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Stochastic equivalence for modular performance evaluation in

dtsiPBC

Igor V. Tarasyuk∗, Hermenegilda Macià and Valent́ın Valero†

Abstract

We propose the extension of discrete time stochastic Petri box calculus (dtsPBC) presented by I.V.
Tarasyuk with immediate multiactions. dtsPBC is a discrete time analog of stochastic Petri box calculus
(sPBC) with immediate multiactions proposed by H. Macià, V. Valero and others within a continuous time
domain. The step operational semantics is constructed via labeled probabilistic transition systems. The de-
notational semantics is defined on the basis of a subclass of labeled discrete time stochastic Petri nets with
immediate transitions. A consistency of both semantics is demonstrated. In order to evaluate performance,
the corresponding semi-Markov chains are analyzed. We define step stochastic bisimulation equivalence of
expressions and explain how it can be used to reduce their transition systems and underlying semi-Markov
chains as well as to compare the stationary behaviour. We prove that the introduced equivalence guarantees
a coincidence of performance indices and can be used for performance analysis simplification. In a case study,
a method of modeling, performance evaluation and behaviour preserving reduction of concurrent systems is
outlined and applied to the shared memory system.

Keywords: stochastic Petri net, stochastic process algebra, Petri box calculus, discrete time, immediate
multiaction, transition system, operational semantics, immediate transition, dtsi-box, denotational seman-
tics, Markov chain, performance evaluation, stochastic equivalence, reduction, shared memory system.

1 Introduction

Algebraic process calculi like CSP [17], ACP [8] and CCS [28] are a well-known formal model for the specification
of computing systems and analysis of their behaviour. In such process algebras (PAs), systems and processes are
specified by formulas, and verification of their properties is accomplished at a syntactic level via equivalences,
axioms and inference rules. In the last decades, stochastic extensions of PAs were proposed such as MTIPP
[18], PEPA [16] and EMPA [7]. Stochastic process algebras (SPAs) do not just specify actions which can occur
as usual process algebras (qualitative features), but they associate some quantitative parameters with actions
(quantitative characteristics).

Petri box calculus (PBC) [4, 5] is a flexible and expressive process algebra developed as a tool for specification
of Petri nets (PNs) structure and their interrelations. Its goal was also to propose a compositional semantics
for high level constructs of concurrent programming languages in terms of elementary PNs. Formulas of PBC
are combined not from single (visible or invisible) actions and variables only, like in CCS, but from multisets
of elementary actions and their conjugates, called multiactions (basic formulas). The empty multiset of actions
is interpreted as the silent multiaction specifying some invisible activity. In contrast to CCS, synchronization
is separated from parallelism (concurrent constructs). Synchronization is a unary multi-way stepwise operation
based on communication of actions and their conjugates, this extends the CCS approach with conjugate matching
labels. Synchronization in PBC is asynchronous unlike that in Synchronous CCS (SCCS) [28]. Other operations
are sequence and choice (sequential constructs). The calculus includes also restriction and relabeling (abstraction
constructs). To specify infinite processes, refinement, recursion and iteration operations were added (hierarchical
constructs). Thus, unlike CCS, PBC has an additional iteration construction to specify infiniteness when the
semantic interpretation in finite PNs is possible. PBC has a step operational semantics in terms of labeled
transition systems. A denotational semantics of PBC was proposed via a subclass of PNs equipped with an
interface and considered up to isomorphism, called Petri boxes. For more detailed comparison of PBC with
other process algebras see [4, 5]. Last years, several extensions of PBC with a deterministic or a stochastic
model of time were presented.
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Spain, with the project “Stochastic equivalences for modular performance analysis in dtsiPBC”, by Deutsche Forschungsgemein-
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A deterministic time model is considered in time Petri box calculus (tPBC) [20], in timed Petri box calculus
(TPBC) [26] and in arc time Petri box calculus (atPBC) [34]. In tPBC each action has a time interval associated
(the earliest and the latest firing time), and an interleaving operational semantics is defined. The denotational
semantics is then defined in terms of a subclass of labeled time PNs (LtPNs), based on tPNs [27], and called
time Petri boxes (ct-boxes). In contrast to tPBC, multiactions of TPBC are not instantaneous, but have time
durations. For the latter model a step operational semantics is also considered, and a denotational semantics,
using a subclass of labeled timed PNs (LTPNs), based on TPNs [36], and called timed Petri boxes (T-boxes).
In atPBC multiactions are associated with time delay intervals, and a step operational semantics is defined.
The denotational semantics is then defined on a subclass of arc time PNs (atPNs), where time restrictions are
associated with the arcs, called arc time Petri boxes (at-boxes).

A stochastic extension of PBC, called stochastic Petri box calculus (sPBC), was proposed in [33, 22]. In
sPBC, multiactions have stochastic durations that follow negative exponential distribution. Each multiaction is
instantaneous and equipped with a rate that is a parameter of the corresponding exponential distribution. The
execution of a multiaction is possible only after the corresponding stochastic time delay. Only a finite part of
PBC was initially used for the stochastic enrichment, i.e., in its former version sPBC has neither refinement nor
recursion nor iteration operations. The calculus has an interleaving operational semantics defined via labeled
transition systems. Its denotational semantics was defined in terms of a subclass of labeled continuous time
stochastic PNs (LCTSPNs), based on CTSPNs [23, 2], and called stochastic Petri boxes (s-boxes). In [30], the
iteration operator was added to sPBC. In [31], a number of new equivalence relations were proposed for regular
terms of sPBC to choose later a suitable candidate for a congruence. sPBC with iteration was enriched further
with immediate multiactions in [32]. A denotational semantics of such an sPBC extension was defined via a
subclass of labeled generalized SPNs (LGSPNs), based on GSPNs [23, 2, 3], and called generalized stochastic
Petri boxes (gs-boxes).

