University of Castilla-La Mancha

A publication of the

Computing Systems Department

USING NETWORK INFORMATION TO PERFORM
META-SCHEDULING IN ADVANCE IN GRIDS

by

Luis Toméas, Agustin Caminero, Blanca Caminero, Carmen Carrion

Technical Report DIAB-10-03-2 March, 2010

Agustin Caminero is with the Dept. of Communication and Control Systems, Universidad Nacional de
Educacién a Distancia.

This work has been jointly supported by the Spanish MEC and European Commission FEDER. funds
under grants “Consolider Ingenio-2010 CSD2006-00046”, “TIN2006-15516-C04-02” and “TIN2009-14475-
C04-03”; jointly by JCCM and Fondo Social Europeo under grant “FSE 2007-2013”; and by JCCM under
grants “PBI08-0055-2800” and “PII1C09-0101-9476”.

DEPARTAMENTO DE SISTEMAS INFORMATICOS
ESCUELA SUPERIOR DE INGENIERIA INFORMATICA
UNIVERSIDAD DE CASTILLA-LA MANCHA
Campus Universitario s/n
Albacete - 02071 - Spain
Phone +34.967.599200, Fax +34.967.599224

Using Network Information to Perform Meta-scheduling in
Advance in Grids

Luis Tomas!, Agustin Caminero?, Blanca Caminero!, Carmen Carrién®

LComputing Systems Department
Universidad de Castilla-La Mancha

{luistb,blanca, carmen}@dsi.uclm.es

2Dept. of Communication and Control Systems
Universidad Nacional de Educacién a Distancia

accaminero@scc.uned.es

March 25, 2010

Abstract

In extremely heterogeneous and distributed systems, like Grid environments, it is
quite difficult to provide quality of service (QoS). In addition, the dynamic behaviour of
the resources makes the time needed to complete the execution of a job highly variable.
So, fulfilling the user QoS requirements in a Grid is still an open issue. The main aim of
this work is to provide QoS in Grid environments through network-aware job scheduling
in advance. This paper presents a technique to manage idle/busy periods of resources
using red-black trees which considers the network as a first level resource. Besides, no
a priori knowledge on the duration of jobs is required, as opposed to other works. A
performance evaluation using a real testbed is presented which illustrates the efficiency
of this approach to meet the QoS requirements of users, and highlights the importance
of taking the network into account when predicting the duration of jobs.

Keywords: Grid meta-scheduling, network, QoS, red-black trees

1 Introduction

In a Grid environment the resources are in different domains under different access policies.
This fact makes their search and use a hard task for users. Also, manually accomplishing
this process is not feasible in a large-scale Grid environments with many potentially available
resources. Hence, the Grid infrastructure must provide the needed services for automatic
resource brokerage which take care of the resource selection and negotiation process [1|. This

infrastructure is named “meta-scheduler” [2].

The user’s experience of the Grid is determined by the functionality and performance of
this meta-scheduler system. But the heterogeneous and distributed nature of the Grid along
with the different characteristics of applications complicate the brokering problem. To further
complicate matters, the broker typically lacks total control and even complete knowledge of

the status of the resources [3].

One key idea to solve this problem is to ensure that a specific resource is available
when the job requires it. So, it becomes necessary to reserve or schedule the use of resources
in-advance [4]. Reservation in advance can be defined as a restrictive or limited delegation of
a particular resource capacity for a defined time interval [5]. The objective of such reservation
in advance is to provide quality of service (QoS) by ensuring that a certain job meets its QoS

requirements.

The main challenge of reservations in advance is that it is difficult to decide whether
a job can be executed fulfilling its QoS requirements without knowing the exact status of
the resources in the future [6]. However, reservation in advance mechanisms enable QoS
agreements with users and increase the predictability of a Grid system [7], at the expense of

creating resource fragmentation [8].

This paper proposes a new network-aware scheduling in advance algorithm to tackle
the scheduling in advance problem. This algorithm is concerned with the dynamic behaviour
of the Grid resources, their usage, and the characteristics of the jobs. This research focuses
on low-cost computational heuristics that consider the network as a first level resource. This
is needed because the network has a very important impact on the performance of jobs, as

studied in [9, 10, 11, 12|, among others.

