University of Castilla-La Mancha

A publication of the Department of Computer Science

Formalizing the Fill in of the InfiniBand
Arbitration Table

by
Francisco J. Alfaro, José L. Sdnchez, Manuel Menduina,
José Duato
Technical Report #DIAB-03-02-35 March 2003

DEPARTAMENTO DE INFORMATICA
ESCUELA POLITECNICA SUPERIOR
UNIVERSIDAD DE CASTILLA-LA MANCHA
Campus Universitario s/n
Albacete - 02071 - Spain
Phone +34.967.599200, Fax +34.967.599224







Contents

10
11

Introduction . . . . . . ..o
InfiniBand . . . . . . .. ..
IBA support for QoS . . . . . . ..o
3.1 Service levels . . . . . . . ...
3.2 Virtual lanes . . . . . . . ..o
3.3 Virtual lane arbitration . . . . . .. ... ... 0oL
Traffic of applications . . . . . . . . ... ... oo
4.1 Applicationneeds . . . . . . . ..o
4.2 Traffic classification . . . . . . . .. ... ...
Giving QoS in InfiniBand . . . . . .. ... ... oo
5.1 Model to guarantee QoS in InfiniBand . . . . ... ... .. ..
5.1.1 Bandwidth guarantee . . . .. ... ... .. ... ..

5.1.2 Delay guarantee . . . . .. ... ... ... ... ..

5.1.3 Giving guarantee of bandwidth and delay at the same

time . . . . . ..o

Looking for a new sequence of entries in the table . . . . . . .. .. ..

6.1 Distance categorization . . . . . . . . ... ...
6.1.1 Categorization based on the number of entries . . . . .
6.1.2 Categorization based on the symmetry of the entries

6.2 Comparing both models . . . . . . ... ... ... ... ...
Formal model for the InfiniBand arbitration table . . . . . . .. .. ..
7.1 Definitions . . . . . . . . ... ..o
7.2 Initial hypothesis . . . . . . . ... ... ... ... oo
7.3 Themodel . . . . . . . ... ...
Algorithm for filling in the table . . . . . ... ... ... ... .....
Insertions and eliminations in the table . . . . . . ... ... ... ...
9.1 Disfragmentation algorithm . . . . . ... ... ... ... ...
9.2 Reordering algorithm . . . . . . . ... ... ... 00
Global management of the table . . . . . . . ... ... ... ... ...
Conclusions . . . . . . . . . . . e

0 00 N O & Ot Ww

e = e
= W NN N O






Formalizing the Fill in of the InfiniBand Arbitration
Table !

Francisco J. Alfaro, José L. Sanchez, Manuel Menduina
Dept. de Informatica
Escuela Politécnica Superior
Universidad de Castilla-La Mancha
02071- Albacete, Spain

{falfaro, jsanchez, mmendu}Qinfo-ab.uclm.es

José Duato
Dept. de Informatica de
Sistemas y Computadores
Universidad Politécnica de Valencia
46071- Valencia, Spain

jduato@gap.upv.es

IThis work was partly supported by the Spanish CICYT under Grant TIC2000-1151-C07
and Junta de Comunidades de Castilla-La Mancha under Grant PBC-02-008






Abstract

The InfiniBand Architecture (IBA) is a new industry-standard architecture for server
I/O and interprocessor communication. InfiniBand is very likely to become the de facto
standard in a few years. It is being developed by the InfiniBand*™ Trade Association
(IBTA) to provide the levels of reliability, availability, performance, scalability, and
quality of service (QoS) necessary for present and future server systems.

The provision of QoS in data communication networks is currently the focus of
much discussion and research in industry and academia. IBA enables QoS support
with some mechanisms. In this paper, we examine these mechanisms and describe a
way to use them. We propose a traffic segregation strategy based on mean bandwidth
requirements. Moreover, we propose a very effective strategy to compute the virtual
lane arbitration tables for IBA switches. We evaluate our proposal with different
network topologies. Performance results show that, with a correct treatment of each
traffic class in the arbitration of the output port, every traffic class meets its QoS
requirements.






1 Introduction

Input-output (I/O) buses have become a major bottleneck for disk accesses, especially
in high-performance servers. While buses have the major advantage of simplicity, and
have served the industry well up to this point, bus-based I/O systems do not use their
underlying electrical technology well enough to provide high data transfer bandwidth
out of a system to devices.

Despite recent upgrades, the most popular I/O bus (PCI bus) offers limited band-
width, concurrency and reliability, and this limitation is unacceptable for a lot of actual
applications and server systems. A single device failure can inhibit the correct opera-
tion of the bus itself, causing all the devices on the bus to become unavailable.

Several external interconnects, such as Fiber Channel, have been used to over-
come these difficulties. However, they still enter the processing complex through an
industry-standard bus, making it impossible to avoid the bottlenecks and low availabil-
ity characteristic of standard I/O buses. As an example, the fastest PCI bus (PCI-X
running at 133 MHz) does not provide enough bandwidth to feed a single 10 Gigabit
Ethernet card.

This was the primary reason why a group of the most important companies joined
together to develop a standard for communication between processing nodes and 1/0
devices as well as for interprocessor communication, known as InfiniBand [1]. The
InfiniBand>M Trade Association (IBTA) is a group of more than 200 companies
founded in August 1999 to develop IBA. Membership is also open to Universities,
research laboratories, and others. The IBTA is led by a Steering Committee whose
members come from Dell, Compaq, HP, IBM, Intel, Microsoft, and Sun, co-chaired by
IBM and Intel. Sponsor companies are 3Com, Cisco Systems, Fujitsu-Siemens, Hitachi,
Adaptec, Lucent Technologies, NEC, and Nortel Networks. The first specification of
the InfiniBand Architecture (release 1.0) was published in October 2000 [13].

On the other hand, most of the current networking products have tried to achieve
maximum throughput and minimum latency, leaving aside other aspects like guarantee
of bandwidth, bounded delivery deadline, bounded interarrival delays, etc. [18]. Many
current applications need those characteristics that not all the current networks are
able to provide. The current network that can best provide QoS is probably ATM
[11, 12]. However, ATM focuses more upon wide area networks, and it can only be
used with great difficulty in LAN environments. It is not suitable for connections
between a processor and its devices since it introduces significant overhead.

The Internet Engineering Task Force (IETF) is currently in the process of devel-
oping an architecture for providing QoS on the Internet. This effort is referred to as
Differentiated Services [5].

Therefore, it would be important for InfiniBand to be able to satisfy both the
applications that only need minimum latency and also those different applications
that need other characteristics to satisfy their QoS requirements. InfiniBand provides
a series of mechanisms that, when properly used, are able to provide QoS to the
applications. These mechanisms are mainly the segregation of traffic according to

3



categories and the arbitration of the output ports according to an arbitration table
that can be configured to give priority to the packets with the most need for QoS.

InfiniBand distinguishes up to a maximum of 16 service levels, but it does not
specify which characteristics will bear the traffic of those service levels. Nor does it
specify how the arbitration table should be filled in, as it only specifies the form that
this table should have, leaving the implementation of the table to the manufacturers’
or users’ consideration, according to the characteristics that they want to obtain.

Recently, an overview of a possible implementation of DiffServ over IBA has been
described in [16]. In this study the traffic is classified into several categories and the
author proposes that the arbitration tables of InfiniBand should deal with each category
in a different way, but no attempt is made to indicate how to fill in those tables.

In this report, we propose a classification of the different traffic types with QoS needs
that improves the proposal made in [16], as well as a strategy to compute the arbitration
tables for the IBA switch ports to obtain the QoS required by the applications.

T ——
[ crPu ][ cPU | [cru] .

1 A e = Processor Node

P S857 Nots— HCA H Mem H HCA [ cpu [ CPU Jeoa [ cru |

i 1 | | |

| CcPU || CPU | o0 | CPU

HCA M Wem |[ HCA

(0CCCDCOCD

{

+ IO
Chass
i

4
10| _
ST -/ S IIS
T AR
| |
b S ™ SRSSGm..  OIBTA

hub & FC
devices

Figure 1: IBA System Area Network.

The structure of the report is as follows: Section 2 presents a summary of the
general aspects in the specifications of InfiniBand. In Section 3, we explain the most
important mechanisms that InfiniBand provides to support QoS. In Section 4, we study
the traffic that generates the applications and its requirements. In this section, we also
present our proposal to treat the different types of traffic based on its requirements.

4



In Section 5 we study in depth a way how of providing QoS in InfiniBand, with special
emphasis laid on how to provide bandwidth and latency guarantee. Section 6 presents
two different methods to look for a new sequence in the arbitration table. In Section 7
a formal model to represent a sequence of entries and its propositions is presented. In
Section 8 we propose an algorithm to fill in the InfiniBand arbitration table based on
the model proposed in the previous section. In this section, we also propose and prove
some theorems, which show this algorithm achieves an optimal performance filling in
the table when there are no connections removed from the table. In Sections 9 and
10, this previous restriction is eliminated, and the additional algorithms needed in this
case are introduced. Section 11 presents the global management of the table when
there are both new requests to be met in the table and requests to be released from
the table, which could take place in any order. Finally, we present some conclusions
and future work.

2 InfiniBand

The InfiniBand Architecture (IBA) Specification describes a System Area Network
(SAN) for connecting multiple independent processor platforms (i.e. host processor
nodes), I/O platforms, and I/O devices. The IBA SAN is a communications and
management infrastructure supporting both I/O and interprocessor communications
for one or more computer systems (see Figure 1). The architecture is independent of
the host operating system and processor platform.

IBA is designed around a switch-based interconnect technology with high-speed
point-to-point links. An IBA network is divided into subnets interconnected by routers,
each subnet consisting of one or more switches, processing nodes, and I/O devices.
Routing in IBA subnets is distributed, based on forwarding tables stored in each switch.
IBA supports any topology defined by the user, including irregular ones, in order to
provide flexibility and incremental expansion capability.

Processing nodes (either single processor or symmetric multiprocessor (SMPs)) are
directly attached to a switch through a Host Channel Adapter (HCA). I/O devices
can be attached to a switch through a Target Channel Adapter (TCA). While IBA
Specification describes the behavior for HCA by IBA verbs, IBA does not specify the
semantics of the consumer interface for a TCA. The IBA verbs are features that are
defined to be available to host programs.

IBA links are bidirectional point-to-point communication channels, and may be
either copper cable, optical fiber or printed circuit on a backplane. The signaling rate
on the links is 2.5 GHz in the 1.0 release, the later releases possibly being faster. The
physical links may be used in parallel to achieve greater bandwidth. Currently, IBA
defines three link bit rates. The lowest one is 2.5 Gbps and is referred to as 1x (only
one link at 2.5 GHz). Other link rates are 10 Gbps (referred to as 4x) and 30 Gbps
(referred to as 12x), which correspond to 4-bit wide and 12-bit wide links, respectively.
The width that will be supported by a link is vendor-specific.



IBA switches route messages from their source to their destination based on for-
warding tables that are programmed with forwarding information during initialization
and after network modification. The forwarding table can be linear, specifying an out-
put port for each possible destination address up to a switch-specific limit, indexed by
that address; or random, initialized by storing {destination, output port} pairs. The
number of ports of a switch is vendor-specific, but is limited to 256 ports. Switches can
be cascaded to form large networks. Switches may also optionally support multicast
routing.

Routing between different subnets (across routers) is carried out on the basis of
a Global Identifier (GID) 128 bits long, modeled over IPv6 addresses. On the other
hand, the addressing used by switches is with Local Identifiers (LID) which allow 48K
endnodes on a single subnet, the remaining 16K LID addresses being reserved for
multicast.

Messages are segmented into packets for transmission on links and through switches.
The packet size is such that after headers are considered, the Maximum Transfer Unit
(MTU) of data may be 256 bytes, 1IKB, 2KB or 4KB. Each packet, even those for unre-
liable datagrams, contains two separate CRCs, one covering data that cannot change,
and another covering data that changes in switches or routers, being recomputed.

The IBA transport mechanisms provide several types of communication services
between endnodes. These types are connections or datagrams and both can be reliable
(acknowledged) or unreliable. Obviously, for supporting QoS guarantee the applica-
tions must use reliable connections in order to be able to carry out resource allocation.

IBA management is defined in terms of managers and agents. While managers
are active entities, agents are passive entities that respond to messages from managers.
Every IBA subnet must contain a single master subnet manager, residing on an endnode
or a switch that discovers and initializes the network.

The interested reader is referred to the InfiniBand Specifications [13] for more de-
tails on InfiniBand. Other interesting papers that are good summaries of the official
specifications are [17, 7].

3 IBA support for QoS

In this section we are going to describe the mechanisms that IBA provides to support
QoS. Basically, IBA has three mechanisms that permit QoS to be supported: service
levels, virtual lanes, and virtual lane arbitration for transmission over links.

3.1 Service levels

IBA defines a maximum of 16 service levels (SLs), but it does not specify what char-
acteristics the traffic of each service level should have. Therefore, it depends on the
implementation or on the administrator how to distribute the different existing traffic
types among the SLs.



i
[HHTHEEE HHiTim
i, . - mallllIIN
([T ({11
L1111 [T

Figure 2: Operation of virtual lanes in a physical link.

By allowing the traffic to be segregated by category, we will be able to distinguish
between packets from different SLs and to give them a different treatment based on
their needs.

3.2 Virtual lanes

IBA ports support virtual lanes (VLs), providing a mechanism for creating multiple
virtual links within a single physical link. A VL represents a set of transmit and
receive buffers in a port (Figure 2). IBA ports have to support a minimum of two
and a maximum of 16 virtual lanes (VLg ... VLy5). All ports support VL5, which is
reserved exclusively for subnet management, and must always have priority over data
traffic in the other VLs. The number of VLs used by a port is configured by the subnet
manager. Since systems can be constructed with switches supporting different numbers
of VLs, packets are marked with a Service Level (SL), and a relation between SL and
VL is established at the input of each link by means of the SLto VL MappingTable. Each
VL must be an independent resource for flow control purposes.

3.3 Virtual lane arbitration

When more than two VLs are implemented, the priorities of the data lanes are defined
by the VLArbitrationTable. This is for host channel adapter (HCA), input/output
device channel adapter (target channel adapter, TCA), as well as for switches. This
arbitration is only for data VLs, because VL5, which transports control traffic, always
has priority over any other VL.

The structure of the VLArbitrationTable is shown in Figure 3. Each VLArbitra-
tionTable has two tables, one for delivering packets from high-priority VLs and another
one for low-priority VLs. However, IBA does not specify what is high and low priority.
The arbitration tables implement weighted round-robin arbitration within each prior-
ity level. Up to 64 table entries are cycled through, each one specifying a VL and a

7



weight, which is the number of units of 64 bytes to be sent from the VL in question.
This weight must be in the range of 0 to 255, and is always rounded up as a whole

packet.
VLArbitrationTable ,
VL Weight
iy R
VL Weight

Low_Priority S e——
Limit_of High_Priority,

Figure 3: VLArbitrationTable structure.

A LimitOfHighPriority value specifies the maximum number of high-priority packets
that can be sent before a low-priority packet is sent. More specifically, the VLs of the
High Priority table can transmit LimitO f HighPriority x 4096 bytes before a packet
from the Low Priority table can be transmitted. If no high-priority packets are ready
for transmission at a given time, low-priority packets can also be transmitted.

4 Traffic of applications

Using these mechanisms provided by IBA, and the different techniques that will be
proposed (obviously, they must be compatible with the IBA specifications), the needs
of QoS of the applications must be guaranteed. We are now going to study these
specific necessities. For that purpose, we are first going to look at the applications that
are used nowadays in these kind of environments.