In [39], a discrete time stochastic extension dtsPBC of finite PBC was presented. A step operational
semantics of dtsPBC was constructed via labeled probabilistic transition systems. Its denotational semantics
was defined in terms of a subclass of labeled discrete time stochastic PNs (LDTSPNs), based on DTSPNs [29],
and called discrete time stochastic Petri boxes (dts-boxes). A variety of stochastic equivalences were proposed
to identify stochastic processes with similar behaviour which are differentiated by the semantic equivalence.
The interrelations of all the introduced equivalences were studied. In [38, 40], we constructed an enrichment
of dtsPBC with the iteration operator used to specify infinite processes. Since dtsPBC has a discrete time
semantics and geometrically distributed delays in the process states unlike sPBC with continuous time semantics
and exponentially distributed delays, the calculi apply two different approaches to the stochastic extension of
PBC, in spite of some similarity of their syntax and semantics inherited from PBC. The main advantage of
dtsPBC is that concurrency is treated like in PBC having step semantics, whereas in sPBC parallelism is
simulated by interleaving obliging one to collect the information on causal independence of activities before
constructing the semantics. In [41], we presented the extension dtsiPBC of the latter calculus with immediate
multiactions.

A notion of equivalence is important in theory of computing systems. Equivalences are applied both to
compare behaviour of systems and reduce their structure. There is a wide diversity of behavioural equivalences,
and their interrelations were well explored in the literature. The most well-known and widely used one is
bisimulation. Standardly, the mentioned equivalences take into account only functional (qualitative) but not
performance (quantitative) aspects. Additionally, the equivalences are usually interleaving ones, i.e., they
interpret concurrency as sequential nondeterminism. To respect quantitative features of behaviour, equivalences
for SPAs have additional requirement on execution probabilities. Two equivalent processes must be able to
execute the same sequences of actions, and for every such sequence, its execution probabilities within both
processes should coincide. In case of bisimulation equivalence, the states from which similar future behaviours
start are grouped into equivalence classes that form elements of the aggregated state space. From every two
bisimilar states, the same actions can be executed, and the subsequent states resulting from execution of an
action belong to the same equivalence class. In addition, for both states, the cumulative probabilities to move
to the same equivalence class by executing the same action coincide.

Interleaving probabilistic weak trace equivalence was introduced in [12]. Interleaving probabilistic strong
bisimulation equivalence was proposed in [21] on labeled probabilistic transition systems, in [18] on labeled
CTMCs and in [16] on probabilistic process algebras. Interleaving probabilistic equivalences were defined for
probabilistic processes in [19, 15]. Interleaving probabilistic weak bisimulation equivalence was considered in
[9] on Markovian process algebras, in [10] on labeled CTSPNs and in [11] on GSPNs. In [6], a comparison
of a variety of interleaving Markovian trace, test and bisimulation equivalences was carried out on sequential
and concurrent Markovian process calculi. Nevertheless, no appropriate equivalence notion was defined for
concurrent SPAs.

In this paper, we present dtsPBC with iteration extended with immediate multiactions, called discrete time
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stochastic and immediate Petri box calculus (dtsiPBC), which is a discrete time analog of sPBC. The latter
calculus has iteration and immediate multiactions within the context of a continuous time domain. The step
operational semantics is constructed with the use of labeled probabilistic transition systems. The denotational
semantics is defined if terms of a subclass of labeled discrete time stochastic and immediate PNs (LDTSPNs
with immediate transitions, LDTSIPNs), based on an extension of DTSPNs somewhat similar to discrete time
deterministic and stochastic PNs (DTDSPNs) [42], and called dtsi-boxes. A consistency of both semantics
is demonstrated. The corresponding stochastic process, which is a semi-Markov chain (SMC), is constructed
and investigated, with the purpose of performance evaluation, which is the same for both semantics. Further,
we propose step stochastic bisimulation equivalence allowing one to identify stochastic processes with similar
behaviour that are however differentiated by the semantics of the calculus. We examine the interrelations of
the proposed relation with other equivalences of the calculus. We describe how step stochastic bisimulation
equivalence can be used to reduce transition systems of expressions and their underlying SMCs while preserving
the qualitative and the quantitative behaviour. We prove that the mentioned equivalence guarantees identity
of the stationary behaviour. This property implies a coincidence of performance indices based on steady-state
probabilities of the modeled stochastic systems. The equivalences possessing the property can be used to reduce
the state space of a system and thus simplify its performance evaluation, what is usually a complex problem due
to the state space explosion. At last, we present a case study of the system with two processors and a common
shared memory explaining how to model concurrent systems within the calculus and analyze their performance
as well as in which way to reduce the systems while preserving their performance indices and making simpler
the performance evaluation. First results on this subject can be found in [41].