The usage of resources is managed by means of red-black trees. This idea has already
been tried in [6, 8|, where authors assume that users have a priori knowledge on the job
duration — which may not be true most times. In the present work, estimations for job du-
ration are calculated in two different ways: (1) using the Total Completion Time (TCT), and
(2) Execution and Transfer Times Separately (ETTS). In (1), estimations on job durations use
information of previous executions, and does not consider the network transfers (only comple-
tion times, that include transfer and execution times). In (2), estimations on the execution
and transfer times of jobs are calculated independently. For execution time, an estimation
is calculated similarly to the completion time in (1), and transfer times are calculated using
bandwidth predictions through log data along with the number of bytes to transfer. Thus,
both techniques pay attention to the heterogeneity of Grid resources and do not assume users
have a priori knowledge on the duration of jobs, as assumed in [6, 8]. These ways of estimating

the job completion times are presented and evaluated in this paper.

The paper is organized as follows. Related work is presented in Section 2. In Sec-
tion 3 a brief overview of the general network-aware meta-scheduling in advance framework
is presented. Section 4 explains the extensions implemented to handle scheduling in advance.
Section 5 presents the experiments carried out for evaluating the proposal. Finally, the con-

clusions obtained and the suggested guidelines for future work are outlined in Section 6.

2 Related work

A Grid application may need multiple heterogeneous resources which may span over adminis-
trative boundaries, thus making the management of resources a challenging task [13]. Software
infrastructures required for resource management and other tasks such as security, informa-
tion dissemination and remote access are provided through Grid toolkits such as Globus [14]
and Legion [15].

Regarding the aforementioned advanced reservations of resources, Globus Architecture
for Reservation and Allocation (GARA) [16] was introduced for application-level dynamic
scheduling of collection of resources, co-allocation and advanced reservations. GARA is one
of the seminal works on advanced reservation and defines a basic architecture for the ma-
nipulation of advanced reservation of different resources. Since then, advanced reservations
have been studied in numerous contexts, such as clusters (Maui Scheduler [17]). Among the
systems that allow resource reservation in a Grid we can find Grid Capacity Planning [7],
that provides users with reservations of Grid resources through negotiations, co-allocations
and pricing. Another important system is VIOLA [18], which includes a meta-scheduling
framework that provides co-allocation support for both computing and network resources. It

allows the network to be treated as a resource within a meta-scheduling application.

Despite support for reservation in the underlying infrastructure is currently limited, a
reservation in advance feature is required to meet QoS guarantees in Grid environments, as
several contributions conclude |7, 16]. Qu [19] describes a method to overcome this short-
coming by adding a Grid advanced reservation manager on top of the local scheduler(s). The
performance penalty imposed by the usage of advanced reservations (typically decreased re-
source utilization) has been studied in [20]. Furthermore, advanced reservations have been
shown to increase the predictability of the system while maximizing its flexibility and its

adaptability to cope with the dynamic behaviour of Grid environments [21].

As next section explains, our work is different from the ones mentioned above because
it is based on meta-scheduling in advance in Grids rather than reservations in advance, since

reservation may not always be possible. This work uses red-black trees to manage the resource

usage, and it has already been tried in [6, 8]. However, as opposite to [6, 8], where authors
assume that users have a priori knowledge on the duration of jobs, such a priori knowledge is
not considered, so estimations on the completion time of jobs need to be calculated. To this
end, it becomes necessary to predict the dynamic behaviour of the resources in the future.
Moreover, the network is considered as another Grid resource, thus estimations on network

transfer times have to be calculated.

3 Network-aware meta-scheduling in advance

A Grid is an environment in which resources vary dynamically — they may fail, join or leave the
Grid system at any time. Also, such dynamicity comes from the fact that every Grid resource
needs to execute local tasks as well as tasks from Grid applications. From the viewpoint of a
Grid application, all the tasks from both local users and Grid users are loads on the resource.

So, everything in the system is evaluated by its influence on the application execution.