4.1 Application needs

At the end of the 90’s new multimedia applications emerged. These applications needed
a great deal of bandwidth. This fact obliged the builders and researchers to make
a great effort to achieve a large bandwidth. This may be one of the reasons why
today network technologies are able to provide enough bandwidth. However, these
new multimedia applications introduce new requirements for the transmission networks,
which have not been considered until now.

For example, both video and audio produce a continuous traffic requiring availability
of bandwidth during the entire transmission in order for the application not to be
interrupted in the target node. For the video signal, an image must be shown in the
target in a continuous way. Furthermore, these images after being generated in the
source, must be given to the target between correct delay limits. The values of these



limits depend on the interaction level of the application. These limits can vary from
20 milliseconds to just a few seconds.

The most common technique used for this purpose is to impose delay levels ac-
cording to the perceptive levels of the applications. When the delay suffered by a
information packet is greater than this limit, the receiver discards it. This discarding
causes a loss in the quality of the signal received (maybe increased by the dependencies
among packets that introduce the signal codification). Besides, the transmission of the
packet eventually discarded also supposes a waste of bandwidth [14].

The QoS requirements for the multimedia applications are based on their perceptive
needs. So, the information must be transmitted by the network with some character-
istics in order for the users to perceive the signal without degradation.

In the following, the perceptive requirements of some of the most representative
multimedia applications will be studied [9]:

e Video-conference. This is an interactive real-time application. Its delay require-
ments are therefore very stringent. A delay greater than 200 milliseconds can
be annoying for the users. Regarding the bandwidth requirements, the sequences
usually only contain the talking head of a person. Thus, the motion is very small,
and so they do not need a lot of bandwidth.

e Digital television broadcasting. These applications include movies, advertise-
ments, news, etc.. In general, all of them have more motion than the video-
conferences. This is the reason why the bandwidth requirements are greater for
this application than for the video-conference. These bandwidth requirements
can vary between 4 and 10 Mbps for the usual television, and from 20 to 80
Mbps for high definition television. However, the delay requirements are not as
stringent as for the video-conference. These applications can admit delays of a
few seconds, even for live transmissions. The only requirement for this kind of
application has to do with the delay differences. Once the images start to appear
in the target, they must be shown in a continuous way, without interruptions.
This implies that the delay variations will be an important parameter, which
must be taken into account.

e Video over demand. In this application the coded video signal is stored in a server.
The signal is transmitted from the server to the user when the user demands it.
So, in this case, it is the user who controls the starting of the transmission. In
addition, the user could have available some interactive functions, like rewinding,
forwarding, or pausing. In this case, the application is more interactive, and the
requirements of delay are of hundreds of milliseconds [10].

e Telemedicine. This application is very interactive between the diagnostic center
and the user. So, the delay requirements are very stringent. They can be about
100 milliseconds or even less. The resolution of the images is high, and quality
degradation must be imperceptible. These applications usually need bandwidth
from 1 to 20 Mbps.



Of course, there are many more multimedia applications, but the above mentioned

are representative. Other multimedia applications usually have the requirements of

some of these previously analyzed.

In general, we can draw the following conclusions about the needs of the multimedia

applications [8]:

e The delay requirements are more stringent when the applications are more inter-

active.

e The bandwidth requirements depend on the quality of the signal and its charac-

teristics (static images or with a lot of motion, image resolution, etc.).

e When the visualization of the signal in the target has begun, it is important that

it should be continuous, in order for the user to perceive it without interruptions.

In the following section a traffic classification will be proposed. This traffic classi-

fication is based on the requirements of the applications of bandwidth and delay.

4.2

Traffic classification

Pelissier proposed in [16] a traffic classification for the different traffic flows. This
classification is based on the requirements of the applications. We have assumed this

classification, and we have introduced slight modifications that are described in [2].

Specifically, the categories we have proposed are:

10

DBTS (Dedicated Bandwidth Time Sensitive). This category includes the kind
of traffic that needs both a minimum bandwidth and a maximum delay guaran-
teed. As an example of this kind of traffic, we have the video-conference or the
interactive audio.

DB (Dedicated Bandwidth). This category includes that type of traffic only
requiring a guarantee referring to the minimum bandwidth. Usually, this kind of
traffic is not very sensitive to the latency. So, it is not necessary to provide it
with any guarantee in this sense. An example of this class of traffic is the video
visualization from a server.

PBE (Preferential Best-Effort). This category embraces all kinds of traffic that
do not need explicit guarantees in maximum latency or minimum bandwidth,
but which we try to provide with a better treatment than the other best-effort
traffic. This is the case, for example, with web traffic or the traffic accessing a
data base. It is useful for this traffic to have priority over the other traffic without
guarantees in order to improve its behavior.

BE (Best-Effort). This kind of traffic does not need any type of guarantees of
bandwidth or maximum latency. Usually it is enough to guarantee that, sooner
or later, it will arrive at its destination. This task is usually carried out by the



upper levels of the software architecture. In today’s networks, most of the traffic
is usually of this type. As an example of this category we can mention the transfer
of files, printing services, etc.

e CH (Challenged). This kind of traffic is intentionally degraded so that it does
not interfere with any other traffic type. As an example of this kind of traffic,
we have any type of activity of backup in a server. It is important that these
activities are not carried out when there is any other type of traffic in the network.
It may be a good idea to perform these tasks at night when no other traffic is
using the network.

Pelissier proposed the categories DBTS, DB, BE, and CH. We propose splitting up
the BE traffic into PBE and the usual BE in order to provide different treatments for
these kinds of applications that must be served without guarantees, without aiming at
the same level of performance.

In our earlier papers, we agreed with Pelissier in proposing to devote the high-
priority arbitration table of InfiniBand to the DBTS traffic, and the low-priority ar-
bitration table to the remaining categories. However, in [2] we pointed out that this
proposal was problematic. If the sources that are generating the DBTS traffic send
packets exceeding the bandwidth previously requested, all the traffic using the low-
priority table will be affected. Specifically, if we cannot guarantee that all the sources
will have a behavior in accordance with what they previously requested, no guarantees
can be given to the traffic using only the low-priority table.

This behavior is caused because the LimitO f High Priority does not permit a “fine-
grain” distribution of the bandwidth. As we mentioned above, this limit can have a
value between 0 and 255. Specifically, the VLs of the high-priority table can transmit
LimitO f High Priority x 4096 bytes before having to transmit a low-priority packet. In
the best case, for the biggest packet allowed in InfiniBand (4096 bytes), this means that
for a value of 1 we could transmit traffic, 50% coming from the VLs of the high-priority
table, and the other 50% coming from the VLs of the low-priority table.

It is evident, therefore, that in order to provide guarantees for any kind of traffic
we must put the VLs used in the high-priority table. In our case, we will place the
VLs used for the DBTS traffic, but also the VLs used for DB traffic, in the high-
priority table of InfiniBand ports and interfaces. Thus, we leave the low-priority table
for the traffics without explicit guarantee requirements, which are PBE, BE, and CH.
Furthermore, the bandwidth distribution will be performed when the connections are
established.

Finally, in order to provide a connection for the required bandwidth, and as seen
in [4], a weight must be assigned to the entries corresponding to the VLs that this
connection is going to use. This weight depends on the required mean bandwidth of
the connection.

11



5 Giving QoS in InfiniBand

In the previous section we have shown the mechanisms or supports provided by In-
finiBand to support QoS. We have also studied today’s applications requirements. So,
now we can indicate the way we propose to guarantee these requirements. Obviously,
our proposal is based on the mechanisms provided by the InfiniBand specifications.
Specifically, the proposal is based on three points:

e Bandwidth and delay guarantee. When a host wants to establish a new connec-
tion it must decide which characteristics of bandwidth and maximum delay it
wants to request from the network. This request consists of the mean bandwidth
and maximum end-to-end delay which needs to be guaranteed.

e Resource reservation. To provide QoS guarantee for the applications in Infini-
Band, we must make a previous resources reservation. This outline is similar to
what is done with the RSVP protocol [6, 19]. This QoS guarantee can be carried
out in two senses: bandwidth guarantee and/or maximum latency guarantee. To
provide this guarantee the applications must use the Reliable Connection Service
of the InfiniBand Transport Layer.

e Distributed control of connection establishment. The requesting host sends a
message requesting a new connection with its QoS requirements. Depending on
the network model used this requesting message will have a different destination.
We are going to assume a distributed control model where the switches have
enough complexity to perform this task themselves. This approach agrees with
the InfiniBand specifications where the local agents are able to perform that
task. The request message is therefore sent through the destination host, and
is analyzed in each switch to be found in the path toward the destination host.
However, in a centralized control model the switches cannot perform this task.
In this case, the task should be done by the Subnet Manager. So, the requesting
message would be sent to the Subnet Manager that would study the request
and the path to establish the connection. The Subnet Manager should have the
necessary structures to store and to manage the information of each switch and
host in the network. In the following we are going to study the distributed model,
where each intermediate switch and the target host can take its own decisions.
However, all the analysis carried out here is applicable to the centralized model
where the Subnet Manager performs this admission task.

We shall now study in depth how we achieve guarantees for both bandwidth and
delay, using correctly the mechanisms provided by InfiniBand.

5.1 Model to guarantee QoS in InfiniBand

Using the connection model of distributed admission, the message requesting a new
connection travels through the network. This requesting message contains the require-

12



ments necessary for the connection to be established. This message travels through the
network up to the target host or up to the intermediate switch where the requirements
are denied. This request is then studied in each intermediate switch and is forwarded
toward the next step in the path. If the request cannot be accepted in some intermedi-
ate switch or at the target host, it is rejected and an informative message is sent back
to the predecessor switches in the path and to the source host.

We have considered two possible requirements that are bandwidth and maximum
end-to-end delay. Obviously, both must be studied. We are, therefore, going to analyze
separately how to achieve guarantees for both objectives. Finally, we will study how
to treat both of them at the same time.

5.1.1 Bandwidth guarantee

In a distributed network admission model we can assume that both switches and hosts
know the bandwidth previously reserved for other connections. So, it is easy to check
if the bandwidth request can be accepted or must be rejected. The accumulated band-
width must be added to the bandwidth requested by the new connection. If this value
is lower than the maximum bandwidth of the link, the requested bandwidth could be
accepted.

If the network model was centralized, the only difference would be who possesses
this information. In that case the Subnet Manager would have the information about
the accumulated bandwidth in each port or interface. So, the Subnet Manager would
study the admission of the new bandwidth request.

Anyway, according to the InfiniBand specifications, a weight of one unit in the
arbitration table permits the transmission of a block of 64 bytes. We know the link
speed and the mean bandwidth requested by the connection, and so we can easily
compute the weight that a connection must have in the arbitration table. The whole
process is explained in depth in [4].

However, while performing the previous weight computation, we must also do a
rounding up. We would then be giving each connection more weight it needs. Repeated
rounding up accumulates, and this would fill in the arbitration table with connections
that do not run out the real bandwidth. To solve this problem, we will perform this
calculation in a different way. We will compute the weight for a certain entry of the
table based on the bandwidth that must be satisfied by the connections using this
entry. In this way we waste nothing with the rounding up, because each time a new
connection using the same entry is accepted, we will recompute the weight for that
entry, but now taking in account the new total bandwidth accumulated for this entry.

This proposal forces us to create a new structure in each port with the capacity
to store this information. Specifically, we need to store a floating point value for each
entry of the high-priority arbitration table. Assuming a floating point takes up 8
bytes, and as each high-priority arbitration table could have up to 64 entries, a total
of 64 x 8 = 512 bytes per switch port or host interface are needed.

Note that this structure is only needed for the high-priority table, because the

13



low-priority table will not be modified based on the bandwidth. On the contrary, the
idea is to fill in the low-priority table at the start-up. Its values would be based on the
ratio priorities assigned among the different kinds of traffic without guarantees that are
going to use the low-priority arbitration table. In our tests we have used the following
rates: only one entry with a weight of one for the CH traffic, another entry but with
a weight of 10 for BE traffic and finally 4 entries for the PBE traffic, each one with a
weight of 255.

5.1.2 Delay guarantee

We perform the treatment of the latency distributing the total bounded maximum
delay among the switches on the path, taking also into account the flying time on the
links. So, the study in each intermediate switch is easier and we also guarantee the
same treatment in all of them, which we consider to be highly desirable.

In [2] we have studied how to perform this check. Each switch can compute the
maximum number of packets that can be transmitted before one packet of a certain
VL is transmitted. To do that, we must take into account the number of ports the
switch has, the number of virtual channels per port, and the input and output buffer
size. This computing also depends on the structure of the crossbar (multiplexed or full-
crossbar) and the maximum packet size allowed. Besides, the behavior of the output
port virtual line arbitration table must be taken into account. To be able to achieve the
latency requirement the connection might have to use several entries in the arbitration
table of the output port of the switch. These entries must have a certain maximum
distance between them in order to guarantee the maximum number of packets that
can be transmitted before one packet of that VL is actually transmitted. Knowing the
maximum number of packets that can be transmitted before a packet of a certain VL
and the link speed, it is easy to compute the time spent waiting for a packet to be
transmitted from a switch. To find more details of how this computing is done, the
reader can consult [2].

Having assured this maximum distance between two consecutive entries devoted to
the VL used by the connection, there will be a guarantee of the amount of information
from other virtual lines (maximum time) that can be transmitted before one of its
packets is transmitted.

5.1.3 Giving guarantee of bandwidth and delay at the same time

A connection, therefore, requests a certain mean bandwidth of B Mbps and a bounded
end-to-end delay of ¢ milliseconds. However, it will be treated in each node as a request
of a certain weight w and a maximum distance d between two consecutive entries in
the arbitration table.

So, the total number of entries used by the connection in the high-priority arbitra-
tion table of the output port of the switches it crosses will be the maximum between

these two values: the entries needed by the bandwidth requirement (gg) and those

14



resulting from the requirement of maximum distance between two consecutive entries
in the table.

If several connections requiring the same distance between two consecutive entries
share a sequence of entries in the table all of them will, obviously, use the same VL.
As mentioned earlier, the weight that each one of these entries of the sequence has will
be based on the accumulated bandwidth for all the connections sharing that sequence
of entries.

When a node is studying the maximum distance between two consecutive entries
in the table, it must look for an available sequence of entries in the table to be used
for that connection. Specifically, we have three possibilities:

e We can use an already used sequence with the same maximum distance, but only

if it has available weight. For a sequence of entries with maximum distance d,
64
d
total weight that can be accumulated in this sequence is

we have = entries in the table, each one with a maximum weight of 255. So, the

64x255
—a

Therefore, each node will have a requirement table with the sequences of the
arbitration table already assigned and the bandwidth accumulated. If there is
already a sequence in the arbitration table of the same distance as that requested,
we will try to use its entries. Specifically, if the needed weight for the accumulated
bandwidth of all the connections sharing the sequence, including the bandwidth
requested by the new connection, does not exceed the limit for this sequence,
this new connection can use the sequence. Obviously, we must recompute the
weight of the entries of the sequence with the new bandwidth accumulated by
the connections that are using it.

e There are one or more sequences in the high-priority arbitration table with the
same maximum distance as that requested by a new connection, but none of them
can be used. The reason is that the accumulated weight for their entries does
not permit this new connection to be placed there because the maximum weight
would be exceeded.

e There is no previously established sequence for this distance in the high-priority
arbitration table.