Let us compare dtsiPBC with the classical SPAs MTIPP, PEPA and EMPA. The first main difference
between them and dtsiPBC comes from PBC, since dtsiPBC is based on this calculus: all algebraic operations
and a notion of multiaction are inherited from PBC. The second main difference are discrete probabilities. The
third main difference are immediate multiactions. Let us explain this in more detail. In dtsiPBC, every activity
is a pair consisting of the multiaction (not just an action, as in the classical SPAs) as a first element. The second
element is either the probability (not the rate, as in the classical SPAs) to execute the multiaction under condition
that no other multiaction can occur at the current discrete time moment (the activity is called a stochastic
multiaction in this case) or the weight expressing how important is the execution of this multiaction (the activity
is called an immediate multiaction in this case). Immediate multiactions in dtsiPBC are similar to immediate
actions in EMPA, but all the immediate multiactions have the same priority 1 (with the purpose to execute
them always before stochastic multiactions, all having the same priority 0), whereas the immediate actions in
EMPA can have different priority levels. There are no immediate actions in MTIPP and PEPA. dtsiPBC has the
sequence operation in contrast to the prefix one in the classical SPAs. One can combine arbitrary expressions
with the sequence operator, i.e., it is more flexible than the prefix one, where the first argument should be a
single activity. The choice operation in dtsiPBC is analogous to that in MTIPP and PEPA as well as to the
alternative composition in EMPA, in the sense that the choice is probabilistic, but a discrete probability function
is used in dtsiPBC unlike continuous ones in the classical calculi. Concurrency and synchronization in dtsiPBC
are different operations (this feature is inherited from PBC) unlike the situation in the classical SPAs where
parallel composition (combinator) has a synchronization capability. Relabeling in dtsiPBC is analogous to that
in EMPA, but it is additionally extended to conjugated actions. The restriction operation in dtsiPBC differs
from hiding in PEPA and functional abstraction in EMPA, where the hidden actions are labeled with a symbol of
“silent” action τ . In dtsiPBC, restriction by an action means that for a given expression any process behaviour
containing the action or its conjugate is not allowed. The synchronization on an elementary action collects all
the pairs consisting of this elementary action and its conjugate which are contained in the multiactions from
the synchronized activities. The operation produces new activities such that the first element of every resulting
activity is the union of the multiactions from which all the mentioned pairs of conjugated actions are removed.
The second element is either the product of the probabilities of the synchronized stochastic multiactions or the
sum of the weights of the synchronized immediate multiactions. This differs from the way synchronization is
applied in the classical SPAs where it is accomplished over identical action names, and every resulting activity
consist of the same action name and the rate calculated via some expression (including sums, minimums and
products) on the rates of the initial activities, such as the apparent rate in PEPA. dtsiPBC has no recursion
operation or recursive definitions, but it includes the iteration operation to specify infinite looping behaviour
with the explicitly defined start and termination. dtsiPBC has a discrete time semantics, and time delays in the
states are geometrically distributed unlike the classical SPAs with continuous time semantics and exponentially
distributed activity delays. As a consequence, the semantics of dtsiPBC is the step one in contrast to the
interleaving semantics of the classical SPAs. The performance issues can be investigated based on the discrete
time Markov chain (DTMC) extracted from the labeled probabilistic transition system associated with each
expression of dtsiPBC. In the classical SPAs, continuous time Markov chains (CTMCs) are used for performance
evaluation. dtsiPBC has a denotational semantics in terms of LDTSPNs from which the corresponding DTMCs
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can be derived as well. Thus, the multiaction labels and the set of flexible and powerful operations, as well
as a step operational and a Petri net denotational semantics allowing for concurrent execution of activities (or
transitions) are the main advantages of dtsiPBC.

The paper is organized as follows. In Section 2, the syntax of the extended calculus dtsiPBC is presented.
In Section 3, we construct the operational semantics of the algebra in terms of labeled probabilistic transition
systems. In Section 4, we propose the denotational semantics based on a subclass of LDTSIPNs. In Section
5, the corresponding stochastic process is defined and analyzed. Step stochastic bisimulation equivalence is
defined and investigated in Section 6. In Section 7, we explain how to reduce transition systems and underlying
SMCs of process expressions modulo the equivalence. In Section 8, the introduced equivalence is applied to
the stationary behaviour comparison to verify the performance preservation. In Section 9, a shared memory
system is presented as a case study. Finally, Section 10 summarizes the results obtained and outlines research
perspectives in this area.

2 Syntax

In this section, we propose the syntax of dtsiPBC. First, we recall a definition of multiset that is an extension
of the set notion by allowing several identical elements.

Definition 2.1 Let X be a set. A finite multiset (bag) M over X is a mapping M : X → IN such that
|{x ∈ X |M(x) > 0}| <∞, i.e., it can contain a finite number of elements only.

We denote the set of all finite multisets over X by INX
f . The cardinality of a multiset M is defined as

|M | =
∑
x∈XM(x). We write x ∈ M if M(x) > 0 and M ⊆ M ′ if ∀x ∈ X, M(x) ≤ M ′(x). We define

(M +M ′)(x) =M(x) +M ′(x) and (M −M ′)(x) = max{0,M(x)−M ′(x)}. When ∀x ∈ X, M(x) ≤ 1, M is a
proper set such that M ⊆ X. The set of all subsets of X is denoted by 2X .

Let Act = {a, b, . . .} be the set of elementary actions. Then Âct = {â, b̂, . . .} is the set of conjugated actions

(conjugates) such that a ̸= â and ˆ̂a = a. Let A = Act∪ Âct be the set of all actions, and L = INA
f be the set of

all multiactions. Note that ∅ ∈ L, this corresponds to an internal activity, i.e., the execution of a multiaction
that contains no visible action names. The alphabet of α ∈ L is defined as A(α) = {x ∈ A | α(x) > 0}.

A stochastic multiaction is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the conditional probability of the
multiaction α. The multiaction probabilities are used to calculate the probabilities of state changes (steps) at
discrete time moments. The probabilities of stochastic multiactions are required not to be equal to 1, since this
value is left for immediate multiactions which will be defined later. On the other hand, there is no sense to
allow zero probabilities of multiactions, since they would never be performed in this case. Let SL be the set of
all stochastic multiactions.

An immediate multiaction is a pair (α, l), where α ∈ L and l ∈ IN \ {0} is the non-zero weight of the
multiaction α. Immediate multiactions have a priority over stochastic ones. One can assume that all immediate
multiactions have priority 1 whereas all stochastic ones have priority 0. This means that in a state where both
kinds of multiactions can occur, immediate multiactions always occur before stochastic ones. Stochastic and
immediate multiactions cannot be executed together in some concurrent step, i.e., the steps consisting only of
immediate multiactions or those including only stochastic multiactions are allowed. Let IL be the set of all
immediate multiactions.

Let us note that the same multiaction α ∈ L may have different probabilities and weights in the same spec-
ification. It is easy to differentiate between probabilities and weights, hence, between stochastic and immediate
multiactions, since the probabilities of stochastic multiactions belong to the interval (0; 1), and the weights
of immediate multiactions are non-zero (positive) natural numbers from IN \ {0} = {1, 2, . . .}. An activity is
a stochastic or an immediate multiaction. Let SIL = SL ∪ IL be the set of all activities. The alphabet of
(α, κ) ∈ SIL is defined as A(α, κ) = A(α). The alphabet of Υ ∈ INSIL

f is defined as A(Υ) = ∪(α,κ)∈ΥA(α). For
(α, κ) ∈ SIL, we define its multiaction part as L(α, κ) = α and its probability or weight part as Ω(α, κ) = κ.
The multiaction part of Υ ∈ INSIL

f is defined as L(Υ) =
∑

(α,κ)∈Υ α.

