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Abstract

The provision of Quality of Service (QoS) in computing and communication environ-
ments is currently the focus of much discussion and research in industry and academia.
A key component for networks with QoS support is the output scheduling algorithm.

Some of the latest network technology proposals define scheduling algorithms that
use an arbitration table to select the next packet to be transmitted. These table-based
schedulers are simple to implement and can offer good latency bounds. However, they
face the problem of bounding the bandwidth and latency assignments. Moreover, this
kind of scheduler does not work properly with variable packet sizes.

In this paper, we propose a methodology to decouple the bandwidth and latency
assignments. We also propose a new table-based scheduler, which we call Deficit Table
(DTable), that works properly with variable packet sizes.

Keywords: Quality of Service (QoS), scheduling algorithms, bandwidth and la-
tency requirements, interconnection networks.






1 Introduction

Current high performance packet networks are required to carry traffic of different
applications. Some of these applications, like real-time video or telephony, require
pre-specified service guarantees. Therefore, multiservice packet networks need to en-
able Quality of Service (QoS) provisioning. The provision of QoS in computing and
communication environments is currently the focus of much discussion and research in
industry and academia. A key component for networks with QoS support is the output
scheduling algorithm, which selects the next packet to be sent and determines when it
should be transmitted, on the basis of some expected performance metrics.

An ideal scheduling algorithm implemented in a high performance network with
QoS support should possess the following properties:

e Fairness: The fairness of a scheduling algorithm is measured as the maximum
difference between the bandwidth allocation provided by the scheduling algorithm
and an ideal fair queuing scheme.

e Good End-to-End Delay: The end-to-end delay is defined as the sum of the
transmission delay, the propagation delay, and the queuing delay experienced at
each network node. The last component is by far the most significant. Thus, a
good scheduling algorithm should guarantee acceptable queuing delay.

e Simplicity: The processing overheads must be some orders of magnitude smaller
than the average packet transmission time. Thus, when the switching node op-
erates at high speed, a simple scheduling algorithm is mandatory.

The design of a traffic scheduling algorithm involves an inevitable trade-off among
these properties. Among the three, the delay and implementation complexity are
clearly the most important criteria for the selection of an algorithm for use in a real
system. While the fairness property of the algorithm affects only the short-term distri-
bution of service offered to the sessions sharing the link, a larger delay bound implies
increased burstiness of the session at the output of the scheduler, thus increasing the
buffering needed at the switches to avoid packet losses [1].

Several scheduling algorithms with different properties have been proposed. In
[2], Chaskar and Madhow propose a category of scheduler called list-based Weighted
Round Robin (WRR) [3], which has a simple implementation and can offer good latency
bounds. In this generalization of the classical WRR discipline, a list of flow identifiers,
called “service list", is maintained!. When scheduling is needed, the list is cycled
through sequentially and a packet is transmitted from the flow indicated by the current
list identifier. The same approximation is followed in two of the last high performance
network interconnection proposals. In the Advanced Switching architecture [4], one
of the schedulers defined in the specification is a virtual channel arbitration table
scheduler. Moreover, the InfiniBand [5] scheduler also uses this kind of table but

1Sometimes, this list is also called table. In this paper both terms will be used alike.



adds to each entry a weight that indicates the amount of information that can be
transmitted.

In this kind of table-based scheduler, we can control the latency of a flow by con-
troling the maximum separation between any consecutive pair of entries assigned to
that flow [6]. Therefore, we can provide flows with different QoS latency requirements
by assigning different maximum distances. However, this way of assigning the entries
of the arbitration table faces the problem of bounding the bandwidth and latency as-
signments [6]. If a maximum separation between any consecutive pair of entries of a
flow is set, a certain number of table entries are being assigned, and hence a minimum
bandwidth, to the flow in question. In this paper we propose a methodology to con-
figure the arbitration table that partially decouples the bounding between bandwidth
and latency assignments.

In the basic table-based scheduler approximation each table entry allows the trans-
mission of a packet regardless of the packet size. Therefore, this kind of scheduler also
presents the problem of not working properly with variable packet sizes, as is com-
mon in actual high performance networks. As we are going to show, the InfiniBand
approximation solves this problem only in part. As far as we know, a table-based
scheduler proposal that is able to handle properly variable packet sizes has not yet
been proposed. In this paper we also propose a new table-based scheduling algorithm
that works properly with variable packet sizes. We have called this algorithm Deficit
Table scheduler or just DTable scheduler.