The first case is very easy. We only need to recompute the weights of its entries.
The other two cases require a more elaborate process to find a new sequence. Besides,
this should be performed in a efficient way.

6 Looking for a new sequence of entries in the table

As it was seen at the end of the previous section, in order to be able to guarantee the
demand of a new connection request, in some situations we need to find a sequence
of entries that have not been used yet. In this section we propose a method that is

15



efficient and practical. It is efficient because this method selects the most suitable
among the available sequences. It is practical because its implementation has a viable
cost.

Moreover, we must take into account the management of the requests. This must
be done in a dynamic way. So, in a continuous way new requests can be made and
connections, previously established, can end. Thus, we could have at any moment more
allocations or also releases of entries in the table. This could require the addition of
new hardware or keeping some type of extra information.

It may, therefore, not be possible to design an optimal method due to its complexity.
But this is usual in a lot of other topics in the area of computer architecture and
engineering. In this case, perhaps, it is more useful to have an easier method with a
efficiency close to the optimum.

In our case, one aspect that has great importance for the complexity of the search-
ing method is the distance between two consecutive entries that form the sequence
of entries. Depending on the election made, we could have very different searching
methods with different complexity orders. Besides, depending on the selected method
the later management of the requests (insertion of new requests and release of requests
already situated in the table) will be more or less easy.

The distance between two consecutive entries of the sequence depends on the type
of request. This is the maximum distance allowed by the application, but there would
be lower distances allowed. In this case, the needs of the applications would be achieved
easily, and the use of more entries that those absolutely necessary might be beneficial.

Therefore, to look for a sequence with the minimum number of entries (maximum
distance allowed) or to consider more entries (distance lower than the requested) even-
tually leads to very different searching algorithms. So, before considering the design of
the searching algorithm, we must fix the searching criterion for the entries separation.

6.1 Distance categorization

The high-priority arbitration table has 64 entries that must be assigned to some re-
quests with certain requirements for the distance between two consecutive entries of
the same sequence. So, it is the bounded delay which will mark the separation between
the entries of the sequence.

We say a connection request is of type d if it needs a maximum distance! of d
between two consecutive entries of the sequence that its VL uses in the arbitration
table of the switch output ports. So, a connection request of type 15 needs a separation
between two consecutive entries of maximum 15 units. One connection of type 8
requires that two consecutive entries be situated at a maximum separation of 8 units.
As the arbitration table has a cyclic behavior, a connection request of type d needs
[%%] (rounding up function) entries of the arbitration table.

1 As type of connection and distance have the same value and meaning for a certain connection, in
the following we are going to use both terms synonymously to refer to the same concept.

16



Note, the maximum distance between two consecutive entries in the sequence is not
the unique distance that can be accepted. Any lower separation would be acceptable.
However, a separation lower than the maximum could use up more entries of the table
than those strictly necessary, which in principle is not desirable.

According to the InfiniBand specifications, all traffic of the same VL is going to
receive the same treatment in the arbitration table. This is because the arbitration
process is based on the output VL of the port or interface. Note that the selection of
the VL for a packet depends on the SL indicated in its header and the SLtoVLMap-
pingTable. So, the application is going to mark the packet with a certain SL based on
the characteristics of the traffic generated. The VLs in the switches of its path up to
its target will be selected based on the SL that has been put in its header.

On the other hand, in our previous works we considered categorizing the traffic
of the different applications based on its requirements of mean bandwidth. We did
that independently of the needs that they have of bounded end-to-end delay, and
therefore, of the maximum separation between two consecutive entries in the high-
priority arbitration table. This forced us to join connections in the same service level,
and thus in the same virtual line, the connections having a very different deadline
requirement, but a similar mean bandwidth requirement.

Using this grouping we must give to all the traffic of the VL the same treatment
regarding delay as the most restrictive connection requires. The problem is what to do
when this most restrictive connection finishes and its requirements in the arbitration
table must be released. There are basically two options:

e To do nothing and maintain the current situation for this VL. This would waste
resources in the arbitration table, because we are dedicating more entries to this
VL than the remaining connections really need.

e To modify the entries of the arbitration table so that this VL receives the treat-
ment of the remaining new most restrictive connection using the VL. This option
is very problematic, however. We need to store all the information relating to
the connections that each port is using. Without this information it would be
impossible to know which is the next most restrictive connection. This option is
clearly not viable, because we would need to store information taking up a lot of
space.

Both alternatives pose too many problems to be considered further. To solve this
problem a solution would be to use different VLs for the different traffic flows for which
we want to provide a different treatment.

Our proposal is to segregate the traffic so that all the connections that share a VL
have the same maximum distance requirement in the arbitration table. In this way, it
is not necessary to keep any kind of additional information, because all the connections
that share that VL will have the same maximum distance requirements between two
consecutive entries. When a connection finishes we discount the bandwidth that it
requested in its establishment, and we recompute the weight of the entries with the

17



bandwidth accumulated by the remaining connections using the sequence of entries.
When the bandwidth accumulated is zero, this means that there are no connections
accumulated using that sequence of entries, and so it can be released.

Obviously, for a table of 64 entries there can be 64 distances requested, and so 64
possible types of requests. As the number of SLs and VLs is limited, at most they
can be used for as many types of requests as these values indicate. According to the
InfiniBand specifications, the number of SLs is 16, and the number of VLs can be 16, 8,
4, or 2, depending on the implementation. It is, therefore, the number of VLs that will
impose the maximum number of different types of applications, and also the distances
to be considered. Besides, some SLs and VLs must be devoted to the traffic that does
not require QoS.

In view of this, we will determine what is the set of different distances to be consid-
ered. We will consider two alternatives that are based on different criteria, and finally
we will select one of them. The first consists in grouping the distances requiring the
same number of entries. The second considers the symmetry to establish the different
types of requests.

6.1.1 Categorization based on the number of entries

According to the size of the table there can be 64 different types of request. In any
case, there are too many for them all to be considered and some grouping criterion
must be applied. However, many of the 64 possible types of distance need the same
number of entries in the table, and so they could be grouped together and given the
same treatment. Besides, a request of distance 1 would need all entries of the table,
although this is non-viable. Note that this kind of request would reflect a need of
latency that is almost zero, which, as we have explained in Section 4.1, is not true. So,
specifically we could have the following 14 different types of maximum distances:

e Requests with low latency requirements only need one entry in the table, and so
the requested maximum distance is 64.

e Requests of distance in the range [32, 63] require 2 entries in the table, and so all
of them can be treated as if they were of distance 32.

e Requests of distance in the range [22,31] need 3 entries in the table, and so all
of them can be treated as if they were of distance 22.

e Requests in the range [16,21] need 4 entries and can be located as requests of
distance 16.

e Requests in the range [13, 15] require 5 entries, and so they can be treated as if
they were of type 13.

e Requests of distance in the range [11,12] both need 6 entries.

18



e Only requests of distance 10 need 7 entries. These requests cannot therefore be
grouped with other requests with different distance requirement without using
more entries than those strictly necessary.

e Both types of requests in the range [8, 9] require 8 entries.

e Only requests of distance 7 need 10 entries. These requests cannot therefore be
grouped with other requests with a different distance requirement without using
more than the necessary entries.

e The same happens with the requests of distance 6 that need 11 entries.
e Only the requests of distance 5 require 13 entries.

e Only the requests of distance 4 need 16 entries.

e Only the requests of distance 3 need 22 entries.

e Finally, only the requests of distance 2 require 32 entries.

Summing up, in some cases by changing a distance into a lower one, the distance
between two consecutive entries is the same. This is helpful because it could simplify
the later management of the requests. Specifically, this happens when the grouping
is done in a distance which is the divisor of the total number of entries of the table.
Thus, the grouping where the maximum distances considered are 64, 32, 16, 8, 4, and
2, permits the same distance between two consecutive entries of the sequence to be
maintained. However, in the other cases it is not possible for any pair of consecutive
entries to have the same distance.

6.1.1.1. Selecting the sequence

Anyway, we must select which entries exactly are going to be used to meet a certain
request, whatever their distances. For the distances previously shown, many algorithms
are possible to locate a request in the table. Note that, in general, the only necessary
condition to be able to locate a request of distance d in the table is that
a sequence, of length equal to or bigger than d, of consecutive fulfilled entries
does not exist in the table.

We are going to assume the above criterion of trying to use the minimum number
necessary of entries. So, a request of type 8 would need [%] = 8 entries (for example
the entries 2, 10, 18, 26, 34, 42, 50, 58). While a request of type 15 would need [%1 =5
entries (for example, the entries 1, 16, 31, 46, 61).

As has been previously indicated, our goal is to achieve an optimal situation for the
requests in the table, maximizing the number of requests that can be met. We must
therefore take into account three essential criteria: the request type, the number of
requests, and the arrival order of the different requests. The arrival order is important
because the decision for locating a request must be made when the request is made

19



with the information that the process has at that moment. Depending on the selected
positions, other requests could be located later.

As we can observe in both previous examples, the entries of the first (the request
of type 8) are situated in a symmetric way in an arithmetic progression with difference
8. On the other hand, the entries of the second example (the request of type 15) loses
its symmetry in the last entry because between the entries 61 and 1 (with the cyclical
behavior of the table) the distance is not 15, but 4. For this second case, we have
another possibility of distributing the 5 need entries along all the arbitration table
with a distance lower than 15. So, for example, another valid sequence could be 1,
14, 27, 40, and 53. In this case all the entries have a separation of 13, except the
last one having only a separation of 12. This case corresponds to the grouping shown
in the previous section, where we saw that the requests with distances in the range
[13, 15] could be treated as if they were of distance 13 using 5 entries. Clearly, more
possibilities to locate a request of type 15 are possible. For example, we could vary the
distance between two consecutive entries, provided it is lower than 15. In this case,
another valid sequence could be 1, 14, 24, 37, 50.

As we can see, there are a lot of possibilities to locate this request. The best
choice is to obtain a method optimizing the number of locations. So, when a request
is located it should leave as many free holes? as possible. Besides, they should be
in the most convenient positions in order to later locate other requests. Thus, the
algorithm that optimizes the placement is that which allows the placement
of the most restrictive request in the next step. Obviously, the most restrictive
request is that which needs the lowest maximum distance, and as a consequence the
largest number of entries in the table.

Logically, the most restrictive request is the one of type 1 that needs all the entries
in the table, but we have already indicated that this type is not realistic and so we are
not going to consider it. So, the most restrictive request is type 2, that needs 32 entries
in the table, all of them situated at a maximum distance of 2 units from its neighbors
in the sequence. The next most restrictive is the request of type 3 that needs 22 entries,
and so on. Therefore, to be able always to put in the most restrictive request (type 2)
without using more entries than those strictly necessary, we must always use first the
even entries and when these run out, the odd, or vice-versa. Thus, we keep enough
entries with the correct separation to be able to admit a later request of type 2. It
is clear that the same criterion must be applied in order to maximize the number of
entries of greater distances.

Of course, another possibility is to use more entries than those necessary and mod-
ify the distance between two consecutive entries when necessary. For example, let’s
suppose the entry number 20 is occupied by a previous request and we want to meet
a request of distance 2. In this case, we could use the sequence ..., 16, 18, 19, 21, 23,
..., if these entries are free. Obviously, this increases the number of entries that we are
using, which in principle is not desirable.

2set of free consecutive entries.

20



6.1.1.2. Management topics

As we know, in this model the possible distances can be grouped in 14 different
categories. As all the traffic of the same SL uses the same VL, and therefore receives
the same service, we are going to use a different SL for each one of the 14 different
distances considered. In this way, there are still 2 SLs remaining that can be used for
the traffic without QoS guarantee. For example, we could devote one of them to the
PBE and BE traffic, and the other one to the CH traffic.

If we have 16 VLs then a different VL can be used for each SL. However, if we
have less than 16 VLs some criterion must be chosen to join traffic from different SLs
into the same VL. In this case, this traffic is going to receive the treatment of the
most restrictive SL of all that share the VL. This is another decision about grouping
maximum distances, and so fewer distances than 14 would be considered.

Another consideration to be taken into account to select a method for locating a
request in the table, is the later management of these requests. Obviously, first of all
an algorithm is needed to locate a request of a certain distance in the table. That
algorithm must be quick and able to make a good use of the available entries. In order
to do that, the algorithm should situate the requests as far apart as possible in order to
leave a hole for later requests. As has been previously said, the necessary condition to
be able to locate a request of distance d in the table is only that a fulfilled sequence, of
length equal to or larger than d, of consecutive entries does not exist in the table. So,
the algorithm should always leave the biggest possible holes in order to meet other later
requests. Specifically, decreasing the lowest of the available holes must be avoided.

Furthermore, some information must be stored to be able to release the used entries
when a connection finishes. We should try to make sure that the information needed
for this task is the smallest amount possible. This is because we would need the data
structures for that and the number of connections met could be very large. If the
variation of the distance between two consecutive entries of the sequence is allowed, it
would be necessary to store specifically the entries which form the sequence in order to
be able to release them when the connection finishes. However, if the sequence always
keeps the same distance between two consecutive entries, the task is easier because
it is only necessary to store the first entry and the separation of the sequence. It is
therefore this characteristic that leads us to another way to classify the distances, and
therefore the requests.

6.1.2 Categorization based on the symmetry of the entries

As has been indicated at the end of the previous section, considering the same distance
between every couple of consecutive entries of the sequence, can simplify the selection
process and the later management of the sequence of entries. In this way, the entries of
the table will be distributed according to an arithmetic progression with the difference
of the progression being the distance requested by the connection.

The arithmetic progressions that are symmetric in a table of 64 entries (2°) are
those which have as difference of the progression the divisors of 64. As 64 is a power

21



of 2, the divisors are the power of 2 lower than or equal to 2%, that are 2!, 22,23, 24 25,

and 2. These represent requests of type 2, 4, 8, 16, 32, and 64. The request of type

64 is when the request does not have any deadline delay or it is long enough.

With this new classification, any request will be reduced to the corresponding power

of 2 immediately below. Thus, a request of distance 11 is going to be treated as if it

were of distance 8. Another request of distance 45 would be treated as if it were of

distance 32, and so on. Let us analyze the possible situations, indicating the changes
made and the consequences of this transformation:

22

e All the requests with distances between [32, 63] can be treated as if they were of

type 32 because all of them need 2 entries. Being of type 32 we can locate them
in a uniform and symmetric distribution with 2 entries separated between them
for 32 units (an arithmetic progression of difference 32). In this way, locating
them symmetrically with distance 32, we are treating the request as if it were of
distance 32. This change does not affect the connections and we leave the table
in a better situation to locate later other requests.

For the requests with distance in the interval [16, 31] we can consider them
in several situations. The requests with distance between 16 and 21 need 4
entries, and by treating them as a request of type 16 as in the previous case, no
unfavorable situation arises. However, for the requests between 22 and 31 it will
be enough with 3 entries to satisfy their demand and treat them as if they were
of type 16 using one additional entry to those necessary. This happens with other
situations, which are discussed in the following items.

For the request with distance in the interval [8, 15| we have the following situa-
tions:

The requests of type 8 and 9 need 8 entries.

The request of type 10 needs 7 entries (one fewer than if we treat it as a
request of distance 8).

The ones of distance 11 and 12 need 6 entries (two fewer).

The ones of type 13, 14, and 15 need 5 entries (three fewer).

As can be seen, in some of these situations this approach uses more entries than
those absolutely necessary. For example, changing the requests of type 13, 14,
and 15 to a request of type 8, we are using 3 entries more than necessary.