Support for reservations in advance of resources plays a key role in Grid resource man-
agement as it allows the system to meet user expectations with regard to time requirements

and temporal dependence of applications, and increases the predictability of the system [6].

A Grid reservation in advance process can be divided into two steps [5]:

1. Meta-scheduling in advance: Selection of the resources to execute the job, and the

time period when the execution will be performed.

2. Negotiation for resource reservation: Consists on the physical reservation of the

resources needed for the job, which may not always be possible.

In a real Grid environment, reservations may not be always feasible, since not all the
Local Resource Management Systems (LRMS) permit them. Apart from that, there are other
types of resources such as bandwidth (e.g. the Internet), which lack any management entity,
and makes impossible their reservation. This is the reason to perform meta-scheduling in
advance rather than reservations in advance to provide QoS in Grids. That is, the system
keeps track of the meta-scheduling decisions already made in order to make future decisions.
So, if only Grid load exist, this would be enough to provide QoS since the meta-scheduler

would not overlap jobs on resources.

The algorithms for meta-scheduling in advance need to be efficient so they can adapt
themselves to dynamic changes in resource availability and user demand without affecting

system and user performance. Moreover, they must take into account resource heterogeneity

since Grid environments are typically highly heterogeneous. For this reason, it could be useful
to employ techniques from computational geometry to develop an efficient heterogeneity-aware

scheduling algorithm [6].

An scheduling in advance process follows the next steps:

1. First, a “user request” is received. Every request must provide a tuple with information
on the application and the input QoS parameters: (in_ file,app,t_s,d). in_ file stands
for the input files required to execute the application, app. In this approach the input
QoS parameters are just specified by the start time, ¢ s (earliest time jobs can start to

be executed), and the deadline, d (time by which jobs must have been executed) [8].

2. The meta-scheduler executes a gap search algorithm. This algorithm obtains both the

resource and the time interval to be assigned for the execution of the job.

3. If it is not possible to fulfill the user’s QoS requirements using the resources of its own

domain, communication with meta-schedulers from other domains starts.

4. If it is still not possible to fulfill the QoS requirements, a negotiation process with the

user is started in order to define new QoS requirements.

In this process, the goodness of scheduling depends heavily on the quality of available
information regarding the resources, but independence and autonomy of domains is another
obstacle. This is because domains may not want to share information on the load of their
resources. Moreover, in a Grid environment, resource contention causes host load and avail-

ability to vary over time, and makes the execution time predictions quite difficult [22].

The prediction information can be derived in two ways [22]: application oriented and
resource oriented. For the application-oriented approaches, the running time of Grid tasks
is directly predicted by using information about the application, such as the running time
of previous similar tasks. For the resource-oriented approaches, the future performance of a
resource such as the CPU load and availability is predicted by using the available information
about the resource, and then such predictions are used to predict the running time of a task,

given the information on the task’s resource requirement.

In our case we use a mixture between these two approaches. We use application-oriented
approaches to sort out the execution time of the application and resource-oriented approaches

to calculate the time needed to perform the network transfers.

7

J GAP
. MANAGEMENT

SCHEDULER IN ADVANCE
MANAGEMENT

PREDICTOR
GRIDWAY

Figure 1: The Scheduler in Advance Layer (SA-layer).

4 A framework for network-aware meta-scheduling in advance

In this section, the implementation carried out allowing network-aware meta-scheduling in
advance is outlined. First, the structure of the framework is presented, followed by the policies
for allocating jobs into gaps in resources. Next, the data structures used for managing this

information are shown. Finally the prediction needs are discussed.