Activities are combined into formulas by the following operations: sequential execution ;, choice [], parallelism
∥, relabeling [f ] of actions, restriction rs over a single action, synchronization sy on an action and its conjugate,
and iteration [∗∗] with three arguments: initialization, body and termination.

Sequential execution and choice have the standard interpretation like in other process algebras, but paral-
lelism does not include synchronization unlike the corresponding operation in CCS [28].

Relabeling functions f : A → A are bijections preserving conjugates, i.e., ∀x ∈ A, f(x̂) = f̂(x). Relabeling is
extended to multiactions in the usual way: for α ∈ L we define f(α) =

∑
x∈α f(x). Let Υ ∈ INSIL

f . Relabeling

is extended to the multisets of activities as follows: for Υ ∈ INSIL
f , f(Υ) =

∑
(α,κ)∈Υ(f(α), κ).
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Restriction over an action a means that for a given expression any process behaviour containing a or its
conjugate â is not allowed.

Let α, β ∈ L be two multiactions such that for some action a ∈ Act we have a ∈ α and â ∈ β or â ∈ α and
a ∈ β. Then, synchronization of α and β by a is defined as α⊕a β = γ, where

γ(x) =

{
α(x) + β(x)− 1, x = a or x = â;
α(x) + β(x), otherwise.

We may synchronize multiactions of the same type only: either both stochastic or both immediate ones, since
immediate multiactions have a priority over stochastic ones, hence, stochastic and immediate multiactions
cannot be executed together (note also that the execution of immediate multiactions takes no time unlike that
of stochastic ones).

In the iteration, the initialization subprocess is executed first, then the body is performed zero or more
times, and, finally, the termination subprocess is executed.

Static expressions specify the structure of processes. As we shall see, the expressions correspond to unmarked
LDTSIPNs (note that LDTSIPNs are marked by definition).

Definition 2.2 Let (α, κ) ∈ SIL and a ∈ Act. A static expression of dtsiPBC is defined as

E ::= (α, κ) | E;E | E[]E | E∥E | E[f ] | E rs a | E sy a | [E ∗ E ∗ E].

Let StatExpr denote the set of all static expressions of dtsiPBC.
To make the grammar above unambiguous, one can add parentheses in the productions with binary opera-

tions: (E;E), (E[]E), (E∥E). However, here and further we prefer the PBC approach and add them to resolve
ambiguities only.

To avoid inconsistency of the iteration operator, we should not allow any concurrency in the highest level
of the second argument of iteration. This is not a severe restriction though, since we can always prefix parallel
expressions by an activity with the empty multiaction. Later on, in Example 4.2, we shall demonstrate that
such inconsistency can result to nets which are not safe, see also [5] for discussion on this subject.

Definition 2.3 Let (α, κ) ∈ SIL and a ∈ Act. A regular static expression of dtsiPBC is defined as

E ::= (α, κ) | E;E | E[]E | E∥E | E[f ] | E rs a | E sy a | [E ∗D ∗ E],
where D ::= (α, κ) | D;E | D[]D | D[f ] | D rs a | D sy a | [D ∗D ∗ E].

Let RegStatExpr denote the set of all regular static expressions of dtsiPBC.
Dynamic expressions specify the states of processes. As we shall see, the expressions correspond to LDT-

SIPNs (which are marked by default). Dynamic expressions are obtained from static ones, by annotating them
with upper or lower bars which specify the active components of the system at the current moment of time.
The dynamic expression with upper bar (the overlined one) E denotes the initial, and that with lower bar (the
underlined one) E denotes the final state of the process specified by a static expression E. The underlying static
expression of a dynamic one is obtained by removing all upper and lower bars from it.

Definition 2.4 Let E ∈ StatExpr and a ∈ Act. A dynamic expression of dtsiPBC is defined as

G ::= E | E | G;E | E;G | G[]E | E[]G | G∥G | G[f ] | G rs a | G sy a | [G ∗ E ∗ E] | [E ∗G ∗ E] | [E ∗ E ∗G].

Let DynExpr denote the set of all dynamic expressions of dtsiPBC.
Note that if the underlying static expression of a dynamic one is not regular, the corresponding LDTSIPN

can be non-safe (though, it is 2-bounded in the worst case, see [5]).
A dynamic expression is regular if its underlying static expression is regular. Let RegDynExpr denote the

set of all regular dynamic expressions of dtsiPBC.

3 Operational semantics

In this section, we define the step operational semantics in terms of labeled transition systems.
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3.1 Inaction rules

The inaction rules for dynamic expressions describe their structural transformations which do not change the
states of the specified processes. The goal of these syntactic transformations is to obtain the well-structured
terminal expressions called operative ones to which no inaction rules can be further applied. As we shall see,
the application of an inaction rule to a dynamic expression does not lead to any discrete time step in the
corresponding LDTSIPN, hence, no transitions are fired and its current marking remains unchanged.

Thus, an application of every inaction rule does not require any discrete time delay, i.e., the dynamic
expression transformation described by the rule is accomplished instantaneously.

First, in Table 1, we define inaction rules for the regular dynamic expressions in the form of overlined and
underlined static ones. In this table, E,F,K ∈ RegStatExpr and a ∈ Act.

Table 1: Inaction rules for overlined and underlined regular static expressions

E;F ⇒ E;F E;F ⇒ E;F E;F ⇒ E;F E[]F ⇒ E[]F

E[]F ⇒ E[]F E[]F ⇒ E[]F E[]F ⇒ E[]F E∥F ⇒ E∥F
E∥F ⇒ E∥F E[f ] ⇒ E[f ] E[f ] ⇒ E[f ] E rs a ⇒ E rs a

E rs a ⇒ E rs a E sy a ⇒ E sy a E sy a ⇒ E sy a [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

Second, in Table 2, we propose inaction rules for the regular dynamic expressions in the arbitrary form. In
this table, E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr and a ∈ Act.