The requests in the interval [4, 7| are turned into requests of type 4 with 16
entries. However, the really necessary entries are:

- Type 5 need 13 entries (3 fewer).
- Type 6 require 11 entries (5 fewer).
- Type 7 need 10 entries (6 fewer).



e Finally, the most restrictive requests are in the interval [2, 3|, where the request
of type 3 (that would be located only with 22 entries) is turned into a request
of type 2, and so requires 32 entries. In this case, the request would be using 10
entries more than necessary.

Summing up, all cases are shown in the Table 1.

Maximum distance | Treated | Exceeding
need as entries used
2 2 0
3 2 10
4 4 0
) 4 3
6 4 5
7 4 6
8,9 8 0
10 8 1
11, 12 8 2
13, 14, 15 8 3
16, ..., 21 16 0
22,...,31 16 1
32,...,63 32 0
64 64 0

Table 1: Each one of the 64 possible distances, the categorization based on the power
of 2, and the number of entries used more than those strictly necessary.

According to the delay requirements of current applications and the technology
used, these more restrictive distances will be precisely the least demanded. In fact,
as seen in Section 4.1, today’s applications tolerate latencies in the order of tens or
hundreds of milliseconds. These latencies reach out to distances bigger than 32 in
most cases, even for a very long path crossing a lot of switches [9]. So, it seems that
the distances most used in practice will be those in which this proposal uses up fewer
entries, and thereby, making better use of the table.

6.1.2.1. Selecting a sequence

As we have indicated previously, the fact that the distance between every consec-
utive couple of entries of the sequence is the same simplifies the process to locate a
certain request and the requests made later. Besides, dealing with a power of 2 the
process is easier. So, the algorithm that can be implemented has a reduced complex-
ity. One version of this algorithm can be found in later sections and, as seen there, is
able to meet any request in the table if there are enough free entries. This is because

23



the algorithm leaves the free entries situated in such a way that the most restrictive
possible request can latter be located.

6.1.2.2. Management topics

Using this model we could have a SL for each distance used (2, 4, 8, 16, 32, and 64).
Besides, the SLs that are considered to have more connections (the ones with bigger
distance) could be split up into some SLs now based on their mean bandwidth. So,
for example, we could split the requests of distance 32 into two SLs of low and large
mean bandwidth. The requests of distance 64 could be split up into four SLs of low,
low-medium, medium-high, and high mean bandwidth. In this way, we would be using
10 SLs just for the traffic DBTS and DB, leaving the other SLs for the traffic without
QoS guarantees (PBE, BE, and CH) and for the control traffic.

If there are enough VLs we can devote a different VL to each SL that we have just
proposed. But, if there are not enough VLs then the SLs with the same maximum dis-
tance should be joined in the same SL. However, SLs with different maximum distances
cannot be joined in the same VL, because we will then require again the characteristics
of each connection in order to use this information when the connections end. This
option has already been discarded.

We would thus need a minimum of 8 VLs: 6 for the 6 distances allowed, another
for the traffics PBE, BE, and CH, and yet another for the control traffic. Obviously,
if we had 16 VLs per port, we would be able to use a different VL for each one of the
10 SLs previously defined. Besides, we would use the other three for each one of the
user traffics without QoS needs: PBE, BE, and CH. This would allow the PBE, BE,
and CH traffic to be treated differently. Finally, we would use another VL for control
traffic.

However, if we have fewer than 8 VLs per port, we must consider using fewer values
for the maximum distance allowed. For example, if we have only 4 VLs, we would use
one of them for the control traffic and another for the traffic without QoS requirement.
The other two VLs could be used for the two maximum distances that we would want
to consider. For example, we could use the distance with separation 64 (for the DB
traffic and for the DBTS traffic with very low latency requirement) and the distance
16. The requests with lower distance should be rejected because it is not possible to
admit them. Besides, the requests of distance 32 should be turned into requests of
distance 16.

Furthermore, this proposal has another advantage, which allows to make the later
management of the requests easier, both to locate other new requests and to release a
previously located request from the table. As all the consecutive entries of the sequence
keep the same distance, we only need to know which is the first entry of the sequence
and the difference between them.

24



6.2 Comparing both models

As we have already indicated, with the proposal of grouping in powers of 2, in some
cases we are using more entries in the table than those absolutely necessary. However,
the other model can also use more entries than those strictly necessary. We are going
to compare both models on the basis of the number of entries improperly used, and
their complexity taking into account their implementation and management. This
comparison will serve to select one of them.

We have implemented a version of the first model able to meet any request of
distance d if there is no sequence of fulfilled entries greater than d in the table. This
assumes that in some cases the distance between two consecutive entries should be
modified in order to adapt itself to the available holes, though always respecting the
maximum distance. This algorithm follows two criteria to select the entries:

e The selected sequence leaves the smallest group of consecutive occupied entries
in the table. In this way, it is later possible to meet the most restrictive request
possible.

e [f there are some sequences meeting the previous criterion, the sequence maxi-
mizing the smallest of the free group of consecutive entries is selected.

Obviously, this algorithm is close to the optimum according to its capacity to locate
requests in the table. The algorithm selects a new correct sequence if there are enough
free entries in the table and there is no occupied sequence of entries greater than the
distance requested. It is clear that in some cases this algorithm can use more entries
than those strictly necessary. When the first entry of the sequence has been fixed, the
others are selected following the distance requested, or the divisor of 64 that uses the
same number of entries. For example, for a request of type 53, that needs 2 entries
in the table, the latter are going to be met with a distance of 32. This is because the
same number of entries is used, and in this way the distance is distributed equitably
on the table. Following this distance the next entries of the sequence are selected, but
if any of the following entries matches an occupied entry, the algorithm tries to use the
previous one. If this is also occupied, the algorithm tries to use the second previous
one, and so on.

Sequences of requests have been generated in order to try to meet them in the
table using both methods until the table is completed. These requests are of a certain
distance randomly generated between 2 and 64, in this case, all of them with the same
probability. If one request cannot be located in the table, it is discarded and another
is generated. In principle, we are interested in computing how many entries are wasted
in both cases. So, both algorithms use more entries in the table than those strictly
necessary. For the algorithm using only distances that are power of 2 this is due to
the rounding up. However, for the other method it is due in some cases to lower
distances being used than necessary because the entry that the algorithm wants to use
is occupied.

25



According to the results obtained, the method of rounding up to the lowest closest
power of 2 uses up on average 8.78 entries. While the supposedly optimum algorithm
uses up on average 1.96 entries. This results in a difference between both methods of
almost 7 entries, which is significant.

These results have been obtained considering all connections equally probable.
However, as explained in Section 4.1, this is not realistic. It is difficult to compute
the real probability of each distance, because this will depend on the applications, but
also on some aspects of the network (like size, diameter, packet size, etc.), and on the
switches (type of crossbar, number of ports, number of virtual lines, etc). As a simple
approximation we have considered establishing the probability proportionally to the
distance. In this way, a request of distance 64 has twice the probability of a request of
distance 32, and 32 times more than a request of distance 2. Using this new scenario
the test has been repeated. In this case, the method of rounding to a power of 2 wastes
on average 5.68 entries. On the other hand, considering all the distances grouped in
the 14 categories previously studied, the algorithm wastes 0.86 entries. Therefore, the
relative difference between them has decreased significantly.

It is clear than in real cases these probabilities will be even more disproportionate,
the requests of big distances being more frequent. Even, for small or medium sized
networks, it is quite probable that the distances lower than 16 are never requested. In
this way, the proposal of rounding to powers of 2 does not use up a lot of entries of the
table, but has other advantages.

Another topic is the complexity of the fill in algorithm. Obviously, the decision
must be made based on the information the algorithm has when the request is made.
Later requests are unknown at that moment. Regarding the first model proposed,
depending on the decision taken for a request other requests could be later met. But,
we cannot know which requests we will have in the future.

As an example, we are going to study the sequence of requests of distance 45, 8, 53,
61, 60, 55, 24, 3, and 9. Each request is located following the rules previously indicated
in the first method. As a starting point, the first request (of distance 45) is met in the
entries 32 and 64, thus having a separation of 32. The other requests are met following
those rules. The final table is shown in Figure 4(a). We can see that the last request
(the one of distance 9) cannot be located because there is a consecutive sequence of
occupied entries greater than 8. Specifically, for the situation shown in that figure,
we have the sequences 28, 29, ..., 36 and 63, 64, 0, 1, ..., 8 that have length equal
to or greater than the distance requested. So, the last request (the one of distance 9)
cannot be met, although there are still enough free entries in the table (17 free entries).
This is because the free entries are situated with an incorrect separation between two
consecutive entries. A possible solution is to move the requests on the table when new
requests are made.

However, if we know the complete sequence we can locate the requests in the correct
entries in order for the other requests to be met. In this case, a possible final status of
the table is shown in Figure 4(b).

On the other hand, following the algorithm that turns requests into powers of 2,

26



these requests can always be met in the table. Specifically, with the algorithm that we
are going to explain in Section 8, the final status of the table is shown in Figure 5. In
this case there are still 2 free entries (entries number 19 and 51) with a distance of 32,
that are able to meet a request later that is turned into that distance. So, in spite of
the algorithm using more entries than those strictly necessary, the free entries are left
in a correct way in order to later meet the most restrictive possible request. A request,
therefore, can always be located in the table if there are enough free entries.

To sum up, our proposal regarding the treatment of the maximum latency is to turn
it into the maximum distance between two consecutive entries in the arbitration table.
This maximum distance is rounded to the lowest closest power of 2. In the following,
we will always use this criterion to consider the distances. The next section presents in
a detailed form the algorithm used to choose the sequence of entries to meet a certain
request.

27



45 8 53 61 60 55 24 3 9 45 8 53 61 60 55 24 3 9
1 3 1 3
2 55 2 8
3 3 3 9
4 8 4 3
5 3 5 24
6 24 6 45
7 3 7 3
8 61 8 53
9 9 8
10 3 10 3
11 11 61
12 8 12 9
13 3 13 3
14 14 60
15 3 15 55
16 53 16 3
17 17 8
18 3 18
19 19 3
20 8 20
21 3 21 9
22 22 3
23 3 23
24 60 24 8
25 25 3
26 3 26
27 27
28 8 28 3
29 3 29 24
30 24 30 9
31 3 31 3
32| 45 32 8
3 3 3
34 55 34 3
35 3 35
36 8 36
37 37 3
38 3 38 9
39 39 8
40 61 40 3
41 3 41 45
42 42 53
43 3 43 3
44 8 44 61
45 45 9
46 3 46 3
47 47 8
48 53 48 60
49 3 49 3
50 50 55
51 3 51 24
52 8 52 3
53 3 53 9
54 24 54 8
55 3 55 3
56 60 56
57 57
58 3 58 3
59 59
60 8 60 9
61 3 61 3
62 62 8
63 3 63
64 | 45 64 3
Occupied entries 2 10 12 14 16 18 21 a7 Occupied entries 2 11 13 15 17 19 22 44 52

(a) (b)

Figure 4: Locating the sequence 45, 8, 53, 61, 60, 55, 24, 3, and 9 following the first
method proposed.

28



Turned into

Occupied entries

53

61

60

55

24

32

32

32

32

32

16

55

61

24

60

24

45

55

61

24

60

24

w

12

14

18

22

62

Figure 5: Locating the sequence 45, 8, 53, 61, 60, 55, 24, 3, and 9 following the method

of power of 2.

29



7 Formal model for the InfiniBand arbitration table

As stated in the previous sections, we now propose a concrete algorithm to find a new
sequence of free entries able to locate a connection request in the table. The number
of entries in the table and the distance between two consecutive entries depend on the
characteristics of the connections requested.

The treatment of the problem that we present basically consists in setting out an
efficient algorithm able to select a set of free entries on the arbitration table for the
request indicating a maximum separation between two consecutive entries. In order
to develop it, we first give our initial hypothesis and definitions. This is because we
need to establish the correct frame to later present the algorithm and its associated
theorems.

Although the algorithm and all the treatments are focused on a specific frame such
as InfiniBand, they can be generalized to any problem of finding a sequence of entries
with a certain separation between two consecutive entries in a table. This general
character can be achieved if we do not use the word arbitration when we are referring to
the table, nor the word connection when we are talking about the origin of the requests
of entries. We will therefore carry on in a general context, but obviously without
forgetting the environment. We must simply know that the requests are originated
by the connections, so that some requirements are guaranteed. Besides, the group of
entries assigned to a request belongs to the arbitration table associated with the output
ports and interfaces of the InfiniBand switches and hosts, respectively.

7.1 Definitions

For the purposes of later treatment, we define the following concepts:
e Table: Round list of 64 entries.
e FEntry: Each one of the 64 parts composing a table.

e Weight: Numerical value assigned to each one of the entries of the table. It can
vary from 0 to 255.

e Status of a entry: Situation of a entry of the table. The different situations can
be free (weight=0) or occupied (weight#0).

e Request: A demand of a certain number of entries.

e Distance: Maximum separation allowed between two consecutive entries assigned
to one request in the table.

o Type of request: Each one of the different kinds the request can be grouped into.
They are based on the number of entries requested.

30



e Group or sequence of entries: The set of entries of the table with a fixed distance
between two consecutive entries. In order to characterize a sequence of entries it
will be enough to give the first entry and the distance between two consecutive
entries.

7.2 Initial hypothesis

In the following, and unless stated to the contrary, the following hypothesis will be
considered:

1. There are no request eliminations, so the table is filled in when new requests are
received, and these requests are never removed. In other words, the entries could
change from free status to occupied status, but it is not possible for an occupied
entry to change to free.

2. It could be necessary to devote more than a group of entries to a set of requests
of the same type.

3. The total weight associated with one request is distributed among the entries of
the selected sequence so that the weight for the first entry of this sequence is
always larger than or equal to the weight of the other entries of the sequence.

4. The distance d associated to one request will always be a power of 2 and it must be
1 < d < 64. These are the different types of requests that we are going to consider.
So, in the following, distance and type of request will be equivalent terms. Thus,
the maximum distance d requested will be d = 2¢ where i = 0,1,2,...,6.

7.3 The model

For a table T, the sequence to, t1, -+, tg2, tg3 represents the entries of that table.
According to the previous definitions, every ¢; has an associated weight w; whose value
can vary from 0 to 255. We say t; is free if w; = 0, otherwise it is not free or occupied.

For convenience, and without loss of generality, consecutive entries of the table
will not have identifiers with consecutive indexes. The allocation of identifiers to the
entries is based on the application of the bit-reversal permutation to which it would
be the usual numeration, and which would assign identifiers with consecutive indexes
to consecutive entries. Remember that the bit-reversal permutation is such that m =
by 1bn_o...b1bg, R(m) = boby ... b, 2b, 1.

For the case of a table of 8 entries, Figure 6(a) shows a correlative numeration,
while Figure 6(b) shows the new numeration of the entries.

It can be observed in Figure 6(b) that a request of distance 2 can only be met with
the sequences {0,2,1,3} and {4,6,5,7}. As among the elements of a set there is no
established order® those sets are the same as {0,1,2,3} and {4,5,6, 7}, respectively.

3A set is a group of elements no repeated nor ordered.

31



~No o~ WDNEO
~NWwWokFkroOONMO

(a) (b)

Figure 6: Table of 8 entries, (a) correlative numeration of the entries, (b) numeration
based on the application of the bit-reversal permutation.

As can be seen, the entries of a set have a consecutive numeration. This is the reason
why the numeration proposed has been used. Something similar happens for other
distances.