Our proposal is implemented as an extension to the GridWay meta-scheduler [2]. It is an
intermediate layer, called Scheduler in Advance Layer (SA-layer), between the users and the
on-demand Grid meta-scheduler, as Figure 1 depicts. The SA-layer is a modular component
that uses functions provided by GridWay in terms of resource discovery and monitoring, job
submission and execution monitoring, etc., and allows GridWay to perform network-aware
meta-scheduling in advance. The SA-layer stores information concerning previous applica-
tion executions (called DB Ezecutions), and the status of resources and network over time
(called DB Resources). Moreover, a new parameter has been added to GridWay, named
JOB_INFORMATION. In this new parameter the user may indicate some information about the
job. First, if the user knows the input and output size, he sets this information. After that,
the user may set other characteristics related to the jobs, such as job arguments, which enable
a more accurate estimation for the job execution time. On that purpose, the execution time
of jobs in a given resource is estimated by using prediction. This prediction takes into account
the characteristics of the jobs, the power of the CPU of the resources and the network future
status. By processing these information about applications and resources, a more accurate
estimation of the completion time of the job in the different computational resources can be

performed. Besides, the memory overhead is negligible (about several Mbits).

In this implementation, resource usage is divided into time slots of 1 minute, which
is a customizable parameter. Then, we have to schedule the future usage of resources by

allocating the jobs into the resources at one specific time (taking one or more time slots). For

ending time

starting time
o

Figure 2: Idle periods regions [6, 8].

this reason, allocation policies (carried out by Gap Management module in Figure 1) to find
the best slots for each job, data structures (represented by Data Structure in Figure 1) to keep
a trace of the usage of slots, and algorithms for estimations on job durations (implemented

by Predictor in Figure 1) are needed, which are explained the next.

4.1 Gap management

The job allocation influences how many jobs can be scheduled due to the generated frag-
mentation. Different ways of searching and allocating jobs into resources can be developed
considering both the already scheduled jobs and the generated fragmentation. In this work,

fragmentation refers to the free time slots in between two consecutive allocations.

In our first approach, a First Fit policy has been considered. This technique selects the
first free gap found that fits the new job. It can create big fragmentation, as a result of which
many jobs may be rejected. There also exist other techniques like Best Fit. This policy selects
the free gap which leaves less free time slots after allocating the job. The created fragments

are smaller, but it is harder to use those free slots to allocate new jobs.

4.2 Data structure

The data structure used to keep track of the free time slots is a key aspect. A suitable data
structure yields better execution times and reduces the complexity of algorithms. Further-

more, the data structure will also influence on the scalability of the algorithm.

The structure used in this work is red black trees [6, 8]. The objective of using these type

of trees is to develop techniques to efficiently identify feasible idle periods for each arriving

job request, without having to examine all idle periods.

This data structure is managed by the Gap Management module (see Figure 1). This
module represent the information of tree data structure in a geometrical way. So, each job
is represented by a single point in the plane as Figure 2 [6, 8] depicts. The job coordinates
are starting time and ending time. Labeled points represent the idle periods (gaps) with its
start and finish time. P represents the earliest start and end times, whilst P’ represent the
latests, for the current job. Thus, the line between P and P’ represents the periods when this
new job can be scheduled. All the points above and to the right of this line represent possible
gaps to allocate the job.

As Castillo explains in [8], the trees can be divided into two regions, named R1 and R2,
as Figure 2 [6, 8| depicts. Rl region represents the gaps which start at or before the job’s
ready time. Therefore, any idle period in this region can accommodate the new job without
delaying its execution. R2 region represents the gaps which start later than the job’s ready

time.

A job scheduled in an idle period will create at most two new idle periods: one between
the begining of the gap and the start of the job (the leading idle period), and one after the
end of the job and the end of the original idle period (the trailing idle period). The leading
idle period will have zero length at any point in the region R2, since the start time of this
gap is later than the job start time. So, this region is searched first. Work on studying other

ways of searching the regions is among the future work.

4.3 Predictor

Predictions of job execution time are quite difficult to obtain since there are performance
differences between Grid resources and their performance characteristics may vary for different
applications. Techniques for such predictions include applying statistical models to previous
executions [23] and heuristics based on job and resource characteristics [11, 24]. Based on this,
the algorithm proposed by Castillo [6, 8] is extended to take into account the heterogeneity

of Grid resources.