The structure of the paper is as follows: Section 2 presents a summary of the best
known scheduling algorithms and introduces the table-based schedulers. In Section 3,
we highlight the problems of the table-based schedulers, namely the bounding between
the bandwidth and latency assignments, and the problem with variable packet sizes. In
Section 4, we propose the DTable scheduler. In Section 5, we present our methodology
to configure the arbitration table to decouple the bandwidth and latency assignments.
Details on the experimental platform and the performance evaluation are presented in
Section 6. Finally, some conclusions are given.

2 Scheduling algorithms

Many fair queuing scheduling algorithms have been proposed, among them, a family of
algorithms, which we will refer to by the generic name of “sorted-priority" algorithms.
This family of algorithms relies on a common-reference virtual clock, according to which
arriving packets are stamped with a virtual time tag. The packets are then sorted on
the basis of their increasing time tags: the smaller the time tag, the higher the priority
of the corresponding packet to be transmitted.

The best known algorithm of this family is the Weighted Fair Queuing (WFQ)
mechanism [7]. The WFQ algorithm is an approximation of the Generalized Processor
Sharing (GPS) model [8]. GPS is a fair-queuing model based on a fluid model that
provides perfect instant fairness in bandwidth allocation. This ideal model assumes
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that several packets from different flows can be simultaneously transmitted. WFQ is
a packet-by-packet algorithm that tries to emulate the GPS model by stamping each
packet that arrives at the egress link with its departure time in a corresponding GPS
system. The packets are then transmitted in an increasing order of time tag. This
provides the best possible fairness and delay bounds. However, to calculate the time
tags, which derive from the virtual clock, the emulation in real-time of an auxiliary GPS
fluid system is required. This may make the WF(Q algorithm unfeasible in high-speed
interconnection technologies.

The Self-Clocked Weighted Fair Queuing (SCFQ) algorithm [9] is a variant of the
WFQ algorithm which has a lower computational complexity. The SCFQ algorithm
defines fair queuing in a self-contained manner and avoids using a hypothetical queuing
system as reference to determine the fair order of services. This objective is accom-
plished by adopting a different notion of virtual time. Instead of linking virtual time
to the work progress in the GPS system, it uses a virtual time function which depends
on the progress of the work in the actual packet-based queuing system. This approach
offers the advantage of removing the computation complexity associated with the cal-
culation of the time tags in the WF(Q algorithm. However, the price paid is in terms
of the end-to-end delay bound, that grows linearly with the number of sessions sharing
the egress link [1]. Thus, the worst-case delay of a session can no longer be controled
just by controling its bandwidth assignment, as it is possible in WFQ.

Summing up, the sorted-priority family of algorithms suffers from two major prob-
lems. The first problem is that these algorithms require processing at line speeds for
tag calculation and tag sorting. In other words, each time a packet arrives at a node,
its time tag is calculated and the packet is inserted at the appropriate position in the
ordered list of packets waiting for transmission. This means that these algorithms
require at least the complexity of a search algorithm in the list of queued packets:
O(log(N)), where N is the maximum number of packets at the queue, or if the buffers
are not shared, O(log(J)), where J is the number of active flows. The second problem
that may happen in the sorted-priority approach is that, since the time tag is an in-
creasing function of the time and depends on a common-reference virtual clock, which
in turns reflects the value of the time tag of previously served packets, the virtual clock
cannot be reinitialized to zero until the system is completely empty and all the sessions
are idle. In other words, it is impossible to reinitialize the virtual clock during the
busy period, which, although statistically finite (if the traffic is constrained), can be
extremely long, especially given that most communication traffic has been shown to
exhibit self-similar patterns which lead to heavily tailed buffer occupancy distributions.
Therefore, for practical implementation of these algorithms, very high-speed hardware
needs to be designed to perform the sorting, and floating-point units must be involved
in the computation of the time tags. This, of course, can be done, but at a great cost
and with very limited scalability.