The next definition of entry set uses the new numeration. Each set contains the
necessary entries to be able to meet a request of a certain distance.

Definition 1 Given a table T, for any request of type d = 2, 0 < i < 6, we define the
sets E; j, where j =k x 267" and 0 < k < 2°, as

Ej={t.]| j<n<j+2°"}

For convenience, we define the set I; = {j | 7 =k x 267 con 0 < k < 2!} that is
composed by the possible values of j for a given ¢. So, when this index j is referred to
it will be indicated as j € I;.

For the table of 8 entries of Figure 6(b), we have the following sets:

e Entries of the table with distance 1: E0,0 = {to, t1,1t2, 13,14, t5, L, t7}.

Entries of the table with distance 2: Ey g = {to,t1,t2,t3} and Ey 4 = {t4, 5, 6,17}

Entries of the table with distance 4: Esg = {to,t1}, Foo = {t2,t3}, Fa4 = {ts,t5}
and E2,6 = {ts,t7}.

Entries of the table with distance 8: Esg = {to}, Es1 = {t1}, Es2 = {t2},
Es3 ={ts}, B34 = {ta}, B35 = {ts}, E36 = {t6} and E37 = {t7}.

Different sets for the same distance are disjoint among them, each of them having
enough entries to meet a request of that distance. A binary tree structure can be
established with all the sets. A set in a certain level 7 is the union of two disjoint sets
belonging to the level i + 1. For the table with 8 entries shown in Figure 6(b), this tree
can be shown in Figure 7.

32



Figure 7: The set tree for the table of 8 entries in Figure 6(b).

In general, for a table of 64 entries, each set E;; contains the entries of the table
having a distance d = 2¢ between two consecutive entries. Obviously, these entries are
able to locate a request of type d. In this case, the binary tree with all the sets is
shown in Figure 8. The root of the tree is the set Eyo. This set is the union of the sets
Eip and FEj 32, which are the roots of their two subtrees. These are also divided into
two sets, and so on.

Although the basic terminology used in the rest of this paper will be based on sets,
for the sake of clarity, we will, in some cases, also use terms related to binary trees.

The sets F;o and Ej 3, are the only available sets for the distance d = 2. These
sets have the following entries:

Ei = {totitats.. . tsots1} v Ei13z = {taatsstaatss . .. teates}
one set having the first half of the entries, and another one having the second half.
Note that with the correlative numeration, these two sets correspond to a set with the
even entries and another with the odd entries. These sets are disjoint between them.
Each of them has enough entries to meet a request of type or distance 2. For the other
types of requests, the corresponding sets E; ; could be obtained (Figure 8).

Definition 2 A set E; j, 0 <1 <6, and j € I;, is free if w, =0 V t, € E;;.

This, together with the definition of E; ; (Definition 1), implies that a free set E; ;
is needed for meeting a request* of type d = 2¢, where j € I;.

Taking the previous definitions as a starting point, the following propositions can
be considered:

Proposition 1 For any i and j, where 0 <1 < 6 and j € I;,

Ei,j = Ei+1,j U Ei+1,j+26—(i+1)

4Remember that according to the previous section, we are going to consider only the case where a
new request needs a new sequence of free entries.

33



e H aﬁ H on I o i e I foo H Fn H o

w0 | e | e | Ee | Es | Ee | Ex | Ea f Ee | Es [ Ee [ Ew ] Es ][ Ee ][ Es ][ Ewe

E‘ Ezo H E6 ‘ B H Epus ‘

Eo | B | Fom | om | o || Fom | o | o ][ Fam | o | e ][ Fam | o | o ][ o ||

e e o o o o o o o o o o o O o o o OO 5 o O MY o O Y

EO,O

E

1,0

E2 0 E2,16

E3 0 ‘ ‘ E3 8 ‘ ‘ E3,16 ‘ ‘ E3,24 ‘

E4,O ‘ ‘ E4,4 ‘ ‘ E4,8 ‘ ‘ E4,12 ‘ ‘ E4,16 ‘ ‘ E4,20 ‘ ‘ E4,24 ‘ ‘ E4,28

‘ E5,0 ‘ ‘ E5.2 ‘ ‘ E5,4 ‘ ‘ E5,6 ‘ ‘ ES,S ‘ ‘ E5,10 ‘ ‘ E5,12 ‘ ‘ E5,14 ‘ ‘ E5.16 ‘ ‘ E5,18 ‘ ‘ E5,20 ‘ ‘ E5.22 ‘ ‘ E5,24 ‘ ‘ E5,26 ‘ ‘ E5,28 ‘ ‘ E5,30 ‘

(b)

Figure 8: Decomposition in a binary tree form of all the possible entry sets in the table, where each level corresponds to a different
type of request: (a) the whole tree, (b) a zoom of the marked half in (a).

34



In binary tree terms, this proposition could be enunciated as “the union of both children
1s the father”.

Proof: According to the Definition 1,

Ej = {ta] j<n<j+2} =
= {tj, Ljt1y -y tjpos—(t1) 1, bjpos—Gi+1), o641 41, - - - ,tj+26—i_1} =
= {tj, tj_|_1, . ,tj+267(¢+1),1} U {tj+267(i+1),tj+267(1‘+1)+1, - ,tj+26—i_1} =
{ta] j<n<j+280 W ult, | j+25FD <m<j+207) =

Eiy15 U By joo-6e)

O
As a consequence of this proposition, with the entries that allow a request of type
d = 2¢ to be met, two requests of type d’ = 2¢*! can be located.

From Definition 1, for a given level ¢, the sets E; ;, 0 <4 < 6 and j € I;, are those
obtained with j = k x 26% and 0 < k < 2°. So, the values of j are:

0,1 x 2572 x 2067% 3 2677 .. (28 —2) x 2677 (2" — 1) x 2%~
or

0,2 x 2674 4 x 207 (28 —2) x 27" and
1x 2073 x 2074 . (28 —1) x 207

therefore

2k x 26—t

) < i—1
(2k + 1) x 26~ } Osk<2

For a given k, both these expressions permit us to obtain the index that identifies
two brother sets. The first one identifies the brother situated on the left, and the second
one, the brother situated on the right.

The next function permits us to relate the identifiers of two brother sets. Specifi-
cally, when it is applied on the index that identifies whichever of the brothers it returns
the index of the other brother.

. p+20° if  (pmod 26 Ht) =0
B . - -
rother(p, i) { p—2%"" if (p mod 26~t1) £ 0

As two brother sets are always placed on the same level, we will simplify the previous
expression omitting the level. Therefore, the function is Brother(p). We are going to
test the validity of the function applying it to a pair of brothers. For a given level ¢
(0 < i < 6) the indexes of two brothers are j and j + 267

35



For 2k x 267 . (2k x 26_i) mod 26~ — (k x 26—i+1) mod 26—l —
So,
Brother(2k x 257%) = (2k x 267%) 4+ 26~ = (2k + 1) x 20~

For (2K +1)x 2511 ((2k+1) x 2°) mod 2%+ =
(k x 2671 4 267) mod 267+ = 26~ £
So,
Brother((2k + 1) x 257 = ((2k + 1) x 26%) — 26~ — 9k x 26~

A similar expression can be obtained in order to relate the identifier of a set with
whichever of its ancestors. Therefore, for any set Ey;, 0 < k <6 and [ € I, its index [
is related to the index of whichever of its ancestors in level ¢ according to the expression
(I div 267%) x 26—%

In order to simplify the later use of this expression, we are going to define the
function Ancestor(l,i) = (I div 267%) x 267% as the ancestor of [ in level 3.

A generalization of the Proposition 1 emerges from being applied successively to
each one of the descendants of a set E; ;. This generalization indicates that with the
entries of this set, that are meeting a request of type d = 2¢, two requests of type 2¢+1
can be met, 4 of type 272, and so on. This is shown in the following proposition.

Proposition 2 For any i and j, where 0 <1< 6 and j € I;,

2k—1
Eij = Birjries-ctn  k=1,2,...,6—i
=0
Proof: The proof works by induction on k. For £ = 1 we have E;; = E;;1; U

E; 1 j426-G+n, which follows from Proposition 1. Let us now suppose it is true for

k — 1, and let’s show it is also true for k. As it is true for £ — 1 then:

2(k=1) _1
Ei’j = U Ei+(k—1),j+l><26*(i+k*1) (1)
=0

Applying Proposition 1 to each one of these sets FE; } ; ;xo6-+k-1) We obtain:

Ei+(k_1)7j+lx26—(i+k—1) — Ei+k,j+l><26—(i+k—1) U Ei_Hc’j_HX26—(i+k—1)+26—(i+k) ==

- Ei+k,j+lx2x26—<i+k) U Ei+k:,j+(l><2+1)><26—(i+k)

and replacing it in Expression 1 we have:

36



2(k—=1)_1

Ei,j = U Ei+k,j+lx2x26—(i+k)UEz'+k,j+(lx2+1)><26—(i+k)
1=0

For the range of values of [, [0 . . 2*¢~1) — 1], the expressions [ x 2 and (I x 2+ 1)
include all the values in the range [O L2k - 1} because:

I x2 includes 0,2,4,...,22% YV —-1)=0,2,4,...,2¥ -2
Ix241 includes 1,3,5,...,202% Y -1)+1=1,3,5,...,28 -1
Therefore,
2(k=1) 1

Ei,j = U Ez'+lc,j+l><2><26*("+k) U Ei+k,j+(l><2+1)><26*(i+k) -
=0

2k—1
= U Ez‘+k,j+lx26—<i+k)
=0

as we wanted to prove.
O

From this previous proposition it is easy to test that, if E;; = |J Eitxm, then
m > j. This means that the index of whichever of the descendant sets, in any level, of
a certain set is always greater than or equal to its index.

Proposition 3 The available sequences of entries for a distance d = 2¢ are independent
among them. In a more formal way:

E;NE;=¢ VI#j, 0<i<6andjlel

In binary tree terms this proposition could be enunciated as “the nodes of the tree
located in the same level are disjoint of each other”.

Proof: The entries corresponding to these two sets are:

. =k x 26—
Ej={tn| j<n<j+2°7%} I 6—i
Ey={tn| l<m<it2-i} | ZE%27°
Um0 = 0<kt<2

But . . .
j<n<j+26 kx207t <n < (k+1)x 20
I<m<l+257 i tx 20 <m < (t+1)x 26

As 7 # [ then k # t and so n # m, therefore
EijNEiy;=¢

37



Proposition 4 Each available set of entries E; ; for a distance d = 2 is disjoint with
all the other available sets of entries for a distance d' = 2*! that fail Proposition 1
about E; j. More formally:

0<1<6
EijNEi1,=2¢ V1 such that (1 #37) y(l# 7+ 26—(i+1))7 jel
lE I(i+1)

In binary tree terms, this proposition can be enunciated as “a node is disjoint with
any other that is deeper except with its descendants”.

Proof: According to Proposition 3 we know that F; ;N E;; = ¢, Vj # l. On the other
hand, from Proposition 1, E;; = E;;1; U E; 1, 96-+1). Combining both expressions
we have:

Ei,j N Ei,l =¢ <~ Ei,j N (Ez'+1,l U Ei+17l+267(i+1)) =¢
= (EijNEi1) U(Ei;NE L 06-641)) = @

{ (Eij NEit1)) = ¢
(Eij N E;fypy96-41)) =

as we wanted to prove.

Proposition 5 Let us consider a free set E;; and another non-free set E; ,, | # m,
0 <2 <6 andl,m € I;, whose occupied entries are used to locate completely requests
of type d > 2¢. Then, all those requests can be met completely with entries of E;;, thus
leaving free the set E; .

Proof: If all the entries of the set E; ,,, are used to locate completely a request of type
d = 2%, this request could also be met with the entries of any free set E; ;, j # m, and
specifically with the entries of the set E;;.

If all or part of the entries of the set E;,, are being used to meet completely
requests of type d > 2¢, this means that we are using some of the sets F, ke mnx 26— (k) 5

n=0,...,28 — 1 such that E;,, = Uik:_ol E; k. minx2s-G+r. In order to meet those
requests other free sets ;4 i ,x26-a+k), J # m, can also be used. Specifically, the sets
Eiikpinxos-a+m, n=0,... ,2 —1and k=1,...,6 — i, can be used, because they are
free sets as follows from F;; is free and Proposition 2.

O

Definition 3 A set E;; is singular if this set is free but the set E;,, is not free, with
0 < i <6, n = Brother(j) and j,n € I,. Therefore, a set E; ; is singular if it is free
but its brother is not free.

38



As a consequence, and using binary tree terminology, all the ancestors, including
its father, of a singular set are not free.

Definition 4 We say a table is normalized if Vi,0 < i < 6, at most there is a singular

According to this definition, an empty table and a full table are normalized, because
there is no level with a singular set.

Among the previously defined sets, a partial order relation can be defined, based
on their position in the binary tree.

Definition 5 Let £ be the set made up of all the sets E;;, 0 <1 <6 and j € I;,. In
E x & the following binary relation is defined:

E,, 4 E ; < -
kvl s3J { l<]

Ex; 4 E;; is read as Ey; is placed more at the left and on a deeper level or the
same, than the set E; ; in the binary tree of the Figure 8.

As not all the sets E; ; are comparable (for example, F3s # Ey12 and Ey 15 4 E3g)
this relation establishes a strict partial order relation, and so, £ is a set partially
ordered.

Let us show new propositions that are based on the Definition 5.

Proposition 6 For Ey; and Ej,,, where 0 < k < 6 and l,m € I, such that Ej; <
Eim, if p # q, with p = Ancestor(l,i), ¢ = Ancestor(m,i) and 0 < i < k, then
E,, 4« E;,.

That means, if two sets are related, their respective ancestors on whichever level,
up to the level immediately before the level of the first ancestor in common, are also
related between them.

Proof: In order for E;, € E;, both conditions of the Definition 5 must be true.
Therefore, © < ¢ and p < q. The first condition is trivial. If we look at the second,
however, because Ej; 4 Ej,, then | < m, and so (I div 267%) < (m div 257%), and
(I div 267%) x 267¢ < (m div 267%) x 267 thus, p < q.
However, from definition, p # ¢, and so p < ¢, which means that E; , € E; .
O

Proposition 7 For the sets Ey; and Ej,,, with 0 < k < 6 and [,m € I, such that
Ey, 4 Epp, if i < k and n # j, with n = Ancestor(l,i), j = Ancestor(m,i), then
Ek,l <4 Ei,j-

This means, if two sets are related, then the ancestor of the second one on whichever
level, up to the level of the first ancestor in common, is related to the first.

39



Proof: As E,; 4 E,, then [ < m. Besides, as 7 < k, and n # j, from Proposition 6
then E;, € E; ;.

On the other hand, as n # j, from Proposition 3, then E;, N E;; = ¢. But, as
Ey; C E;, then it is also true E; N E;; = ¢.

Let us suppose that Ey; f E;;, and so [ > j. It is also true that [ < m, and so
Jj<l<m. As E,, C E;;,
which relates the indexes of a set and its descendants, we would have Ej; C E; ;, which

and following on from the consequence of Proposition 2,

is a contradiction, because Ey; N E; ; = ¢. Therefore, £} ; €4 E; ;.
O

Proposition 8 For Ey; and E;;, where 0 <1 < k < 6,1 € I, and j € I;, such that
Ey) 4 E;;, then E, ,, 4 E;;, being i <t < k and m = Ancestor(l,t).