In the present work, estimations for the duration of jobs are calculated based on (1) using
the Total Completion Time of jobs (TCT), and (2) Execution and Transfer Times Separately
(ETTS). In (1), the mean completion time of previous executions of similar applications on
the selected host is used to manage idle/busy periods on the resource. This may lead to
poor resource usage since a resource may be considered as busy when in fact the job is

being transferred — the job execution has not started yet. Besides, in (2), separate execution

10

and transfer times are used, which improves the resource usage. For the execution time, an
estimation is calculated similarly to the completion time in (1). Regarding transfer times, the
mean bandwidth of the day before for the time interval in which the job will be allocated is
calculated. Using this information, along with the total number of bytes to transfer, the time

needed to complete the transfers is estimated.

Estimating execution and transfer times separately yields more accurate predictions,
which in turn lead to better utilization of resources and better QoS delivered to users. This
is because the meta-scheduler knows for each time-slot if a job is actually being executed at
a resource or being transferred to it, which allows the meta-scheduler to manage idle/busy

periods of computing resources more efficiently.

Thus, both techniques pay attention to the heterogeneity of Grid resources and do not
assume that users have a priori knowledge on the duration of jobs, as assumed in [6, 8]. These
two ways of estimating the completion time of jobs are presented and evaluated in this paper.
Also, in both cases, predictions are only calculated when a suitable gap has been found in
the host, so that there is no need to calculate the completion times for all the hosts in the
system — which would be quite inefficient. Please note that two applications are considered to
belong to the same application type when they have the same input and output parameters

— in terms of number, type and size.

5 Experiments and results

This section describes the experiments conducted to test the usefulness of this work, along

with the results obtained.

5.1 Testbed description

The evaluation of the scheduling in advance implementation has been carried out in a local
real Grid environment (depicted in Figure 3). The testbed is made of resources located in
two different buildings belonging to The University of Castilla La-Mancha (UCLM). In one
building there are, on the one hand, one machine which carries out the scheduler tasks, and
on the other hand, several computational resources. In the second building, there is a cluster
machine with 88 cores. All these machines belong to the same administrative domain (UCLM)
but they are located in different subnets. Notice that these machines belong to other users,

so they have their own local background load.

11

Figure 3: Grid testbed topology.

Arrival Ratio

i: h: Laxity = SchedulingWindow - T_Exec
l |- Scheduling Window > : P Scheduling Windowl |
ll'_rrax I I |
Leservatior+ |
| e TExecl _ | | | letExEC2 |

| | i
| | | | | |
| | | | | |
| |

| | 1 | | | |
L T I e »
_submitl T_startl deadlinel T_submit2 T_start2

- deadline2

Figure 4: Workload characteristic.

5.2 Workload used

One of the GRASP [25] benchmarks, named 3node, has been run to evaluate the implementa-
tion. The 3node test consists of sending a file from a “source node” to a “computation node”,
which performs a search pattern, generating an output file with the number of successes. The
output file is sent to the “result node”. This test is meant to mimic a pipelined application that
obtains data at one site, computes a result on that data at another, and analyses the result
on a third site. Furthermore, this test has parameterizable options to make it more comput-
ing intensive (compute scale parameter) and / or more network demanding (output_scale

parameter).

There are important parameters that have to be considered in the workload used for
measuring performance, as can be seen in Figure 4. “T maz reservation” represents the
advance with which we can make an scheduling in advance; “I' FEzec;” is the time needed
to execute the job i; “Scheduling Window” shows the time interval in which the job has to
be scheduled; “Arrival Ratio” depicts the average time between two jobs sent; and “Lazity”
represents how strict the user is when scheduling a job, which is the difference between the
“Scheduling Window” and the “T"_ Ezec” for a job.

12

For this evaluation, both the compute scale and the output scale take values between
0 and 20, being the average 10. The T maz reservation is up to 1 hour, with an average of
30 minutes. Finally, the Lazity is set between 0 and 10 minutes, being the average 5 minutes.
The submission rate is from 1 to 4 jobs per minute, being the total number of jobs for each

test 20, 40, 60 and 80. The results shown are the average of 5 executions for each case.