To avoid the complexity of the sorted-priority approach, the Deficit Round Robin
(DRR) algorithm [10] has been proposed. The aim of DRR is to implement fair queuing
and achieve practically acceptable complexity at the expense of other performance



metrics such as fairness and delay. The DRR algorithm is a variation of the Weighted
Round Robin (WRR) algorithm [3] that works properly with variable packet sizes. In
the WRR algorithm, a list of flow weights is visited sequentially, each weight indicating
the number of packets from the flow in question that can be transmitted. The sum
of all the weights, which is the maximum number of packets transmitted in each list
cycle, is called the frame length. On the other hand, the DRR algorithm associates
each queue with a deficit counter, which is set to zero at the start. The scheduler visits
and serves a fixed amount of data (referred to as quantum) from each flow. When a
packet is transmitted, the quantum is reduced by the packet size. For each flow, the
scheduler transmits as many packets as its quantum allows. The unused quantum is
saved in the deficit counter, representing the amount of quantum that the scheduler
owes the flow. At the next round, the scheduler will add the previously saved quantum
to the current quantum. When the queue has no packets to transmit, the quantum is
discarded, since the flow has wasted its opportunity to transmit packets.

A well-known problem of the DRR algorithm (which is also common to other round-
robin schedulers) is that the latency and fairness depend on the frame length. The
longer the frame is, the higher the latency and the worse the fairness. In order for
DRR to exhibit lower latency and better fairness, the frame length should therefore
be kept as small as possible. Unfortunately, given a set of flows, it is not possible
to select the frame length arbitrarily. According to the implementation proposed in
[10], DRR exhibits O(1) complexity provided that each flow is allocated a quantum no
smaller than the Maximum Transfer Unit (MTU). As observed in [11]|, removing this
hypothesis would entail operating at a complexity which can be as large as O(N). This
restriction affects not only the weight assigned to the smallest flow, but the rest of the
flows in order to keep the proportions between them.

As stated before, Chaskar and Madhow [2| propose a category of scheduler called
list-based WRR. In this generalization of the classical WRR discipline, instead of serv-
ing packets of a flow in a single visit per frame, the service is distributed throughout
the entire frame. For this, a list of flow identifiers, called “service list", is maintained.
When scheduling is needed, the list is cycled through sequentially and a packet is
transmitted from the flow indicated by the current list identifier. The number of times
that a flow identifier appears in the service list is proportional to its weight, but these
appearances are not necessarily consecutive as in the classical WRR algorithm. In [2],
three ways of distributing the flow identifiers to conform the service list are proposed,
resulting in three different schedulers with different characteristics. They show that the
list-based WRR schemes can achieve the performance of the sorted-priority algorithms.
Moreover, the proposed WRR-based schemes do not involve packet tag sorting, and
hence, they have lower implementation complexity than WFQ-based schemes. These
reasons make promising this kind of schedulers. The study of Chaskar and Madhow
is performed with fixed packet size and they comment that weighted versions of these
schemes could handle variable packet sizes. However, as far as we know, a table-based
scheduler that is able to handle properly variable packet sizes has not yet been pro-
posed.



Two recent network technology standards incorporate a scheduling algorithm sim-
ilar to the list-based WRR. schedulers: Advanced Switching (AS) [4] and InfiniBand
[5]. These technologies use Virtual Channels (VCs) to aggregate flows with similar
characteristics and the arbitration is made at a VC level. In both cases, the maximum
number of unicast VCs that a port can implement is 16. AS defines a VC arbitration
table scheduler which uses an arbitration table that works in the same way as the ser-
vice list of the list-based WRR schedulers. This arbitration table can have 32, 64, 128,
256, 512, or 1024 entries. Each entry contains a VC identifier value. When arbitration
is needed, the table is cycled through sequentially and a packet is transmitted from
the VC indicated in the current table entry regardless of the packet size. On the other
hand, InfiniBand defines a scheduler that uses two tables, one for scheduling packets
from high-priority VCs and another one for low-priority VCs. The maximum amount
of data that can be transmitted from high-priority VCs before transmitting a packet
from the low-priority VCs can be configured. Each table has up to 64 entries. Each
entry contains a VC identifier and a weight, which is the number of units of 64 bytes
to be transmitted from that VC. This weight must be in the range of 0 to 255, and is
always rounded up as a whole packet.

