,r'> || <B,s">, [J2 sy a]=)
which fulfills conditions of Def. 11, with Jy € ¢([J1]=).

(vi) Let Fy = Ey rsa and Fy = E5 rsa be, with a € A. Then:

nts(F) = (VI U{[Fi]=}, AT U ALV U AR of),  where  ts(Fy) = (V1 AT oft)

<a1,r1> - <an,rn> Hl

VI ={[F]=}U{[H, rsa]= | H, € [E;) and 3H = E; such that H
witha,a € A(a;),i=1,...,n}

AT =1 ([Hyrsal=,<a,r>, [Jirsal=) | ((Hilz,<a,r>,[Ji]=) € AP1 |
[Hirsal=, [Jirsa]= € VI, anda,a ¢ A(a) |}

ALY = {([F)=, <skip,0>,[Fi]=), ([Fi]=, <redo,00>, [Fi]=)}

Al ={ ([Hirsal=,<a,r> | <ﬁ,s>,[J1 rsa]:)|([H1]E,<a,r> | <B,5>,[Ji]=) € A}
[Hyrsal=, [Jirsal= € VI, and a,a & A(a) U A(B) |}

vy = [Fil=

A

Note that in V1:
= [Fl]z = [E_17'5 a]z

- [Al==[Eirsa]=
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nts(Fy) = (VP2 U{[Fy]=}, AT U AR U AR 0f?),  where ts(Fp) = (V72, A2, v{?)

<o ,r1> ) <an,rn>

VI ={[F)=}U{[Hy s a]= | Hy € [E2 ) and IH = FE5 such that H
witha,a € A(ey), i =1,...,n}

A = {I ([H2 rs a]E y <O, T>, [J2 s a’]E) | ([HQ]E y <O, T>, [JQ]E) € AP )
[Hyrsal=, [Jarsal= € VT2 and a,a & A(a) |}

H,

A2 = {([FPa]=, <skip,0>,[Fo]=), ([Fa]=, <redo, 00>, [F]=)}
A52 ={ ([Harsal=,<a,r> || <B,s>,[Jarsalz)| ([Ho)z , <a,r> || <B,s>,[]J2]=) € AgE2 ,
[Hyrsal=, [Jorsal= € VI? and a,a ¢ A(a) U A(B) |

= [F)=
With [Fh]= = [Fa rsal= and [Fy]= = [Earsa)=
We define p : VI U {[F]=} — V2 U {[F]=}, in the following way:
e V[Hyrsal= € VI | o([Hirsalz) = [Hyrsa)=, with ¢([H]z) = [Hs=.
o o([Fi]= = [B]=

Notice that ¢ is well defined, because [Hy rsal= € V2 (we can execute in Ey the same
chain of multiactions as in Fj, possibly with different rates), ¢ is a bijection and ¢([F}]=) =
()=

e Let us consider an edge e of A™:
= ([Hirsal=,<a,r>,[J1 rsa)=)

with ([Hi)=, <a,r>,[J1]=) € AP' | a,a & A(a).

Then:
r((Hirsal=, o [irsal=) = r([Hi]=, on [h]=) =
r([Hal=, e, [J2]=) = r([Hars al= o [Ja s a]=)

with ¢([H1]=) = [Ho]=, ¢([N]z) = [2]=.

It is also immediate that:

r([Hirsal=,a,[Jirsal=) =0 if and only if r([Harsal=, o, [Ja s a]=) = 0.

e Let us consider an edge e of A5 L

= ([Hirsal=,<a,r> || <B,s>,[Jirsal=)
with ([Hi]z,<a,r> || <B,s>,[Ji]z) € Afl,a,d g A(a) U A(B).

From FE; ~ E; we have that 3r’, s’ such that ([Ha]=,<a,r'> || <B,s'>,[J]=z) € AE2,
with ¢([H1]z) = [H2)=, and ¢([J1]=) = [J2]=, fulfilling the conditions of Def. 11.

Therefore:
(Hyrsal=, <o, r'> || <B,s'>,[Jorsal=) € A}>, fulfilling the conditions of Def. 11.
O
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Proposition 3 For all F, F regular static s-expressions such that £ ~ F, their corresponding
CTMCs are isomorphic.

Proof: Immediate, just taking ¢s(E) and ts(F). 0

Proposition 4 For all E, F regular static s-expressions: £ =2 F = FE ~ F.

Proof: Immediate. 0O

Consequently, we have the same equivalences that we had in PBC with respect to the
isomorphism there defined.

Corollary 4 For all E, F, E' regular static s-expressions, and for all a,b € A, then:
() B|F ~F| B

(i) BI(F|F) ~ (| F)| B

(ili) FOF ~FOE

(iv) EO(FOFE') ~ (EOF)OF

(V) E; (F; E') ~ (E; F); E

(vi) Esyasyb ~ Esybsya

(vii) Esyasya ~ Esya

(viii) Esya ~ Esya

(ix) (E; F)sya ~ (Esya); (Fsya)

(x) (EOQOF)sya ~ (Esya)d(Fsya)

(xi) (E||F)sya ~((Esya)|(Fsya))sya
(xii) Ersarsb ~ Ersbrsa

(xiii) Ersarsa ~ Ersa

(xiv) Ersa ~ Ersa

(xv) (E; F)rsa ~ (Ersa); (Frsa)

(xvi) (EOF)rsa ~ (Ersa)0(Frsa)
(xvil) (E||F)rsa ~ (Ersa)|(Frsa)
(xviii) If a & {b,b} = (Esya)rsb ~ (Ersb)sya
(xix) (Brsa)[f] ~ (E[f])rs f(a)

(o) a5 [b: E)] ~ [b: [a: B
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(xxi) [a : [a: E]] ~ [a: E]

(xxii) [@ : E] ~ [a : E]

(xxiii) [a : (E; F)] ~ [a: E];[a: F]

(xxiv) [a : (EOF)] ~ [a: E]Oa : F]

(xxv) Sia & {b,b}= [a: E]rsb ~ [a: (Ersb)]
(xxvi) If f is bijection, then [a : E|[f] = [f(a) : E[f]]
(xxvii) Sia ¢ {b,b} = [a: Elsyb ~ [a: (Esyb)]
(xxviii) E[f]lg] ~ Elgo f]

(xxix) Elid] ~ E

(xxx) (E; F)[f] ~ (E[f]); (F[f])

(xxxi) (E|F)[f] ~ (E[f])II(F[f])

(xxxii) (EOF)[f] ~ (E[f])D(F[f])

(xxxiii) (Esya)[f] ~ E[f]sy(f(a))

4 Conclusions and Future Work

sPBC is a stochastic extension of PBC, which was presented in [12]. An important differ-
ence with respect to PBC is that in sPBC a total order semantics is considered, although
parallelism is maintained at the level of multiactions. In this paper we have defined a con-
gruence relation for finite sPBC (~), with which we may identify those processes that have
the same behaviour, not only in terms of the multiactions that they can perform, but also
for the stochastic information that they have associated. In order to do that, a new version
for the semantics of the synchronization has been considered, on the basis of conflict rates.
Furthermore, for each regular static s-expression £ we have defined a new labelled transition
system, nts(E), in which some new transitions have been added, namely, Skp, Rdo, and the
ghosts transitions.

Our future work will focus on the definition of a more general stochastic equivalence
relation: a stochastic bisimulation. We also intend to extend our results to the infinite case,
by including both iteration and recursion. Finally, we will introduce additional capabilities,
such as immediate multiactions.
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