Table 2: Inaction rules for arbitrary regular dynamic expressions

G⇒G̃, ◦∈{;,[]}
G◦E⇒G̃◦E

G⇒G̃, ◦∈{;,[]}
E◦G⇒E◦G̃

G⇒G̃

G∥H⇒G̃∥H
H⇒H̃

G∥H⇒G∥H̃
G⇒G̃

G[f ]⇒G̃[f ]

G⇒G̃, ◦∈{rs,sy}
G◦a⇒G̃◦a

G⇒G̃

[G∗E∗F ]⇒[G̃∗E∗F ]

G⇒G̃

[E∗G∗F ]⇒[E∗G̃∗F ]

G⇒G̃

[E∗F∗G]⇒[E∗F∗G̃]

A regular dynamic expression G is operative if no inaction rule can be applied to it.
Let OpRegDynExpr denote the set of all operative regular dynamic expressions of dtsiPBC.
Note that any dynamic expression can be always transformed into a (not necessarily unique) operative one

by using the inaction rules.
In the following, we consider regular expressions only and omit the word “regular”.

Definition 3.1 Let ≈ = (⇒ ∪ ⇐)∗ be the structural equivalence of dynamic expressions in dtsiPBC. Thus,
two dynamic expressions G and G′ are structurally equivalent, denoted by G ≈ G′, if they can be reached from
each other by applying the inaction rules in forward or backward direction.

3.2 Action and empty loop rules

The action rules are applied when some activities are executed. With these rules we capture the prioritization
of immediate multiactions with respect to stochastic ones. We also have the empty loop rule which is used to
capture a delay of one time unit in the same state when no immediate multiactions are executable. In this
case, the empty multiset of activities is executed. The action and empty loop rules will be then used later
to determine all multisets of activities which can be executed from the structural equivalence class of every
dynamic expression (i.e., from the state of the corresponding process). This information together with that
about conditional probabilities or weights of the activities to be executed from the process state will be used to
calculate the probabilities of such executions.

The action rules with stochastic multiactions describe dynamic expression transformations due to the exe-
cution of non-empty multisets of stochastic multiactions. The rules represent the possible state changes of the
specified processes when some non-empty multisets of stochastic multiactions are executed. As we shall see,
the application of an action rule with stochastic multiactions to a dynamic expression leads to a discrete time
step in the corresponding LDTSIPN at which some stochastic transitions are fired and the current marking is
changed, unless there is a self-loop produced by the iterative execution of a non-empty multiset (which should
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Figure 1: The binary trees encoded with the numberings 1, (1)(2) and (1)((2)(3))

be additionally the one-element one, i.e., the single stochastic multiaction, since we do not allow concurrency
in the highest level of the second argument of iteration).

Action rules with immediate multiactions describe dynamic expression transformations due to the execution
of non-empty multisets of immediate multiactions. The rules represent the possible state changes of the spec-
ified processes when some non-empty multisets of immediate multiactions are executed. As we shall see, the
application of an action rule with immediate multiactions to a dynamic expression leads in the corresponding
LDTSIPN to the instantaneous firing of some immediate transitions and changing of the the current marking,
unless there is a self-loop produced by the iterative execution of a non-empty multiset (which should be addi-
tionally the one-element one, i.e., the single immediate multiaction, since we do not allow concurrency in the
highest level of the second argument of iteration).

The empty loop rule G
∅→ G with a pre-condition (rule El in Table 3) describes dynamic expression trans-

formations due to the execution of the empty multiset of activities at a discrete time step. The rule reflects
a non-zero probability to stay in the current state at the next time moment, which is an essential feature of
discrete time stochastic processes. As we shall see, the application of the empty loop rule to a dynamic ex-
pression leads to a discrete time step in the corresponding LDTSIPN at which no transitions are fired and the
current marking is not changed. This is a new rule that has no prototype among inaction rules of PBC, since

it represents a time delay. The PBC rule G
∅→ G from [5] in our setting would correspond to the rule G ⇒ G

describing the stay in the current state when no time elapses, but we do not need it to transform dynamic
expressions into operative ones, hence, we do not introduce it in dtsPBC.

Thus, an application of every action rule with stochastic multiactions or the empty loop rule requires one
discrete time unit delay, i.e., the execution of a (possibly empty) multiset of stochastic multiactions leading to
the dynamic expression transformation described by the rule is accomplished instantaneously after one time
unit. An application of every action rule with immediate multiactions does not take any time, i.e., the execution
of a (non-empty) multiset of immediate multiactions is accomplished instantaneously at the current moment of
time.

Note that expressions of dtsiPBC can contain identical activities. To avoid technical difficulties, such as the
proper calculation of the state change probabilities for multiple transitions, we can always enumerate coinciding
activities from left to right in the syntax of expressions. The new activities resulted from synchronization will
be annotated with concatenation of numberings of the activities they come from, hence, the numbering should
have a tree structure to reflect the effect of multiple synchronizations. Now we define the numbering which
encodes a binary tree with the leaves labeled by natural numbers.

Definition 3.2 Let ι ∈ IN . The numbering of expressions is defined as

ι ::= ι | (ι)(ι).

Let Num denote the set of all numberings of expressions.

Example 3.1 The numbering 1 encodes the binary tree depicted in Figure 1(a) with the root labeled by 1. The
numbering (1)(2) corresponds to the binary tree depicted in Figure 1(b) without internal nodes and with two
leaves labeled by 1 and 2. The numbering (1)((2)(3)) represents the binary tree depicted in Figure 1(c) with one
internal node, which is the root for the subtree (2)(3), and three leaves labeled by 1, 2 and 3.

The new activities resulting from synchronizations in different orders should be considered up to permutation
of their numbering. In this way, we shall recognize different instances of the same activity. If we compare the
contents of different numberings, i.e., the sets of natural numbers in them, we shall be able to identify the
mentioned instances.

The content of a numbering ι ∈ Num is
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Cont(ι) =

{
{ι}, ι ∈ IN ;
Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).