3 Problems of the table scheduler

As stated before, in [2], Chaskar and Madhow propose three list-based WRR, schedulers.
For a given set of flows the arbitration table of the three schedulers is going to have
the same number of entries. Therefore, the difference between the three schedulers is
in the way of distributing the flow identifiers among the table entries. These different
forms of interleaving the flow identifiers result in different latency characteristics for
the three schedulers.

In [6], the approach is different. Instead of having a set of flows with different
bandwidth requirements and trying to provide all of them with the best possible latency,
flows present different latency requirements and the table is filled in such a way that
their requirements are achieved. In [6], it is shown (in that case for InfiniBand) that
controling the maximum separation between any consecutive pair of entries assigned
to the same flow it is possible to control the latency of that flow. This is because this
distance determines the maximum time that a packet in the head of a flow queue is
going to wait until being transmitted. This explains the different latency properties of
the list-based WRR schedulers.

When using the table-based schedulers in which one entry allows one packet to
be transmitted, the way of assigning the entries of the table proposed in [6] faces the
problem of bounding the bandwidth and latency assignments. If a maximum separation
between any consecutive pair of table entries of a flow is set, a certain number of them
are being assigned, and hence a minimum bandwidth, to the flow in question. In that
way, to assign to the most latency-restrictive flows a small amount of bandwidth is
not, possible because lower distances must be used for them. This can be a problem
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because the most latency-restrictive traffic does not usually present a high bandwidth
requirement. Moreover, we cannot assign more bandwidth to the flows than that
provided for the number of table entries.

We have performed a simple test using a table scheduler with several aggregated
flows, each one using a different VC. The flows present different latency requirements
and thus a different distance in the arbitration table has been assigned to each VC.
We have performed the test using an arbitration table of 64 entries. Table 1 shows the
distance between any consecutive pair of the table entries of the flows and the number
and percentage of entries that this entails. The simulated architecture is the same as
that used for the performance evaluation in Section 6. The results obtained are shown
in Figure 1. As can be seen, the flows inject data at the same rate but they receive a
different throughput depending on the distance configuration of each flow.

Table 1: Arbitration table configuration
‘ VC ‘ Distance ‘ #entries ‘ Y%entries ‘

D2 2 32 50
D4 4 16 25
D8 8 8 12.5
D16 16 4 6.25
D32 32 2 3.125
D64 64 1 1.5625
D64’ 64 1 1.5625
Total 64 100

Another problem of the table-based schedulers is that they do not work in a proper
way with variable packet sizes. However, today networkt technologies usually use
variable packet sizes. If the average packet size of the different flows is different, the
bandwidth that the flows obtain may not be proportional to the number of table entries.
Figures 2, 3, and 4 show the performance of various table-based schedulers when there
are four aggregated traffic flows in the network. All these flows have the same data
rate and the same number of assigned table entries (the same bandwidth reservation)
but different packet size. The simulated architecture is the same as that used for the
performance evaluation in Section 6.

Figure 2 shows the case of a basic table scheduler similar to the AS table scheduler,
which is cycled through and when a table entry is selected, a packet from the VC
indicated in that entry is transmitted regardless of the packet size. As can be observed,
when using the basic table scheduler, the flows obtain a very different bandwidth
because each flow has a different packet size. Therefore, although the same number of
packets from each flow will be transmitted, the amount of information will not be the
same.

The InfiniBand’s weighted table solves the problem only partially because it allows
a packet to be transmitted that requires even more weight than the remainder of a
given table entry (exhausting them). Figure 3 shows the performance of a weighted
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Figure 1: Performance of the basic table scheduler for flows with different distance
configuration between any consecutive pair of table entries.
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Figure 2: Performance of the basic table scheduler for flows with different packet size.

table that works in this way. We have assigned all the entries the same weight: 2176
bytes (34 units of 64 bytes). As can be seen, it presents a better performance than the
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Figure 3: Performance of the weighted table scheduler for flows with different packet
size.

basic table scheduler, but not an optimum performance.