5.3 Performance evaluation

In this section, a comparison between the SA-layer with both techniques of calculating the job
execution time and a straight-forward implementation of the algorithm proposed by Castillo
et al. [6, 8] is outlined. Our proposal has already been compared with the GridWay original
framework (without support for scheduling in advance), resulting in a performance gain [26].
Now, this paper compares our framework with the original framework developed by Castillo
et al. [6, 8], and shows (1) there is no need to have an a priori knowledge on the execution
time of jobs — as long as predictions can be made; and (2) the importance of performing
estimations on transfer and execution times separately, rather than taking both parameters

altogether.

To evaluate the importance of using network information in the meta-scheduling process,
several statistics can be used. Scheduled job rate is the fraction of accepted jobs, i.e., those
whose deadline can be met [8]. QoS not fulfilled means the number of jobs rejected, plus
the number of jobs that were initially accepted but their executions were eventually delayed.
Thus, their QoS agreements were not fulfilled (the deadline was not met). These are measures

of the QoS perceived by the user.

From the point of view of the meta-scheduling system, there is another statistic, namely
waste. It records the number of minutes that are not used to execute any job because the
meta-scheduler thought that jobs would need more time to complete their executions. This

statistic is related to the accuracy of predictions.

Results from the user and system point of view are depicted in Figures 5 and 6, respec-
tively. In these plots, estimations on the Total Completion Time are labelled as TCT, while
estimations with Executions and Transfer Times Separately are labelled as ETTS. The results

obtained when using the algorithm proposed by Castillo et al. [6, 8] are labelled as Castillo.

First, Figure 5 (a) represents the number of scheduled jobs (the meta-scheduler has
enough free slots to allocate them, meeting the QoS requirements). The more jobs there are
in the system, the more lost jobs there are. All the algorithms have a similar behaviour at low

loads. The differences appear when the system load becomes close to saturation (60 jobs).

13

80 T - T T T 30

"Castillo &
TCT ©

o5 L ETTS
e
o
S
3 B 20t
=3 =
el =
2 2
A 5 157
- z
S (]
@ S 10t
.(E: a
=]
z

5 L

0 [—

40 60 20 40 60
Number of Submitted Jobs Number of Submitted Jobs
(a) Jobs Scheduled (b) QoS not Fulfilled

Figure 5: Estimating total completion time or separate estimations for execution and transfer

times.

Notice that when using ETTS, lost jobs appear only when the load goes over 60 jobs. Moreover,
the loss rate in this case is very small compared with the other two techniques. At this load,
Castillo lost around 31 % of the scheduled jobs but ETTS only around 7.5 %. So, using ETTS
to estimate execution times yields better results, since it can accept more jobs because the

estimation is more accurate.

Figure 5 (b) shows the number of jobs that were not executed with the QoS requested,
and includes lost jobs and jobs completed beyond the deadline. Again, the more jobs there
are in the system, the more jobs not executed with the requested QoS there are. For lower
submission rates (20 and 40), it is not essential to make separate estimations for executions
and transfer times since there are enough free slots. Thus, reserving the number of slots
in such a tight way does not show any enhancement. However, for higher submission rates
(60 and 80) it becomes very important to make this difference (ETTS line) since a noticeable

reduction in the number of lost jobs is achieved.

Figure 6 depicts the mean waste times in calculating the job completion time estima-
tions. This graphic highlights that even having a greater number of running jobs, the waste
is lowest when using ETTS than when using TCT, that is, without estimating execution and
network times separately in the gap reservation. With lower waste time, more jobs can be ac-
cepted since each accepted job requires fewer reserved slots. This explains the results showed
in Figure 5 (a). Also, resource utilization is better since there is less wasted time in between

executions of jobs. So, the resource will be idle for less time.

6 Conclusions and future work

Several research works aim at providing QoS in Grids by means of advanced reservations.

However, making reservations of resources is not always possible. Sometimes not all the

14

160

Castillo ==+
...... TCT s
R ETTS ——
3 .
& 120
E e e,
g 100 *)
3
g 80t
2
& 60t T,
e
N e —— « |
[}
=
“I /\—_1 |
o ‘
20 40 60 80

Number of Submitted Jobs

Figure 6: Estimations waste time.

LRMS permit reservations, while in other cases not all the resources belong to the same
administrative domain. There are even other types of resources which may belong to several
domains at the same time, such as network bandwidth. So, we proposed scheduling in advance

(first step of advanced reservation) as a possible solution to provide QoS to Grid users.