This means, if two sets of levels k and i, where © < k are related, then all the
ancestors up to the level i of the set of the level k, are related with the set of the level 1.

Proof: In order for F;,, € E;;, according to Definition 5, ¢ < ¢ and m < j. The first
condition is true according to the initial hypothesis. Let us study the second condition.
Because Ej; € E; j then [ < j, and as a consequence

m = (I div 267%) x 267 < (5 div 26°%) x 26 (2)
Asjel;, j=px25% with0<p<2. Asi <t thent =i+ z, x> 0. Thus:

jmod 2°7% = (p x 257%) mod 2%~ = (p x 2°77®) mod 2%~ =
= (px2°x2% mod 26" =0

As (5 mod 267%) = 0, then (j div 26°%) x 26t = j and so, from (2), m < j.

Moreover, as m = Ancestor(l,t), following on from the consequence of Proposition
2, which relates the indexes of a set and its descendant sets, then m < [. So, m < j
and m < [, in addition to I < j. If m = 5 we would have [ < 57 = m, which is a
contradiction. Therefore, m # j, and so it should be true that m < j.

Thus, i« <t and m < j, and so E;,, €4 E;;, with ¢ <t < k.

Definition 6 A table is ordered if VE; ; and VEy;, both singular sets, where 0 < i,k <
6,0<j<2 and 0<1<2* ifi <k, then Ey; €4 E; ;.

We have seen the model that we are using, some related definitions, and some
derived propositions. In the following section, we will propose the algorithm to look
for a new sequence of entries in the table that are situated with a certain distance
between two consecutive entries. Firstly, we will enunciate the algorithm, and later
some theorems that could be obtained from it.

40



8 Algorithm for filling in the table

When there is a new request of maximum distance d = 2¢, we must find a group of %
entries of the table with two consecutive entries between them at a maximum distance
of d. Obviously, this is the same as finding a free set E; ;. For that purpose, we will
apply an algorithm. First we give an informal description of this algorithm in order
later to formally propose it, and validate it with some theorems and their corresponding
proofs.

For a request of distance d = 2¢, the algorithm examines, in a certain order, all
the possible sets E; ; for this type of request. The first one of these sets having all its
entries free is selected.

The order in which the sets are examined has as objective to maximize the distance
between two free consecutive entries remaining in the table after the selection. In this
way, the table is left in the best possible conditions to meet later the most restrictive
request possible.

The algorithm examines the sets E; ; from left to right according to the location of
the Figure 8. In a more formal way, the algorithm can be enunciated as:

For a new request of maximum distance d = 2, the
algorithm selects the first free set £;; of the sequence

Eio, Eij1x26-i, Esaxoo-i, Byzya6-i, .. ., By (2i_1)x26-

It should be noted that the apparent simplicity of this algorithm (to examine the
sets E; ; from left to right) has been achieved because the numeration of the entries of
the table uses the permutation bit-reversal, instead of the usual correlative numeration.

This algorithm has some characteristics that make it very efficient for filling in the
table with a series of requests with requirements about maximum distance. We are
going to show these characteristics by proving some theorems.

Theorem 1 If there is a group of free entries in the table with the requested distance
d=2%,0<1i<6, between two consecutive entries, then the algorithm finds it.

Proof: If there is a free group of entries in the table such that whichever two consec-
utive entries are at a distance d = 2, that means there is a free set F;; with k € I,.
From the definition of the algorithm, which consecutively inspects all the sets F; ; until
a free one is found, it is guaranteed this set FE; ; will be finally found.

O

Theorem 2 After applying the filling in algorithm, the table is mormalized. That
means, the filling in algorithm leaves, on whichever level of the tree of the Figure 8, at
most a singular set.

41



Proof: Let us suppose this is not true, and so, 3¢, 1 < ¢ < 6, this level having more
than one singular set. Let us suppose there are two, specifically E;; and E;;, with
k,l € I, and k < l. Because E;; is singular, then E; , is not free, where n = Brother(l).
As k < [, and E;} and E;; are singular sets, then Ancestor(k,i—1) # Ancestor(l,i—1),
and so it is also true that k < n. Therefore, the set E;, is placed at the left of the set
E;pn.

However, this situation is not possible, because the filling in algorithm would have
selected the set E;j, or whichever of its sons in the tree according to Proposition 2,
before the set E;,, or whichever of its sons in the tree according to Proposition 2. This
is because with the first sets we could have satisfied all the requests later met by the
last ones.

Any other situation that considers more than two sets, if the initial hypothesis fails,
includes the case of two sets, and as a consequence none of them will be possible. So,
Vi,0 < 4 < 6, if there is more than one free set E; ;, at most one of them, it is a singular
set, and so the table is normalized.

(I

Theorem 3 If after applying several times the filling in algorithm there are still n free

entries in the table, it is possible to meet the most restrictive possible request, which is

the type d = 2¢, with % <n < 8. So, this means that one free set E;,, erists, where
2

Proof: We know there are n free entries in the table. If % entries of them belong to
the same set E; ,,, the proof is trivial.

Now, let us suppose there is no free set E; ;, so the n free entries are distributed
among a series of free sets Ej;, with ¢ <k < 6 and | € I}. According to the Theorem
2, after applying several times the filling in algorithm, the table is normalized. This
means that in the level 7 + 1 at most there is free singular set E;;;;. But this is true
Vk, where i < k < 6. Each one of these sets Ej; would have g—ﬁ = 26=F entries, and so,
the total number of free entries of these free sets would be

6 6—i—1
PAEE AR AR AR AR A
k=i+1 k=0

This is the addition of a geometric progression with difference 2, and its result is
26=¢ _ 1. As a consequence

6 6—i—1
. . 64 64
P A R
k=i+1 k=0 2 d

which is a contradiction from our initial assumption that there are n > % free entries.
So, one free set E;; must exist.

42



Therefore, if after applying the ﬁlling in algorithm several times, there are still n
free entries, then $ 2—, entries (21 <n< ) belong to the same set F;,,, and so it is
possible to meet the most restrictive poss1b1e request, which is the type d = 2¢.

O

Theorem 4 Let there be a table with n free entries, the filling in algorithm is able to
locate whichever set of requests that does not require more than n entries.

Proof: Let dy,ds,...,d, be the requests to locate in the table. The table has n free
entries. These requests are made in the order indicated by the sequence and they

" 64
Zz

Let n; be the number of free entries in the table when the request d; is made.

satisfy

Of course, n; = n. Let us analyze what happens when each one of the requests d;,
1 <17 < m, is made. When a request d; is made, it could be the most restrictive one
or not. So, we have two possible cases:

- The request d; is the most restrictive. In this case, from Theorem 3 it can be

met. After meeting it, there are still n;, 1 = n; — 7 free entries.
i
- The request d; is not the most restrictive. In this case, from Theorem 3, with the
n; free entries the most restrictive possible request (dy, so that §* < n; < g)

can be met. As d; is not the most restrictive possible request, d; > dy, and
from Proposition 2, with the free entries able to locate a request of type dj, j—;
requests of type d; could be met, where g—z > 2. So, the free set required to meet
the request d; exists.

To sum up, if there are enough free entries in the table to locate a set of requests,
the filling in algorithm is able to meet them.
O

Theorem 5 After applying the filling in algorithm the table remains ordered.

Proof: According to the Theorem 2, the filling in algorithm always leaves the table
normalized. Therefore, F;; and Ej; are the only singular sets of the levels 7 and &,
respectively, Vi and Vk so that 0 < i < k < 6, with 5 € I; and [ € I.

As Ey; is the singular set of the level &k, and due to the way the filling in algorithm
functions, then Ej ., is not free, Vm such that m < [. According to Proposition 2, these
sets Ej ., are included in their ancestors on the level ¢, so, Ey,, C E;,, which means
the sets E;, are not free.

43



In addition, as after applying the filling in algorithm the set Ej; is singular, then
its ancestor in the level 7 is not free. So, all the ancestor sets in the level ¢ of the set
of the level k placed at the left of the set Ej;, and also FEj;’s ancestor in the level ¢,
are not free. Therefore, the free sets in the level ¢ must be placed at the right of the
ancestor of [ in the level 4, what means that Ancestor(l,i) < j. As Ex; C E; ancestor(i)
and due to the Proposition 3, Ej; ¢ E;;, then [ < j. This, together with i < k implies
that Ei; <€ E; j. As this is true Vi and Vk such that 0 < ¢ < k < 6, then, according to
Definition 6, the table remains ordered.

O

9 Insertions and eliminations in the table

The algorithm presented in the previous section has been set out based on certain
initial hypotheses. The first of these is that requests can only be inserted in the table.
Obviously, this is not a real situation, and so the releasing situations must also be
considered. In this way, in the general behavior of the table we could have insertions
of new requests and releases of previously established requests.

Now we eliminate the first initial hypothesis, so that now the elimination of requests
is possible. As a consequence, the entries used for the eliminated requests will be
released.

Considering the fill in algorithm of Section 8 together with this, we can achieve
situations where there are enough available entries to meet a request, but these entries
are not situated with a correct separation between them. As a consequence, although
there are enough free entries, the request can not be met. This situation is shown in
the next example.

Ezample 1 We have the table filled 3, and two requests of type d = 8 are eliminated.
These requests were using the entries of the sets Es16 and E332. That means that now
the table has 16 free entries, and so a request of type d = 4 could be met. However,
there is no free set Es; (see Figure 9).

Note that in the previous example the table is no longer normalized when the release
is made. In order to solve the situation shown in Example 1, the 16 entries must be
situated having a distance of 4 between two consecutive entries. Therefore, it should
have a free set E, ;. This means that the table must be normalized again. This can be
achieved as is indicated in Example 2. In this example, we follow a process based on
leaving free entries that are occupied, which are, however, necessary in order to obtain
a set of free entries able to meet the most restrictive possible request.

5We have selected this starting point in order to clarify the development of this example. However,
the situation shown in this example and in the following ones, can be achieved starting from different
status of the table.

44



Eoo

| ‘. H ‘o

Ezo ‘ ‘ Ea1e ‘ ‘ Era ‘ ‘ Eoas

(e [ | e BB e || fee | S |

ol el R e B R e A o

Figure 9: Situation of the arbitration table after the release of the sets Eg 16 and Eg 32,
having started with a filled table.

Ezxzample 2 A solution for the situation shown in Example 1, would be, for example,
to release the set F3 49, and in this way, together with the set Es 32, which is also free,
to obtain Es; free (by Proposition 1). So, the request of type d' =4 could be met.

In order to make the set E3 4o free, the entries of the free set F316 can be used to
meet the requests that are using the entries of the set Es 4. This is possible according
to Proposition 5. The final situation after the interchange would be the one shown in
Figure 10, now leaving the table normalized.

| Eso

‘ El,O ‘ ‘ E1,32 ‘

| B | B TR Re

‘ E3,0 ‘ ‘ E3,8 ‘ ‘ kE3,16 ‘ ‘ E3,24 ‘ ‘ E3,32 ‘ ‘ E3.404 ‘ ‘ E3,48 ‘ ‘ E3,56 ‘

o e ol e el e e

Figure 10: Situation of the arbitration table of Example 1 after the interchange between
the sets E3,16 and E3,40.

The aim of this process, which we call disfragmentation, is to obtain the greatest
free set possible with the available free entries.

Although the need for applying this disfragmentation process emerges as a conse-
quence of considering the release of requests, it is possible that it should be applied
after locating requests. This situation is shown in the following example.

Example 3 This example starts from the situation obtained in FExample 2, so the
entries of the set Fy3o are free and the others are occupied. In this situation the
entries of the set E3 s are released. This situation can be shown in Figure 11.

After that, there is a new request of type d = 8, which must be located because there
are enough free entries having the correct separation between them. When the filling
in algorithm is applied the set Es 3o is selected (the first one of level 3). This creates
a situation similar to that previously shown in FExample 1, which can now be seen in
Figure 12.

45



Eoo

| H |

EZ,O ‘ ‘ EZ,lS ‘ ‘ E2,32 ‘ ‘ E2,48

‘ E3,0 ‘ ‘ E3,8 ‘ ‘ E3,16 H E3,24 H E3,32 ‘ ‘ E3,40 ‘ ‘ E3,48 H E3,56 ‘

ol el el e R R A

Figure 11: Situation of the table after the release of the set Ej 5.

Eoo

‘ El,O E1,32 ‘

Ezo ‘ ‘ Ea1e ‘ ‘ Era ‘ ‘ Eoas

‘ E3,0 ‘ ‘ E3,8 ‘ ‘ E3,16 H E3,24 H E3,32 H E3,40 ‘ ‘ E3,48 H E3,55 ‘

ol el el e el R A

Figure 12: Final situation of the table of the Example 3.

As a consequence, and due to the fact that enough entries exist to meet a request
of type d' = 4, but do not belong to the same set, a new disfragmentation process is
needed. In this case, it could consist, for example, in ensuring that the set Ej 45 is left
free, the requests that now are being used to meet the entries of the set F3 3 meeting
the entries of the set E3 4.

In Example 3, when the set Ej 56 is released, the table is no longer ordered. When
the filling in algorithm is later applied over a non-ordered table, the table does not
remain normalized. The solution applied in Example 3 has consisted in applying dis-
fragmentation after a new insertion.

Another alternative is to order the singular sets that have been generated after a
release. In this way, the problem would be solved if in the situation shown in Figure
11, the singular set in the level 3 (now Ej56) were to the left of the singular set of the
level 2 (now Es32). So, we could meet the request of type d = 8 using the singular
set of level 3, without applying disfragmentation and with a free set remaining able to
meet a request of type d’ = 4. Thus, the free sets with a smaller size, whose entries
will have greater separation, are situated at the left of the larger free sets. Obviously,
this means that the table is ordered.

In order to detect this kind of situations we must study the table checking if there
is any free set of a certain size to the left of other set that has a smaller size. To solve
this situation we must apply Proposition 5, but at the level of the larger set. The
interchange must be carried out between the largest set and the set on the same level
that includes the smallest free set. This situation is explained in the next example,
Example 4.

Exzample 4 We will use the final situation of Example 2 as a starting point (Figure

46



10). Then the set Esgs6 is released (Figure 11). We must study all the levels of the
tree, until the situation to be solved is found or until the last level is reached. When we
have found the situation we must apply Proposition 9, interchanging the sets Es 30 and
Es 43. The resulting situation has as free sets F3 3y and Es4s, as can be seen in Figure
18. If there is now a request of type d = 8, it will be met with the entries of the set
Es 39, with the free set Ej 43 remaining, in order to meet a later request of type d = 4.

| o |

‘ El,O ‘ ‘ E1,32 ‘

‘ EZ,O ‘ ‘ E2,16 ‘ ‘ E2,3Z ‘ ‘ E2,48 ‘

‘ ES.O ‘ ‘ E3.8 ‘ ‘ E3.16 ‘ ‘ E3,24 ‘ ‘ E3,32 ‘ ‘ E3.4O ‘ ‘ E3.48 ‘ ‘ E3,56 ‘

Folea el B e A B

Figure 13: Situation of the arbitration table for the Example 4, after applying a reorder

process.

Therefore, with the combination of the filling in algorithm, the disfragmentation
algorithm and another algorithm to maintain the ordering, we can cover the general
treatment of the table. We have shown two alternatives. In the first, we are able
always to maintain the table ordered and normalized, while in the second one, it is
only necessary to maintain the table normalized. In this case, it is not necessary for
the table to be ordered.