4 The Deficit Table scheduler

In this section we propose a new table-based scheduling algorithm that is able to solve
the above-mentioned problems. We have called this new algorithm Deficit Table sched-
uler, or just DTable scheduler, because it is a mix between the table-based schedulers
presented before and the DRR algorithm. In the same manner that the list-based
WRR schedulers distribute the service over the round-robin frame, the DTable sched-
uler distributes the quantum assigned to each flow among the table entries assigned to
that flow. We define the DTable scheduler taking into account a link-level flow control
mechanism in the network, as in the case of AS or InfiniBand. Thus, if the credits for
a given flow have been exhausted, the scheduler treats the corresponding queue as if
it were empty. If there is no flow control mechanism, the scheduler must consider that
there are always enough credits to transmit a packet. Specifically, this scheduler works
in the following way:

e Each table entry has associated a VC identifier and an entry weight. The entry
weight is the amount of information, in flow control credits, that each entry allows
to be transmitted.

e Each VC has assigned a deficit counter.
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e A VC is active when it stores at least one packet and there are enough credits to
transmit the packet that is at the head of the VC queue.

e Table entries are cycled through until an entry assigned to an active VC is found.
We will call this VC the selected VC.

e When a table entry is selected, the accumulated weight is computed. The accu-
mulated weight is equal to the sum of the deficit counter for the selected VC and
the entry weight.

e Packets belonging to the selected VC are transmitted. The accumulated weight
is reduced after sending each packet in an amount equal to the number of flow
control credits required by the transmitted packet.

e The next table entry is selected when any of the following conditions occurs:

— There are no more packets from the selected VC. In that case, the VC
becomes inactive, and the deficit value for that VC becomes zero.

— There are not enough flow control credits for transmitting the packet that
is at the head of the VC queue. In that case, the VC becomes inactive, and
the deficit value for that VC becomes zero.

— The accumulated weight is less than the size of the packet that is at the head
of the queue. The deficit value becomes equal to the accumulated weight.

We set the minimum value that a table entry can have associated to the MTU of
the network. This is the smallest value that ensures that there will never be a need to
cycle through the entire table several times in order to gather enough weight for the
transmission of a single packet. Note that this is the same consideration as that made
in the DRR algorithm [10]. Note also that the InfiniBand tables solve this problem by
rounding up to a whole packet the remaining weight in a table entry.

Figure 4 shows, as in the previous cases, the performance of the DTable scheduler
when four flows inject data at the same rate and have assigned the same number of
table entries, but have different packet sizes. As can be seen, in this case all the flows
obtain the same throughput. Therefore, the resulting DTable algorithm is a quite
simple modification of the table scheduler that works properly with variable packet
sizes. The memory requirements for this algorithm over the basic table scheduler are
the memory needed to store the deficit counter for each VC and the weight associated
to each table entry.

Summing up, we have proposed a table-based scheduler that considers the posibility
of a link-level flow control mechanism and is able to deal properly with variable packet
sizes.
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Figure 4: Performance of the DTable scheduler for flows with different packet size.
5 Decoupling the bandwidth assignment of the la-

tency requirements

In this section we present a methodology to configure the DTable scheduler presented
above to decouple, at least partially, the bounding between the bandwidth and latency
assignments. This methodology is also applicable to a weighted table like the used
by InfiniBand. However, in this case, it may not work properly with variable packet
sizes. Our aim here is for the maximum distance between any consecutive pair of table
entries for each flow, or aggregate of flows, to control the latency, and for the weights
assigned to those entries likewise to control the assigned bandwidth. In that way, the
latency and bandwidth allocation of a flow would be independent.

Supposing an arbitration table with N entries in a network with a certain MTU,
and supposing the i flow has assigned n; table entries, we would like to be able to
assign to the i’* flow a certain bandwidth ¢; in the most flexible possible way. This
means that we would like the minimum bandwidth ming; that can be assigned to
that flow to be as small as possible, and the maximum bandwidth max¢; that can
be assigned to that flow to be as large as possible. Note that in the classical table
scheduler, the number of entries (the proportion of entries over the total) fixes the
bandwidth allocated to that flow. Table 2 shows all the involved parameters.