This type of scheduling allows to estimate whether a given application can be executed
before the deadline specified by the user. But this requires to tackle many challenges, such as
developing efficient scheduling algorithms that scale well or how to predict the jobs execution
time. For this reason, the prediction of the Grid resources status is essential. It must be
noted that network must be considered as another Grid resource, as highlighted by previous
studies [9, 10, 11].

In this work, a comparison between using estimations on the Total Completion Time
(TCT) and Execution and Transfer Times Separately (ETTS) is presented. Also, both techniques
are compared with an implementation of the scheduling in advance algorithm proposed by
Castillo et al. [6, 8]. This comparison highlights the importance of calculating network esti-
mations independently because it improves the resource usage, thus allowing more jobs to be
scheduled. Finally, recall that both the meta-scheduling in advance and advanced reservation
in Grid environments are open fields that still need research since there are no definitive so-
lutions (in terms of scalability and / or efficiency). Besides, many of the ideas developed to
provide QoS in Grids have been evaluated in simulated environments, but our work is being

carried out under a real environment.

The development and implementation of new efficient and scalable algorithms is one of
the challenges of this research. So, among the future work we are planning to include new
parameters such as trust of resources. This parameter could be measured as the historical
percentage of jobs assigned to a computational resource that do not get their QoS require-
ments. Another challenge is work on jobs rescheduling to provide the specified QoS in Grid.

When the scheduler fails to allocate a job, it is possible to allocate new incoming jobs by

15

rescheduling existing already scheduled jobs whenever possible without affecting their QoS

(Replanning Capacity [6]).

Acknowledgments

This work has been jointly supported by the Spanish MEC and European Commission FEDER
funds under grants “Consolider Ingenio-2010 CSD2006-00046”, “TIN2006-15516-C04-02” and
“TTIN2009-14475-C04-03”; jointly by JCCM and Fondo Social Europeo under grant “FSE 2007-
2013”; and by JCCM under grants “PBI08-0055-2800" and “PII1C09-0101-9476".

References

1]

2]

3]

[4]

[5]

(6]

7]

8]

9]

R. Yahyapour, “Considerations for resource brokerage and scheduling in Grids”, in Proc. of
Parallel Computing: Software Technology, Algorithms, Architectures and Applications (PARCO),
Dresden, Germany, 2003.

E. Huedo, R. S. Montero, and I. M. Llorente, “A modular meta-scheduling architecture for inter-
facing with pre-WS and WS Grid resource management services”, Future Generation Computing
Systems, vol. 23, no. 2, pp. 252261, 2007.

Erik Elmroth and Johan Tordsson, “An interoperable, standards-based grid resource broker and
job submission service”, in Proc. of the 1st Intl. Conference on e-Science and Grid Computing
(e-Science), Washington, DC, USA, 2005.

Anthony Sulistio, Advance Reservation and Revenue-based Resource Management for Grid Sys-
tems, PhD thesis, Department of Computer Science and Software Engineering, The University
of Melbourne, Australia, 2008.

GWD-I, Global Grid Forum (GGF), “Advance reservations: State of the art”, J. MacLaren, 2003,
http://www.ggf.org.

Claris Castillo, George N. Rouskas, and Khaled Harfoush, “Efficient resource management using
advance reservations for heterogeneous grids.”, in Proc. of the Intl. Parallel and Distributed
Processing Symposium (IPDPS), Miami, USA, 2008.

Mumtaz Siddiqui, Alex Villazén, and Thomas Fahringer, “Grid capacity planning with
negotiation-based advance reservation for optimized QoS”, in Proc. of the 2006 Conference on
Supercomputing (SC ’06), Tampa, USA, 2006.

Claris Castillo, George N. Rouskas, and Khaled Harfoush, “On the design of online scheduling al-
gorithms for advance reservations and QoS in grids.”, in Proc. of the Intl. Parallel and Distributed
Processing Symposium (IPDPS), Los Alamitos, USA, 2007.