After the enumeration, the multisets of activities from the expressions will be then the proper sets. In the
following, we suppose that the identical activities are enumerated when it is needed to avoid ambiguity. This
enumeration is considered to be implicit.

Let X be some set. We denote the cartesian product X×X by X2. Let E ⊆ X2 be an equivalence relation on
X. Then the equivalence class (with respect to E) of an element x ∈ X is defined by [x]E = {y ∈ X | (x, y) ∈ E}.
The equivalence E partitions X into the set of equivalence classes X/E = {[x]E | x ∈ X}.

Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is the equivalence class of G with respect to the
structural equivalence. G is an initial dynamic expression, denoted by init(G), if ∃E ∈ RegStatExpr, G ∈ [E]≈.
G is a final dynamic expression, denoted by final(G), if ∃E ∈ RegStatExpr, G ∈ [E]≈.

Let G ∈ OpRegDynExpr. We now define the set of all sets of non-conflicting activities which can be executed
from G, denoted by Can(G). Let (α, κ) ∈ SIL, E, F ∈ RegStatExpr, G,H ∈ OpRegDynExpr and a ∈ Act.

1. If final(G) then Can(G) = ∅.

2. If G = (α, κ) then Can(G) = {{(α, κ)}}.

3. If Υ ∈ Can(G) then Υ ∈ Can(G ◦ E), Υ ∈ Can(E ◦G) (◦ ∈ {; , []}), Υ ∈ Can(G∥H), Υ ∈ Can(H∥G),
f(Υ) ∈ Can(G[f ]), Υ ∈ Can(G rs a) (when a, â ̸∈ A(Υ)), Υ ∈ Can(G sy a), Υ ∈ Can([G ∗ E ∗ F ]),
Υ ∈ Can([E ∗G ∗ F ]), Υ ∈ Can([E ∗ F ∗G]).

4. If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ + Ξ ∈ Can(G∥H).

5. If Υ ∈ Can(G sy a) and (α, κ), (β, λ) ∈ Υ are different activities such that a ∈ α, â ∈ β then

(a) (Υ + {(α⊕a β, κ · λ)}) \ {(α, κ), (β, λ)} ∈ Can(G sy a), if κ, λ ∈ (0; 1);

(b) (Υ + {(α⊕a β, κ+ λ)}) \ {(α, κ), (β, λ)} ∈ Can(G sy a), if κ, λ ∈ IN \ {0}.
When we synchronize the same set of activities in different orders, we obtain several activities with
the same multiaction and probability or weight parts, but with different numberings having the same
content. Then we only consider a single one of the resulting activities to avoid introducing redundant
ones.

For example, the synchronization of stochastic multiactions (α, ρ)1 and (β, χ)2 in different orders
generates the activities (α ⊕a β, ρ · χ)(1)(2) and (β ⊕a α, χ · ρ)(2)(1). Similarly, the synchronization
of immediate multiactions (α, l)1 and (β,m)2 in different orders generates the activities (α⊕a β, l+
m)(1)(2) and (β ⊕a α,m + l)(2)(1). Since Cont((1)(2)) = {1, 2} = Cont((2)(1)), in both cases, only
the first activity (or, symmetrically, the second one) resulting from synchronization will appear in a
set from Can(G sy a).

Note that if Υ ∈ Can(G) then by definition of Can(G), ∀Ξ ⊆ Υ, Ξ ̸= ∅ we have Ξ ∈ Can(G).
The expression G ∈ OpRegDynExpr is tangible, denoted by tang(G), if Can(G) contains only sets of

stochastic multiactions (possibly including the empty set), i.e., ∀Υ ∈ Can(G), Υ ∈ INSL
f . Otherwise, G is

vanishing, denoted by vanish(G), meaning that there are immediate multiactions in the sets from Can(G),
hence, according to the note above, there are non-empty sets of immediate multiactions in Can(G) as well, i.e.,
∃Υ ∈ Can(G), Υ ∈ INIL

f \ {∅}. Obviously, immediate multiactions are only executable from vanishing opera-
tive dynamic expressions. Stochastic multiactions are only executable from tangible ones, since no stochastic
multiactions can be executed from a vanishing operative dynamic expression G, even if Can(G) contains sets
of stochastic multiactions. The reason is that immediate multiactions have a priority over stochastic ones, and
should be executed first.

Now, in Table 3, we define the action and empty loop rules. In this table, (α, ρ), (β, χ) ∈ SL, (α, l),
(β,m) ∈ IL and (α, κ) ∈ SIL. Further, E,F ∈ RegStatExpr, G,H ∈ OpRegDynExpr, G̃, H̃ ∈ RegDynExpr
and a ∈ Act. Moreover, Γ,∆ ∈ INSL

f \ {∅}, Γ′ ∈ INSL
f , I, J ∈ INIL

f \ {∅}, I ′ ∈ INIL
f and Υ ∈ INSIL

f \ {∅}. The
names of the action rules with immediate multiactions have suffix ‘i’.

Rule Sy2 establishes that the synchronization of the two stochastic multiactions is made by taking the
product of their probabilities, since we are considering that both must occur for the synchronization to happen,
so this corresponds to the probability of the events intersection. In rule Sy2i, we sum the weights of two
synchronized immediate multiactions, since the weights can be interpreted as the rewards, thus, we collect the
rewards. Moreover, we express that the synchronized execution of immediate multiactions has more importance
than that of every single one. Since execution of immediate multiactions takes no time, we prefer to execute in a
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Table 3: Action and empty loop rules

El tang(G)

G
∅→G

B (α, κ)
{(α,κ)}−→ (α, κ) S G

Υ→G̃

G;E
Υ→G̃;E E;G

Υ→E;G̃

C G
Γ→G̃, ¬init(G)∨(init(G)∧tang(E))

G[]E
Γ→G̃[]E E[]G

Γ→E[]G̃
Ci G

I→G̃

G[]E
I→G̃[]E E[]G

I→E[]G̃
P1 G

Γ→G̃, tang(H)