We define two decoupling table parameters: w and k. The w parameter determines
the maximum weight M that can be assigned to a single table entry in function of the
MTU:

M=MTU x w
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Table 2: Arbitration table parameters

N Number of entries of the arbitration table
MTU Maximum Transfer Unit in credits
n; Number of entries assigned to the it flow

maxg; | Maximum bandwidth assignable to the it flow

ming; | Minimum bandwidth assignable to the i** flow

o; Bandwidth actually assigned to the i*" flow
k Bandwidth pool decoupling parameter
w Maximum weight decoupling parameter
M Maximum weight per table entry

pool Bandwidth pool

The k parameter determines the total weight that can be distributed between all the
table entries. We are going to call this value the bandwidth pool.

pool = N x MTU x k

The total number of weight units from the bandwidth pool that the table entries of a
flow have assigned fixes the bandwidth that the flow has actually assigned.

Note that k,w > 1 because, as stated before, the minimum weight that can be
assigned to a table entry is the MTU. Note also that £ < w because the bandwidth
pool cannot be bigger than the theoretical maximum weight among all the entries
(N x M).

These two parameters fix the minimum and the maximum bandwidth that can be
assigned to a flow:

, n; x MTU n; x MTU
ming; = =

ool NxMTUxk Nk

¢_ni><M_ni><MTU><w_n,-Xw
MO =00l T NxMTUxk N &

Table 3 shows an example with a table of 64 entries and 7 flows with different
distances between any consecutive pair of table entries. The w and k parameters have
been set to 4 and 2 respectively. The table also shows the bandwidth that can be

actually assigned to each flow depending on the number of entries and the w and k
parameters. As we can see the flows can be assigned in a range that goes from half the
percentage of assigned table entries to double that percentage.

When choosing the w and k parameters some considerations must be made. If we
want to be able to assign a small amount of bandwidth to a flow with lots of entries,
the k parameter must be small. However, the smaller £ is, the smaller the maximum
bandwidth that can be assigned. We can solve this by increasing the value of w but this
has two disadvantages. First of all, the memory resources to store each entry weight
are going to be higher. Secondly, the latency of the flows is going to increase, because
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Table 3: Example of decoupling with N=64, k=2, w=4

‘ Distance ‘ #entries ‘ %entries ‘ ming; ‘ maze; ‘

2 32 50 25 100
4 16 25 12.5 50

8 8 12.5 6.25 25

16 4 6.25 3.13 12.5
32 2 3.13 1.56 6.25
64 1 1.56 0.78 3.13
64 1 1.56 0.78 3.13
Total 64 100 50 200

each entry is allowing more information to be transmitted, and thus the maximum
time between any consecutive pair of table entries is higher.

6 Performance Evaluation

In this section, we evaluate the behavior of our decoupling methodology. Specifically,
we apply it to the proposed DTable scheduler. For this purpose, we have developed a
detailed simulator that allows us to model the network at the register transfer level,
following the AS specification, however, our proposals can be applied to any intercon-
nection network technology that uses a table-based scheduler. First, we will describe
the main AS network model features. Secondly, the configuration of the table scheduler
employed is specified. Thirdly, the traffic model is described. Finally, we present and
analyze the results obtained.

Table 4: Table configuration. N = 64, MTU = 34, k = 2.75, and w = 8

14

‘ vC ‘ #entries ‘ %entries ‘ ming; ‘ mazxe; ‘ bi ‘ Total weight
D2 32 50 18.18 145.45 18.18 1088
D4 16 25 9.09 72.72 18.18 1088
D8 8 12.5 4.54 36.36 18.18 1088
D16 4 6.25 2.27 18.18 18.18 1088
D32 2 3.13 1.14 9.09 9.09 544
D64 1 1.56 0.57 4.55 4.55 272
D64’ 1 1.56 0.57 4.55 0.57 34
Total 64 100 36.36 290.90 86.93 5202

Unassigned bandwidth | 13.07 782
Total | 100 5984




6.1 Simulated architecture

We have used a perfect-shuffle Bidirectional Multi-stage Interconnection Network (BMIN)
with 64 end-points connected using 48 8-port switches (3 stages of 16 switches). In
AS any topology is possible, but we have used a MIN because it is a common solution
for interconnection in current high-performance environments. The switch model uses
a combined input-output buffer architecture with a crossbar to connect the buffers.
Virtual output queuing has been implemented to solve the head-of-line blocking prob-
lem at switch level. As stated before, AS uses VCs to aggregate flows with similar
characteristics and the arbitration is made at VC level.