Summing up, we have just outlined two methods to treat those situations that have
arisen as a result of having eliminated the restriction imposed by the first of out initial
hypotheses in Section 7.2. These methods basically are the following:

1. We must study the resulting status of the table both after meeting a new request
(using free entries) and after releasing a request (releasing occupied entries). In
both cases we must study if the table has enough free entries to meet a request,
but this is not possible because there is no free set of the correct size. If this
situation arises the disfragmentation algorithm must be applied to solve it. In
other words, if after an insertion or release the table is no longer normalized, a
disfragmentation algorithm must be applied to normalize it.

2. We must study the resulting status of the table only when a request is released.
In this case we must check if there are free sets of a greater size than other sets
situated to the left, and in this case carry out a reordering. We must also check
if, there being enough free entries to meet a certain request, it cannot be met
because there is no free set of the correct size. In this case, the disfragmentation
algorithm must be applied. The order of these checks is not important.

Summing up, this second method should check after a release if the table is
not normalized and/or not ordered. In this case, a disfragmentation algorithm

47



and/or a reordering algorithm must be executed to leave the table normalized
and ordered again.

Thus, there are two new algorithms to be developed: one to perform the disfrag-
mentation and the other to perform the reordering. In the following sections these new
algorithms and the generic situations for their use will be explained. We will also study
some characteristics of these new algorithms by means of a series of related theorems.

9.1 Disfragmentation algorithm

The basic idea of this algorithm is to join the entries of two free sets of the same size in
just one free set. This joining will be done only if the two free sets do not already belong
to the same greatest free set. The algorithm is, therefore, only applied on singular sets.
The goal is to have a free set of the biggest size in order to be able to meet a request
of this size. For this purpose, the table has enough free entries but they belong to two
small free sets that are not able to meet that request.

Procedure Disfragmentation ( set E;j, )
while ¢ > 1 do
found = Find(E; ) // E;; singular
if found then
swap(E; k., E; m) // Eiy is the E;,,’s brother
end if
1=1—1
k = Ancestor(m,1)
end while
End Disfragmentation

_.
e

Figure 14: Disfragmentation algorithm

In Figure 14 the code of the disfragmentation algorithm is shown. Starting from
a free set Ej; 1, a check is carried out to see if there is another free set F;; that is not
E; i’s brother (function Find, line 3). If it exists, all the entries of both sets are joined
in a new free set of double size. This is achieved by applying Proposition 5 (procedure
swap, line 5). As the new free set cannot be the only one on the level i — 1, the process
must continue. It is possible that this process reaches the level 1 (the loop from the
line 2 to 9). The resulting set from the joining is the E; ; of its level (lines 7 and 8).

The basic action of this disfragmentation algorithm is the execution of the procedure
swap(). This procedure makes a transformation in the table through an interchange
of sets. This interchange and its consequences are reflected in Theorem 6.

Theorem 6 Let there be a table in which 3E; ., E;; which are singular, with 1 <1 <6

and k # 1. It is possible to achieve a situation where 3 E;_; j, which is free, such that
Ei—l,j = Ei,m U Ei,l; with k,l,m S Ii, j e I 4.

48



Proof: We have a table where 3 E; ;, E; ; which are singular sets, and so iﬂEi_l,j, such
that E; ,; = E;;, U E;;. Proposition 5 permits us to interchange the singular set FE;
and the non-free set E;,,, where m = Brother(l). So, we interchange the free set E;
with the E;;’s brother, which is occupied. This process creates a free set F;_; ; such
that E;,, U E;; = E;_4 j, which allows us to meet a request of type d = 2=,
O
However, there can be situations where the problem cannot be solved applying only
an interchange. In these cases the disfragmentation algorithm must perform several
iterations. This situation is shown in the following example.

Exzample 5 Taking as a starting point the situation shown in Figure 15(a), after the
release of the set E3q or the Es 16, the disfragmentation process is applied. In the first
iteration of the algorithm, the sets Esg and FEs94 are interchanged. So, now the set
Es 16 1s free. However, we have 32 free entries although we do not have a free set on
level 1 that is able to meet a possible request of type d=2. This is because the table
1s not normalized, and we have two singular sets on level 2. So, the disfragmentation
algorithm must perform another iteration. When the second iteration starts we have
Es 16 and Ea g as singular sets. The algorithm will now interchange the sets Es 16 and
Es 39, Es32 and Es g staying as free sets, and so the singular set is now FEi3y. This
is the situation shown in Figure 15(b). Observe that the table is now normalized. If a
request of type d=2 were now made, it would be met with the entries of the set Ej 3.

‘ EZ,D ‘ ‘ E2‘16 H E2,32 ‘ ‘ E2,48 ‘ ‘ EZ,D ‘ ‘ E216 H E2,32 ‘ ‘ E2‘48 ‘

El,O ‘ ‘ E1,32 El,O ‘ ‘ E1.3Z
‘ E3,0 ‘ E&E ‘ ‘ E3,16 E 324 E 332 E3,A0 ‘ ‘ ESAB ‘ ‘ E 3,56 ‘ ‘ E 30 ‘ E&E ‘ ‘ E 3,16 E 324 E 332 E3,40 ‘ ‘ ESAB ‘ ‘ E 3,56 ‘
7 2 ] [ e P oo oo R O R O e o o e o e e
(a) (b)

Figure 15: The situation before (a) and after (b) of applying the disfragmentation
algorithm in a successive way on several levels.

Therefore, the disfragmentation algorithm consists in applying Theorem 6 to all
the levels where there is more than a singular set. So, starting from a table that is not
normalized, and using this algorithm, a normalized table is achieved. This is reflected
in the following theorem.

Theorem 7 The disfragmentation algorithm allows us to obtain a normalized table
from a table that was not normalized. This was obtained after a release of a request in
a normalized table.

49



Proof: The disfragmentation algorithm applies the Theorem 6 successively on all the
levels where there are two or more singular sets. Starting from the level where the
release has happened, it studies all the level up to the level 1 joining a pair of free sets
of the same level. In this way, after applying the algorithm there cannot be more than
a singular set in each level. So, after applying the disfragmentation algorithm the table
is normalized again.

O

Let us see how the disfragmentation process influences the table ordering.

Ezxzample 6 Let us suppose as a starting point the situation shown in Figure 16(a).
The only way this situation can be achieved is after the release of the set Esg or the
set Es316. Note that the table is ordered. However, the table is not normalized because
there are two singular sets on level 2. When the disfragmentation process is applied the
situation shown in Figure 16(b) is reached. Note that the table is still ordered, but now
it 15 also normalized.

If the disfragmentation algorithm were applied in a successive way to several levels,
the order in the table would not be modified either. This is because if we start with an
ordered table the biggest sets will always be on the right. So, the order will never be
altered although the algorithm joined a singular set formed in the previous iteration,
together with the previous one existing on that level.

EDD EDD

| H | H |

Exo | Eas [ Evu | Ere \ Exo | B | Eru | Er
‘ E3,0 ‘ ‘ EG.B ‘ ‘ E3.15 ‘ ‘ E3‘24 H E3,32 ‘ ‘ EQ.AO ‘ ‘ E3,48 ‘ ‘ E3‘56 ‘ ‘ E3,0 ‘ ‘ ES,E ‘ ‘ E3‘16 ‘ ‘ E3,24 H E3,32 ‘ ‘ EQ.AO ‘ ‘ E3,48 ‘ ‘ E3‘56 ‘
o ] o o e o e e R [ oo o e e R
(a) (b)

Figure 16: The situation after (a) and before (b) of applying the disfragmentation
algorithm. Starting from an ordered table, the algorithm achieves an ordered and
normalized table.

Note that we are not saying the disfragmentation algorithm manages to order the
table. Nor is it the case that after a release the table is always ordered, as has been
seen in Example 13. When we wish to reestablish the order in the table it will be
necessary to apply the reordering algorithm, which will be studied in the next section.
It is important to emphasize, however, that the disfragmentation algorithm does not
disorder an ordered table.

Therefore, after having shown, that the disfragmentation algorithm applied on an
ordered and non-normalized table achieves an ordered and normalized table, we are
going to prove it by means of the following theorem.

90



Theorem 8 After applying the disfragmentation algorithm to an ordered table, in
which there is at most one level, i, with 1 < 1 < 6, having two singular sets, the
table becomes normalized and remains ordered.

Proof: Let E;; and E;; be the two singular sets of the unique level i that has two
singular sets, where k < [ y k,l € I,. Applying the Theorem 7 a free set E,, is
obtained, with 0 < ¢t < ¢ and u € I,.

Let E,, and E, ; be any two singular sets, such that 0 <r <7 <p <6, g € I, and
s € I,.. As the table is initially ordered, then E,, <« E;, <« E;; 4 E, ;.

With this situation as a starting point, we have two possibilities:

e If r < ¢, then we must prove that £, , 4« E;, <4 E, ;.

Let us first see the case when ¢t = ¢ — 1. In this case u = Ancestor(l,t). As
E;. <4 E;;, then from Proposition 7 F;; < E,,. Besides, as E,, €4 E;; and
E;; 4 E;,, due to the transitive property of the order relation, then E,, <« E,,.

If r <t < i—1 the proof is similar, but applying in a successive way the
Proposition 7 and the transitive property of the order relation. So, in any case,
if r <tthen E;, <« E, ;.

On the other hand, it must also be true that E,, € E,,, which needs r < ¢
and u < s. The first one is in the initial hypothesis. Let’s study the second
one for the particular case where t =7 — 1. As E;; €4 E,; then [ < s. Besides,
as u = Ancestor(l,t), and following on from the consequence of Proposition 2,
which relates the indexes of a set and its descendants, then v <[, and so u < s.
Therefore, E;, € E, ;.

Again, for the general case when r <t < ¢ — 1, the proof is similar doing it in a
successive way. Therefore, in any case if 7 < ¢ then E;, € E, ;.

In this way, E,, < E;, € E,, and so if » < t the new singular set E,,, which
the disfragmentation algorithm has generated, keeps the table ordered.

e If r = ¢, then the disfragmentation algorithm, using E,, and E, s, will generate
a singular set E,_ 1, with h € I,_;, h = Ancestor(s,r —1). In this case, we only
need to prove that E,, < E,_y .

This proof is similar to the proof made in the previous item where the Proposition
7 and the transitive property of the order relation should be applied in a successive
way.

Therefore, in any case, after applying the disfragmentation algorithm on an ordered
table, in which there is at most one level ¢, with 1 < ¢ < 6, with two singular sets, the
table becomes normalized and remains ordered.

O

In the following section, the reordering algorithm will be proposed. We start with
an informal description using easy examples. Then the algorithm’s characteristics are
shown using several theorems.

o1



9.2 Reordering algorithm

The reordering algorithm proposed here consists, basically, in an order algorithm, but
applying it at a level of sets. This algorithm has been designed to order an unordered
table, according to Definition 6. The reordering algorithm establishes an order from
lower to larger size, and from left to right. When the order fails, as a consequence of
the apparition of new badly situated singular sets, the algorithm will act to set the
order again.

When a set is released, the algorithm checks if this set is correctly placed with
respect to the other free sets. This new free set must have on its left all the smaller
free sets, and placed on its right all the larger free sets. If its position is not correct
the algorithm will make the necessary movements to reestablish the order in the table.
These movements will be made by interchange, in a similar way to the disfragmentation
algorithm.

As has been previously indicated, the reordering algorithm will be used each time
an entry release occurs. This release happens in an ordered table, so that, when the
reordering algorithm is applied, there is only one set that is not ordered with respect
to the other sets.

Note that the way the reordering algorithm functions is the same as the well known
direct selection ordering algorithm [15].

1: Procedure Reordering
2: for k = 6 downto 2 do
3: for all Ej; singular do

4 for : = k — 1 downto 2 do

5 found = Find(E; ;) // E; j singular and Ey; € E;;
6: if found then

7 Swap(Ei,ja Ei,Ancestor(k,i))

8 end if

9 end for

10: end for

11: end for

12: End Reordering

Figure 17: Reordering algorithm.

In Figure 17 the basic code that makes up the algorithm is shown. The algorithm
studies all the possible levels (lines 2-11), except the two last, starting from the bottom.
At each level we will have at most a singular set, Ej;, except at maybe one level where
there could be two singular sets, only one of them being badly ordered. So, in each
level for each one of the singular sets Ej;, the algorithm checks if there is a singular
set E; ; of the upper levels situated on its left (lines 4-9). If there are several sets, the
one situated furthermost to the left is selected (lines 5 and 6), and they are ordered.

52



For that purpose, Proposition 5 is applied over set E; ; and Ej;’s ancestor at the level
i (procedure swap, line 7).
The following easy example shows how the reordering algorithm works.

Exzample 7 Let us take as a starting point the situation shown in Figure 18(a). This
situation has been reached after the release of set Es16 or set Es49 in a previously
ordered table. The reordering algorithm will interchange the sets Es 16 and Ea3e. In
this way, the final situation will be as shown in Figure 18(b), where the singular sets
are now 4, F394 and Es 32, with the table ordered once again.

EOD EOD

‘ El,O ‘ ‘ E1.32 ‘ El,O ‘ ‘ E1.32 ‘

EZ,O ‘ ‘ EZlS H E2,32 ‘ ‘ E2‘48 ‘ EZ,O ‘ ‘ E2‘16 H E2.32 ‘ ‘ E2‘48
‘ E3,0 ‘ ‘ E3,E ‘ ‘ E3,16 ‘ ‘ E3,24 H E3,32 ‘ ‘ E3.4O ‘ ‘ E3,48 ‘ ‘ E3‘56 ‘ ‘ E3,0 ‘ ‘ E3,E ‘ ‘ E3‘16 ‘ ‘ E3.24 H E3,32 ‘ ‘ E3,40 ‘ ‘ E3,48 ‘ ‘ E3‘56 ‘
B[R o " [ o [P R W W [ o [ D o o o o o o e R e o
(a) (b)

Figure 18: The situation before (a) and after (b) of applying the reordering algorithm.

Therefore, with the interchange of the correct sets, we can pass from a situation
when some singular sets do not maintain the order relation of Definition 5, to another
situation when the new singular sets now maintain this order. This is shown in a formal
way in the following theorem.

Theorem 9 Let Ey; and E; ; be the only singular sets in the levels k and ¢, respectively,
with0 <i <k <6,l €l and j € I;, such that they do not maintain an order relation.
So, Ex; 4 E; j. However, it is possible to change to another situation with Ey,,, € E; ,
with n € I, and m € I;, where Ey, and E;,, are now the only singular sets of the
levels k and i, respectively.

Proof: The Proposition 5 allows us to interchange the sets F;; and E;,,, where
m = Ancestor(l,i). Therefore, the singular set on level ¢ is now E;,, while E; ; is no
longer free. The same happens with the singular set on level k, which is now Ej, ,,, with
n =10l—m+ j. What we must prove is E, <€ E;,,. For that purpose it would be
enough to prove Ej, <« Ej;, because if this is true, and applying Proposition 7, then
Ek,n <4 Ei,m-

Let us suppose Ej, A Ej;, and so, n > [. But as n # [, because otherwise Ej,
and Fj,; will be the same set, then n > [. But, then E;; € Ej,, and from Proposition
7, then Ej; « E; j, which is false according to the initial hypothesis. So, Ej; # Ej,,
n <[, and E}, 4 Ey;, and from Proposition 7, Ej,, €4 E; ,.

O

93



Now that we can turn two unordered singular sets into two ordered singular sets,
we can achieve a totally ordered table applying this process in a successive way. This
result is provided by the following theorem.