G∥H Γ→G̃∥H H∥G Γ→H∥G̃

P1i G
I→G̃

G∥H I→G̃∥H H∥G I→H∥G̃
P2 G

Γ→G̃, H
∆→H̃, tang(G)∧tang(H)

G∥HΓ+∆−→ G̃∥H̃
P2i G

I→G̃, H
J→H̃

G∥HI+J−→G̃∥H̃

L G
Υ→G̃

G[f ]
f(Υ)−→G̃[f ]

Rs G
Υ→G̃, a,â̸∈A(Υ)

G rs a
Υ→G̃ rs a

I1 G
Υ→G̃

[G∗E∗F ]
Υ→[G̃∗E∗F ]

I2 G
Γ→G̃, ¬init(G)∨(init(G)∧tang(F ))

[E∗G∗F ]
Γ→[E∗G̃∗F ]

I2i G
I→G̃

[E∗G∗F ]
I→[E∗G̃∗F ]

I3 G
Γ→G̃, ¬init(G)∨(init(G)∧tang(F ))

[E∗F∗G]
Γ→[E∗F∗G̃]

I3i G
I→G̃

[E∗F∗G]
I→[E∗F∗G̃]

Sy1 G
Υ→G̃

G sy a
Υ→G̃ sy a

Sy2 G sy a
Γ′+{(α,ρ)}+{(β,χ)}−−−−−−−−−−−−−→G̃ sy a, a∈α, â∈β, tang(G sy a)

G sy a
Γ′+{(α⊕aβ,ρ·χ)}−−−−−−−−−−−→G̃ sy a

Sy2i G sy a
I′+{(α,l)}+{(β,m)}−−−−−−−−−−−−−→G̃ sy a, a∈α, â∈β

G sy a
I′+{(α⊕aβ,l+m)}−−−−−−−−−−−−→G̃ sy a

step as much synchronized immediate multiactions as possible to get more significant progress in computation,
this aspect will be used late while performance evaluation.

Observe also that we do not have self-synchronization, i.e., the synchronization of an activity with itself,
since all the (enumerated) activities executed together are considered to be different. This allows us to avoid
rather cumbersome and unexpected behaviour as well as many technical difficulties, see [5].

3.3 Transition systems

Now we construct labeled probabilistic transition systems associated with dynamic expressions. The transition
systems are used to define the operational semantics of dynamic expressions.

Definition 3.3 The derivation set of a dynamic expression G, denoted by DR(G), is the minimal set such that

• [G]≈ ∈ DR(G);

• if [H]≈ ∈ DR(G) and ∃Υ, H Υ→ H̃ then [H̃]≈ ∈ DR(G).

Let G be a dynamic expression and s, s̃ ∈ DR(G).

The set of all the sets of activities executable in s is defined as Exec(s) = {Υ | ∃H ∈ s, ∃H̃, H Υ→ H̃}.
The state s is tangible, if Exec(s) ⊆ INSL

f . For tangible states we may have Exec(s) = ∅. Otherwise, the

state s is vanishing, and in this case Exec(s) ⊆ INIL
f \ {∅}. The set of all tangible states from DR(G) is

denoted by DRT (G), and the set of all vanishing states from DR(G) is denoted by DRV (G). Obviously,
DR(G) = DRT (G) ⊎DRV (G) (⊎ denotes disjoint union).

Let Υ ∈ Exec(s) \ {∅}. The probability of the set of stochastic multiactions or the weight of the set of
immediate multiactions Υ which is ready for execution in s is

PF (Υ, s) =


∏

(α,ρ)∈Υ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ) ̸∈Υ}

(1− χ), s ∈ DRT (G);∑
(α,l)∈Υ

l, s ∈ DRV (G).

In the case Υ = ∅ and s ∈ DRT (G) we define

PF (∅, s) =


∏

{(β,χ)}∈Exec(s)

(1− χ), Exec(s) ̸= ∅;

1, Exec(s) = ∅.

Thus, if s ∈ DRT (G) and Exec(s) ̸= ∅, then PF (Υ, s) could be interpreted as a joint probability of
independent events. Each such an event is interpreted as readiness or not readiness for execution of a particular
stochastic multiaction from Υ. The multiplication in the definition is used because it reflects the probability of
the event intersection. When only the empty set of activities can be executed in s, i.e., Exec(s) = ∅, we take
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PF (∅, s) = 1, since we stay in s in this case. Note that for s ∈ DRT (G) we have PF (∅, s) ∈ (0; 1], hence, we
can stay in s at the next time moment with a certain positive probability.

If s ∈ DRV (G) then PF (Υ, s) could be interpreted as the overall (cumulative) weight of the immediate
multiactions from Υ, i.e., the sum of all their weights. The summation here is used since the weights can be
seen as the rewards which are collected. In addition, this means that concurrent execution of the immediate
multiactions has more importance than that of every single one. Since the execution of immediate multiactions
takes no time, we prefer to execute in a step as much parallel immediate multiactions as possible to get more
significant progress in computation. Note that this reasoning is the same as that used to define the probability
of synchronized immediate multiactions in the rule Sy2i. Another reason is that our approach is analogous to
the definition of the probability of conflicting immediate transitions in GSPNs [3]. The only difference is that
we have a step semantics and, for every set of immediate multiactions executed in parallel, we use its cumulative
weight. To get the analogy with the GSPNs possessing interleaving semantics, we are to interpret the weights
of immediate transitions of GSPNs as the cumulative weights of the sets of immediate multiactions of dtsiPBC.

Note that the definition of PF (Υ, s) (as well as the definitions of other probability functions which we shall
present) is based on the enumeration of activities which is considered implicit.

Let Υ ∈ Exec(s). The probability to execute the set of activities Υ in s is

PT (Υ, s) =
PF (Υ, s)∑

Ξ∈Exec(s)

PF (Ξ, s)
.

Thus, PT (Υ, s) is the probability of the set of stochastic multiactions or the weight of the set of immediate
multiactions Υ which is ready for execution in s normalized by the probabilities or the weights of all the sets
executable in s. The denominator of the fraction above is a sum since it reflects the probability of the events
union.