In our tests, the link bandwidth is 2.5 Gb/s but, with the AS 8b/10b encoding
scheme, the maximum effective bandwidth for data traffic is only 2 Gb/s. We are
assuming some internal speed-up (x1.5) for the crossbar, as is usually the case in most
commercial switches. AS gives us the freedom to use any algorithm to schedule the
crossbar, so we have implemented a round-robin scheduler. The time that a packet
header takes to cross the switch without any load is 145 ns, which is based on the
unloaded cut-through latency of the AS StarGen’s Merlin switch [12].

A credit-based flow control protocol ensures that packets are only transmitted when
there is enough buffer space at the other end to store them, making sure that no packets
are dropped when congestion appears. The MTU of an AS packet is 2176 bytes. The
credit-based flow control unit is 64 bytes, and thus the MTU corresponds to 34 credits.

The buffer capacity is 34816 bytes (16 xMTU) per VC at the network interfaces
and 17408 bytes (8xMTU) per VC both at the input and at the output ports of the
switches. If an application tries to inject a packet into the network interface but the
appropriate buffer is full, we suppose that the packet is stored in a queue of pending
packets in the application layer. Regarding the latency statistics, a packet is considered
injected when it is stored in the network interface.

6.2 Table scheduler configuration

We have defined 7 VCs with different distances between consecutive entries in the
arbitration table. In a real case we would assign the traffic flows to these VCs depending
on their latency requirements. Note that we are going to consider the requirements of a
VC as the requirements of the traffic that is going to be transmitted using that VC. We
have called these VCs D2, D4, D8, D16, D32, D64, and D64’, indicating the distance
between any pair of consecutive table entries. Therefore, D2 has more strict latency
requirements than D4, D4 than D8, and so on. A table of 64 entries has been used
in the simulations. To allow the decoupling between the latency requirements of the
VCs and the bandwidth assigned to them, we have used our methodology, assigning to
the k parameter a value of 2.75 (the bandwidth pool is 2.75 times the MTU multiplied
by the number of entries), and the w parameter a value of 8 (each table entry can be
assigned a maximum weight of 8 times the MTU). These parameters determine the
bandwidth pool, the minimum bandwidth per VC, and the maximum bandwidth per
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We have chosen this combination of parameter values because they allow us to
assign D2, D4, D8, and D16 the same bandwidth. This is useful for two reasons. First
of all, our intention is to show that we can assign bandwidth to a VC with a certain
independence of the distance between consecutive entries, and thus with a certain
independence of the number of entries that a VC has assigned. To do this we are going
to inject traffic for all the VCs in the same proportion and we expect to obtain the same
throughput for these VCs. Secondly, this allows us to study the effect of the different
separation between any consecutive pair of table entries of these VCs in a fair way.
Table 4 shows the number of entries assigned to each VC, the percentage of entries
that this entails, the minimum and maximum bandwidth that can be assigned to each
VC, the bandwidth that we have actually assigned to each VC in the simulations, and
the weight that we have distributed between the table entries of each VC to configure
this bandwidth.
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Figure 6: Normalized throughput per VC.
6.3 Traffic model

The traffic load is composed of self-similar point-to-point flows of 1 Mb/s. The destina-
tion pattern is uniform in order to fully load the network. The packets’ size is governed
by a Pareto distribution, as recommended in [13]. In this way, many small-sized pack-
ets are generated, with an occasional packet of large size. The periods between packets
are modeled with a Poisson distribution.

6.4 Simulation results

The figures of this section show the average values and the confidence intervals at 90%
confidence level of ten different simulations performed at a given input load. For each
simulation we obtain the average throughput, the average packet injection latency,
and the maximum packet injection latency of each flow. No statistics on packet loss
are given because, as has been said, AS has a credit-based flow control mechanism to
avoid dropping packets. We obtain statistics per VC aggregating the throughput of all
the flows of the same VC, obtaining the average value of the average latency, and the
maximum latency of all the flows. Note that the maximum latency shows the behavior
of the flow with the worst performance.