Theorem 10 The reordering algorithm allows us to pass from a table that is not or-
dered to one that is ordered.

Proof: The reordering algorithm applies successively Theorem 9 to any pair of sets
E;; and Ej; which are singular, with 0 < ¢ < k < 6, 7 € I; y | € I}, such that
Ey, 4 E;;. After applying the theorem then Ej, <« E;,,, withn =1 —m+ j
and m = Ancestor(l,i). Therefore, after applying the reordering algorithm the table
becomes ordered.

O

As mentioned earlier the algorithm’s operation is similar to the direct selection
algorithm. Thus the correct functioning of the algorithm can now be guaranteed, and
it obtains an ordered table.

As a final step, we are now going to study what happens when this algorithm
is applied to a table that is normalized. We want to prove that the table remains
normalized. We will use the fact that the reordering algorithm does not generate more
singular sets than those previously existing, and only changes its order. We will see
this result in the following theorem.

Theorem 11 After applying the reordering algorithm to a normalized table, the table
remains normalized.

Proof: If the table is normalized it must have at most a singular set in each level.
But the reordering algorithm always interchanges a singular set E;; with another set
E; ., which is not free. So, the algorithm will never generate more free sets than those
existing at each level. Therefore, we could have, at most, a singular set per level, and
thus the table remains normalized.
O
Once we have presented the algorithms to perform the filling in, the disfragmenta-
tion and the reordering, we need to bring this all together and to test that the global
treatment of the table is correct.

10 Global management of the table

In the previous sections we have studied the disfragmentation and reordering algo-
rithms. However, the separate parts need to be brought together. We will prove that
the final situation achieved in the arbitration table after insertions and releases of re-
quests, with their corresponding disfragmentations and reorderings, is equivalent to
the situation achieved when we only have the insertions of the requests that are left in

04



the table. The term equivalent refers to the capacity to meet requests, and is exactly
defined in the following.

Definition 7 We say that two tables T and T’ are equivalent if they can meet the
same requests.

Independently of the concrete free sets that both tables have, they must be able
to meet the same requests. As we will see, two table are equivalent if they have the
same number of singular sets and are distributed on the same levels. As an example,
the tables shown in Figures 15(a) and 15(b) are not equivalent, although they have
the same number of free entries. This is because with the second table we can meet
requests of type d > 2, while with the first we can only meet requests of type d' > 4.
In the same way, the tables shown in Figures 16(a) and 16(b) are not equivalent. The
following is an example where two tables are equivalents.

Ezxzample 8 In Figure 19 we can see two equivalent tables. In the table shown in Figure
19(a) the singular sets are Ey4, E394 and Es 30, while in Figure 19(b) the singular sets
are Eyg, E316 and Es 45, the other sets (which are not descendants of them) being
occupied. However, both tables are able to meet exactly the same sequences of requests.

‘ El,O ‘ ‘ E1,32 ‘ ‘ El,O ‘ ‘ E1,32 ‘

‘ EZ,D ‘ ‘ E2‘16 H E2.32 ‘ ‘ E2‘48 ‘ ‘ EZ,D ‘ ‘ E2‘16 H E2,32 ‘ ‘ EZ,AE ‘

‘ E3,0 ‘ E&E H E3‘1G E3,24 H E3.32 E3,40 H E3‘48 ‘ E3‘56 ‘ ‘ E3,0 ‘ E&E H E3,16 E3‘24 E3,32 ES,AO H ESAB H ES‘SG ‘

B PR R e R R R R R R
(a) (b)

Figure 19: Two equivalent tables.

The following theorem proves that two normalized tables having the same number
of singular sets have the same number of free entries.

Theorem 12 If there are two normalized tables T and T', such that VE; ; € T, where
E;; is singular, 3E; ), € T', where E;, is also singular, and VE;;, € T', where E;j, is
singular, E; ; € T, where E;; is also singular, with 0 < i < 6, j,k € I;, then both
tables have the same number of free entries.

Proof: The proof is based on reductio ad absurdum. Let us suppose that both tables
T and T" do not have the same number of entries. So, there must be a level [, with
0 <1 <6, from which (up to the lower levels) both tables do not have the same number
of free entries. As the number of singular sets is the same at all the levels, then one

95



of the tables should have a number n of free sets that are not singular, and these sets
are not in the other table. In order for these free sets not to be singular the situation
should be such that their brother sets are also free. But this would form one or more
singular sets in some level ¢, with 0 < ¢ < ¢, which are in one table, but not in the
other, which contradicts the initial hypothesis.

Therefore, if two tables 7' and 7" are normalized, and VE,;; € T, where E;; is
singular, 3F; , € T, where E;, is also singular, and VE; € T', where E;; is singular,
dE; ; € T, where E; ; is also singular, with 0 < ¢ < 6, 7,k € I;, then both tables have
the same number of free entries.

O

Using the previous theorem, we are going to prove that two normalized tables are
equivalent, if they have the same number of singular sets and these are located at the
same levels.

Theorem 13 If there are two normalized tables T and T', such that VE;; € T, where
E; ; is singular, AE;, € T', where E;, is also singular, and VE;, € T', where E;, is
singular, AF; ; € T, where E;; is also singular, with 0 < i < 6, j, k € I;, then both
tables are equivalent.

Proof: If T and 7" are normalized they have at most a singular set per level. Besides,
as VE;; € T, where E;; is singular, 3E;, € T', where E;}, is also singular, with
0 < ¢ < 6, and vice versa, and by Theorem 12, both tables have the same number of
free entries. Therefore, according to Theorem 4 the tables 7' and 7" are able to meet
the same number of requests, and thus are equivalent.

(I

We will prove that the resultant situation of insert and release requests is equivalent
to the final situation if there are only the requests that are left after the releases. So,
all the work developed for the case when there are no releases is also applicable to
the case when there are request releases (considering the disfragmentation algorithm
and the reordering algorithm). This is because we would have an equivalent situation
regarding new requests, and in this case, we can apply Theorem 4. In this way, we will
have linked both parts of the theory. Let us see the theorem to prove this equivalence.

Theorem 14 Let a series of requests dy, ds, - -+, d,, be followed by a series of releases
", dy, ---, dl, after each one the reordering and/or disfragmentation algorithms is
applied, when the table needs to be ordered and/or normalized, where 3d;/d; = d;
Vi € [1,m]. This sequence of insertions d; followed by these releases d; produces an
equivalent result to the insertion of only the following requests {dy, do, - - -, d,} —{d}, db,
-, di -}, which are the requests that remain after the releases, when all the insertions

have been done.

96



Proof: Let T be the resulting table after realizing the insertion of the requests d,
dy, -+, dy, followed in any order by some releases d}, d, - -, d.,. On the other hand,
let 7" be the resulting table if the insertions {dy, da, ---, d,} — {d}, dj, ---, d.,,} are
directly performed. What we want to prove is that 7" and 7" are equivalent tables.
Thus, we are going to show that both tables have the same number of singular sets and
are placed at the same levels. Thus, according to Theorem 13, both tables are able to
meet exactly the same requests.

As was explained in Section 9 on page 47, we have two options to dynamically
manage the table:

1. After each insertion d; and each release d; the disfragmentation algorithm is
applied. So, according to Theorem 7 table 7" becomes normalized. On the other
hand, according to Theorem 2 the table 7" is also normalized.

2. In this case, after each release d;; the reordering algorithm and /or the disfragmen-
tation algorithm are applied. Thus, according to Theorems 7, 8 and 11, the table
T is normalized. For the same reason, from Theorem 2 table 7" is normalized.

In both cases tables T' and T" are normalized and so at most have only a singular
set per level. We can see that both tables also have the same number of singular sets
and are placed in the same levels.

If T and 7" do not have the same number of singular sets, or having the same
number are not situated at the same levels, then is because for some level 7, with
0 < i <6, JE;; € T which is singular, j € I;, but BE;; € T', with E;}, singular and
k € I;. The sets E;; € T' which are not free, with [ € I;, could be due to requests of
type d = 2¢, or by Proposition 2, to one or some requests d’ = 2P, with 1 <p <6—1
such that F;; = L_sz_1 E. Ap,jtmx26—(i+p) - This would mean that the request of type

m=0 1
d = 2¢ (or in a similar way, the request of type d’ = 2*?) in which both tables differ,
would be in the sequence of requests dy, d, - - -, d, and not in the sequence {dy, ds, - - -,

d,} —A{d|, di, ---, d.}. But we know that this is false, so this situation is not possible.

Thus, we have proved that both tables T and T’ have the same number of singular
sets and are located at the same levels. Thus, according to Theorem 13, both tables
are able to meet the same requests. Therefore, we have proved that both tables 7" and
T’ are equivalent.

O

Both parts of the theory are now brought together. Now, in whatever situation
it is possible to apply Theorem 4 in order to meet new requests. The conclusion is
important because whatever the request our proposal is able to meet it in the table
provided simply that there are enough free entries.

o7



11 Conclusions

In this work we have dealt with the formalizing of a scheduling model to provide QoS
for the applications in a subnet InfiniBand. We have started studying the different
kind of traffic and making a traffic classification based on their requirements. This
classification is based on the previous one proposed in [16], under which we proposed
some modifications in [2].

In this work we have proposed a novel way to assign the service levels of InfiniBand
to the different traffic kinds. This proposal takes into account the requirements re-
garding maximum latency. Specifically, for a certain maximum latency, the maximum
distance between two consecutive entries in the arbitration table of the output ports
in the switches is computed. We have studied the different possibilities to treat those
maximum distances, and have proposed to categorize them in the powers that are di-
visors of 64. So, we will have as possible maximum distances the values 2°, 2!, 22, 23,
24, 25 y 26 If the request does not match one of these categories, it is rounded up to
the lowest closest category. Obviously, this makes us use up entries in the arbitration
table. However, it simplifies the management of the requests and it achieves a good
filling in of the arbitration table.

We have also made a formal study about the management of the arbitration table
to provide QoS. We have defined a model that is based on sets of entries in the ar-
bitration table. Each set is the sequence of entries of the arbitration table that have
a certain distance between two consecutive entries. After defining the model we have
enunciated and proved a series of propositions that have allowed us to enunciate the
theorems. With these theorems we have proved that, if we have enough free entries
in the arbitration table, with our algorithm, we can always situate the request in the
table. This is because the algorithm always uses the entries in a concrete way, leaving
the other free entries in the best place to meet other requests later.

Finally, we have also studied the different possible situations in which requests are
met and released from the arbitration table. We have analyzed the different situations
and have found some problematic situations affecting the behavior of our algorithm.
In order to solve these problems, we have proposed two new algorithms. One of them
is a disfragmentation algorithm that must be executed every time a request is released
on the table. The idea of this algorithm is to join loose sets (sequences) in order to
form other sets able to meet requests that are more restrictive than the previous ones.
For that purpose, it is possible that an interchange between a free set and another
occupied set can be made. This is in order to put together the two free sets, and in
this way to form a large free set able to meet a more restrictive request.

The other algorithm proposed is used to maintain the order among the sets. The
idea is that we could need to have the free sets in a certain order based on their size.
As in the previous case, to achieve our propose, the algorithm will interchange different
sets.

We have two possibilities: if we only want to make these additional operations
on the table after a release, we need both the disfragmentation and the reordering

o8



algorithms. If we apply the disfragmentation algorithm both after an insertion and
after a release, it is not necessary to maintain an order among the sets, thereby making
the reordering algorithm superfluous.

The algorithm to fill in the arbitration table, together with the disfragmentation
and reordering algorithms, allow us to make a dynamic use of the arbitration table of
InfiniBand when there are requests to be settled in the table and also requests to be
released from the table.

In [3] this model has been evaluated. An InfiniBand network simulator has been
used. We have modeled several kinds of applications, embracing different QoS require-
ments. Regarding bandwidth the application requirement varied from 8 KBps to 300
MBps, which covered almost all kind of applications having this requirement. The
applications also requested a maximum end-to-end latency. This requirement could
vary from the minimum distance considered between two consecutive entries in the
IBA arbitration table (distance of 2) to the maximum possible distance allowed (dis-
tance of 64). Therefore, the application requirements that we have modeled in the
simulator agree with both the current applications with QoS requirements, and with
the theoretical model developed in this work.

The experimental results that we have obtained show that all applications achieve
the QoS requirements previously requested. By making a previous resources reserva-
tion, the network is able to deal with very high workloads. These results are very good,
and they confirm that our theoretical model is able to provide the QoS required for
the applications.

99



60



Bibliography

[1]
[2]

3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]
[11]
[12]
[13]
[14]

[15]

[16]

InfiniBand™ Trade Association, 1999. http://infinibandta.com.

F. J. Alfaro, J. L. Sanchez, and J. Duato. A Strategy to Manage Time Sensitive Traffic
in InfiniBand. In Proceedings of Workshop on Communication Architecture for Clusters
(CAC’02), Apr. 2002. Held in conjunction with IPDPS’02, Fort Lauderdale, Florida.
F. J. Alfaro, J. L. Sanchez, and J. Duato. A New Proposal to Fill in the InfiniBand
Arbitration Tables. Submitted to the International Conference on Parallel Computing
(ICPP’03), Oct. 2003.

F. J. Alfaro, J. L. Sanchez, J. Duato, and C. R. Das. A Strategy to Compute the
InfiniBand Arbitration Tables. In Proceedings of International Parallel and Distributed
Processing Symposium (IPDPS’02), Apr. 2002.

S. Blake, D. Back, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture for
Differentiated Services. Internet Request for Comment RFC 2475, Internet Engineering
Task Force, Dec. 1998.

R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation Protocol
(RVP) — version 1 functional specification. Internet Request for Comment RFC 2205,
Internet Engineering Task Force, Sept. 1997.

P. by ISSG Technology Communications. Infiniband architectural technology. Technical
Report TC000702TB, Compaq Computer Corporation, July 2000.

M. B. Caminero. Disefio de un Encaminador Orientado a Trdfico Multimedia en En-
tornos LAN. PhD thesis, Departamento de Informéatica de la Universidad de Castilla-La
Mancha, July 2002.

P. Cuenca. Codificacion y transmision robusta de senales de video MPEG-2 de caudal
variable sobre redes de transmision asincrona ATM. PhD thesis, Universidad Politécnica
de Valencia, 1998.

I. Dalgic. Performance of Ethernet and ATM Networks Carrying Video Traffic Based on
Accurate Characteristics of Video Sources. PhD thesis, Stanford University, Aug. 1996.
A. Forum. ATM Forum traffic management specification. Version 4.0, May 1995.

N. Giroux and S. Ganti. Quality of Service in ATM Networks. Prentice Hall, 1999.
InfiniBand Trade Association. InfiniBand Architecture Specification Volume 1. Release
1.0, Oct. 2000.

G. Karlsson. Asynchronous transfer of video. IEEE communication Magazine, 24(8):118—
126, August 1996.

D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley, 1973.

J. Pelissier. Providing Quality of Service over Infiniband Architecture Fabrics. In Pro-
ceedings of the 8th Symposium on Hot Interconnects, Aug. 2000.

61



[17] G. Pfister. High Performance Mass Storage and Parallel I/0, chapter 42: An Intro-
duction to the InfiniBand Architecture, pages 617-632. IEEE Press and Wiley Press,
2001.

[18] M. Schwartz and D. Beaumount. Quality of service requirements for audio-visual multi-
media services. ATM Forum, ATM94-0640, July 1994.

[19] J. Wroclawski. RFC 2210: The Use of RSVP with IETF Integrated Services, Sept. 1997.
Status: proposed standard.

62