Luis Tomas, Agustin Caminero, Blanca Caminero, and Carmen Carrion, “Studying the Influence
of Network-Aware Grid Scheduling on the Performance Received by Users”, in Proc. of the Grid
computing, high-PerformAnce and Distributed Applications (GADA), Monterrey, Mexico, 2008.

16

[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Luis Tomas, Agustin Caminero, Blanca Caminero, and Carmen Carrién, “Improving GridWay
with Network Information: Tuning the Monitoring Tool”, in Proc. of the Intl. Parallel € Dis-
tributed Processing Symposium (IPDPS), Roma, Italy, 2009.

Agustin Caminero, Omer Rana, Blanca Caminero, and Carmen Carrion, “Performance evalua-
tion of an autonomic network-aware metascheduler for Grids”, Concurrency and Computation:
Practice and Ezperience, vol. 21, no. 13, pp. 1692-1708, 2009.

Savera Tanwir, Lina Battestilli, Harry G. Perros, and Gigi Karmous-Edwards, “Dynamic schedul-
ing of network resources with advance reservations in optical grids.”, Int. Journal of Network
Management, vol. 18, no. 2, pp. 79-105, 2008.

Umar Farooq, Shikharesh Majumdar, and Eric W. Parsons, “Efficiently scheduling advance
reservations in grids”, Tech. Rep., Carleton University, Department of Systems and Computer

Engineering, 2005.
The Globus Alliance, ”, Web page at http://www.globus.org, 2009.
Legion Project, ”, Web page at http://legion.virginia.edu/, 2009.

Alain Roy and Volker Sander, Grid Resource Management, chapter GARA: A Uniform Quality
of Service Architecture, pp. 377-394, Kluwer Academic Publishers, 2003.

Maui Cluster Scheduler, 7, Web page at http://www.clusterresources.com/products/maui/,
2009.

O. Waldrich, Ph. Wieder, and W. Ziegler, “A meta-scheduling service for co-allocating arbitrary
types of resources”, in Proc. of the 6th Intl. Conference on Parallel Processing and Applied
Mathematics (PPAM), Poznan, Poland, 2005.

Changtao Qu, “A grid advance reservation framework for co-allocation and co-reservation across
heterogeneous local resource management systems”, in Proc. of 7th Intl. Conference on Parallel
Processing and Applied Mathematics (PPAM), Gdansk, Poland, 2007.

W Smith, Tan Foster, and V Taylor, “Scheduling with advanced reservations”, in Proc. of the 14th
Intl. Parallel and Distributed Processing Symposium (IPDPS), Washington, DC, USA, 2000.

Marek Wieczorek, Mumtaz Siddiqui, Alex Villazon, Radu Prodan, and Thomas Fahringer, “Ap-
plying Advance Reservation to Increase Predictability of Workflow Execution on the Grid”, in

Proc. of the 2nd Intl. Conference on e-Science and Grid Computing (e-Science), Washington,
DC, USA, 2006.

Yuanyuan Zhang, Wei Sun, and Yasushi Inoguchi, “Predict task running time in grid environments
based on CPU load predictions”, Future Generation Computing Systems, vol. 24, no. 6, pp. 489—
497, 2008.

Peter A. Dinda, “The statistical properties of host load”, Scientific Programming, vol. 7, no. 3-4,
pp. 211-229, 1999.

Hai Jin, Xuanhua Shi, Weizhong Qiang, and Deqing Zou, “An adaptive meta-scheduler for data-
intensive applications”, Intl. Journal of Grid and Utility Computing, vol. 1, no. 1, pp. 32-37,
2005.

17

[25] G. Chun, H. Dail, H. Casanova, and A. Snavely, “Benchmark probes for grid assessment”, in Proc.
of 18th Intl. Parallel and Distributed Processing Symposium (IPDPS), Santa Fe, New Mexico,
2004.

[26] Luis Tomas, Agustin Caminero, Carmen Carrién, and Blanca Caminero, “Meta-Scheduling in Ad-
vance using Red-Black Trees in Heterogeneous Grids”, in Proc. of the Intl. Parallel & Distributed
Processing Symposium (IPDPS), Atlanta, USA, 2010.

18