Figure 5 shows the normalized injection rate of the aggregated of flows associated
with each VC. As stated before, we inject the same amount of traffic in all the VCs.
Figure 6 shows the normalized throughput results per VC. As we can see, when the
load is low, all the VCs obtain the bandwidth they inject. However, when the load
is high (around 95%) the VCs do not yield a corresponding result, obtaining a band-
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Figure 8: Maximum latency performance.

width proportional to their priority. Specifically, the D2, D4, D8, and D16 VCs obtain
the same throughput although they have assigned a different number of table entries.
However, the D64 and D64’ VCs obtain a different throughput although they have
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Figure 9: Average latency improvement.

assigned the same number of table entries. Therefore, this figure shows that the VCs
obtain a throughput that does not depend on the number of table entries nor on the
distance between any consecutive pair of entries assigned to the VCs, but on the weight
assigned to their entries.

Figures 7 and 8 show the average and maximum latency performance. When the
load is very low, all the VCs present a similar low latency. This is because at this
load level there are few packets being transmitted through the network, and thus there
are few conflicts between them. When the load increases, the latency also increases
because some packets must wait in the buffers until others have been transmitted. It
is at this point that the scheduler algorithm assumes an important role and the VCs
obtain a different latency depending on the scheduler configuration. However, when
the load of the VC begins to outstrip its throughput, the latency of the scheduler starts
to grow very fast. This is because the buffers used for that VC begin to be full. Finally,
the buffers become completely filled and the latency stabilizes at a given value which
depends on the buffers’ size and the bandwidth assigned to that VC.

Figures 9 and 10 show the percentage improvement on average and maximum la-
tency of the D2 VC over the D4, D8, and D16 VCs. Note that all of these VCs inject
the same traffic and obtain the same throughput. However, they obtain a different la-
tency performance depending on the separation between any consecutive pair of their
table entries. The smaller the distance, the better latency performance they obtain.
The percentage of improvement is very small when the load is small, but increases
with the load. As stated before, this is because scheduler makes the difference when
there are conflicts between packets from different VCs. However, when the load is
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higher than the throughput, the buffers are almost always full. At this moment, the
bandwidth that each VC obtains outweights in importance the distance of the entries
in the arbitration table. This is the reason why the figures show that the percentage
of improvement for those points becomes zero or does not stabilize in a clear value.

Summing up, our results show that the weight assigned to the VCs determines the
proportion of bandwidth that they are going to obtain, independently of the number
of table entries or the distance between any consecutive pair of entries. Moreover, the
separation between any consecutive pair of the table entries of a VC determines the
latency performance when the load of that VC is smaller than the throughput that it
obtains.
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Figure 10: Maximum latency improvement.

7 Conclusions

Table-based schedulers exhibit interesting characteristics. Moreover, recent network
technologies such as InfiniBand or Advanced Switching propose this kind of scheduler
at the egress ports. In this paper we have shown that this kind of table-based scheduler
faces the problem of bounding the bandwidth and latency assignments. We have also
shown that these schedulers do not work properly with variable packet sizes. Even the
weighted table of InfiniBand only partially solves the problem, and its results are far
from acceptable.

In this paper we have proposed the Deficit Table scheduler, which is a new table-
based scheduler that works properly with variable packet sizes. As far as we know, this
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is the first table-based scheduler proposal that is able to deal properly with variable
packet sizes.

Moreover, we have proposed a methodology for decoupling the bandwidth assign-
ment from the latency requirements for table-based schedulers. With this methodology
we set the maximum distance between any consecutive pair of entries assigned to a flow
depending on its latency requirement. Moreover, we can assign the flows with a band-
width varying between a minimum and a maximum value that depends not only on
the number of table entries assigned, but also on two table configuration parameters.

We have tested our proposals in an Advanced Switching simulator, although they
can be applied to any interconnection network technology. Simulation results show
that the weight assigned to the VCs fixes the bandwidth they receive, independently of
the number of table entries or the maximum distance between them, while the latency
performance comes from the separation between any consecutive pair of table entries
assigned to the VC.

These results are extremely important because they offer us the solution to two
major problems of the table-based schedulers, which can be used in current intercon-
nection standards such as InfiniBand or Advanced Switching, or in future proposals of
interconnection standards.
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