If s is tangible, then PT (∅, s) ∈ (0; 1], hence, there is a non-zero probability to stay in the state s in the
next time moment, and the residence time in s is at least 1 discrete time unit.

Note that the sum of outgoing probabilities for the expressions belonging to the derivations of G is equal
to 1. More formally, ∀s ∈ DR(G),

∑
Υ∈Exec(s) PT (Υ, s) = 1. This, obviously, follows from the definition of

PT (Υ, s), and guarantees that it always defines a probability distribution.
The probability to move from s to s̃ by executing any set of activities is

PM(s, s̃) =
∑

{Υ|∃H∈s, ∃H̃∈s̃, H Υ→H̃}

PT (Υ, s).

Since PM(s, s̃) is the probability to move from s to s̃ by executing any set of activities (including the empty
one), we use summation in the definition. Note that ∀s ∈ DR(G),

∑
{s̃|∃H∈s, ∃H̃∈s̃, ∃Υ, H Υ→H̃}

PM(s, s̃) =∑
{s̃|∃H∈s, ∃H̃∈s̃, ∃Υ, H Υ→H̃}

∑
{Υ|∃H∈s, ∃H̃∈s̃, H Υ→H̃}

PT (Υ, s) =
∑

Υ∈Exec(s) PT (Υ, s) = 1.

Definition 3.4 Let G be a dynamic expression. The (labeled probabilistic) transition system of G is a quadru-
ple TS(G) = (SG, LG, TG, sG), where

• the set of states is SG = DR(G);

• the set of labels is LG ⊆ 2SIL × (0; 1];

• the set of transitions is TG = {(s, (Υ, PT (Υ, s)), s̃) | s ∈ DR(G), ∃H ∈ s, ∃H̃ ∈ s̃, H
Υ→ H̃};

• the initial state is sG = [G]≈.

The definition of TS(G) is correct, i.e., for every state, the sum of the probabilities of all the transitions
starting from it is 1. This is guaranteed by the note after the definition of PT (Υ, s). Thus, we have defined
a generative model of probabilistic processes, according to the classification from [15]. The reason is that the
sum of the probabilities of the transitions with all possible labels should be equal to 1, not only of those with
the same labels (up to enumeration of activities they include) as in the reactive models, and we do not have a
nested probabilistic choice as in the stratified models.

The transition system TS(G) associated with a dynamic expression G describes all the steps that occur
at moments of discrete time with some (one-step) probability and consist of sets of activities. Every step
consisting of stochastic multiactions or the empty step (i.e., that consisting of the empty set of activities)
occurs instantaneously after one discrete time unit delay. Each step consisting of immediate multiactions occurs
instantaneously without any delay. The step can change the current state to another one. The states are the
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structural equivalence classes of dynamic expressions obtained by application of action rules starting from the

expressions belonging to [G]≈. A transition (s, (Υ,P), s̃) ∈ TG will be written as s
Υ→P s̃. It is interpreted as

follows: the probability to change s to s̃ as a result of executing Υ is P.
Note that for tangible states, Υ can be the empty set, and its execution does not change the current state

(i.e., the equivalence class), since we have a loop transition s
∅→P s from a tangible state s to itself. This

corresponds to the application of the empty loop rule to the expressions from the equivalence class. We have
to keep track of such executions, called empty loops, because they have non-zero probabilities. This follows
from the definition of PF (∅, s) and the fact that multiaction probabilities cannot be equal to 1 as they belong
to the interval (0; 1). For vanishing states Υ cannot be the empty set, since we must execute some immediate
multiactions from them in the current time moment.

The step probabilities belong to the interval (0; 1], being 1 in the case when we cannot leave a tangible state

s and there only exists one transition from it, the empty loop one s
∅→1 s, or if there is just a single transition

from a vanishing state to any other one.

We write s
Υ→ s̃ if ∃P, s Υ→P s̃ and s→ s̃ if ∃Υ, s Υ→ s̃.

The first equivalence we are going to introduce is isomorphism which is a coincidence of systems up to
renaming of their components or states.

Definition 3.5 Let G,G′ be dynamic expressions and TS(G) = (SG, LG, TG, sG), TS(G′) = (SG′ , LG′ , TG′ , sG′)
be their transition systems. A mapping β : SG → SG′ is an isomorphism between TS(G) and TS(G′), denoted
by β : TS(G) ≃ TS(G′), if

1. β is a bijection such that β(sG) = sG′ ;

2. ∀s, s̃ ∈ SG, ∀Υ, s Υ→P s̃ ⇔ β(s)
Υ→P β(s̃).

Two transition systems TS(G) and TS(G′) are isomorphic, denoted by TS(G) ≃ TS(G′), if ∃β : TS(G) ≃
TS(G′).

Transition systems of static expressions can be defined as well. For E ∈ RegStatExpr, let TS(E) = TS(E).

Definition 3.6 Two dynamic expressions G and G′ are equivalent with respect to transition systems, denoted
by G =ts G

′, if TS(G) ≃ TS(G′).

Example 3.2 Consider the expression Stop = ({g}, 12 ) rs g specifying the special process that is only able to
perform empty loops with probability 1 and never terminates. We could actually use any arbitrary action from
A and any conditional probability belonging to the interval (0; 1) in the definition of Stop. Note that Stop is
analogous to the one used in the examples of [31]. The latter is a continuous time stochastic analogue of the
stop process proposed in [5]. Stop is a discrete time stochastic analogue of the stop. Then, let

E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, ϕ)))) ∗ Stop].

DR(E) consists of the equivalence classes

s1 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, ϕ)))) ∗ Stop]]≈,
s2 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, ϕ)))) ∗ Stop]]≈,
s3 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, ϕ)))) ∗ Stop]]≈,
s4 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, ϕ)))) ∗ Stop]]≈,
s5 = [[({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, ϕ)))) ∗ Stop]]≈.

We have DRT (E) = {s1, s2, s4, s5} and DRV (E) = {s3}.
In Figure 2, the transition system TS(E) is presented. The tangible states are depicted in ovals and the

vanishing ones are depicted in boxes. For simplicity of the graphical representation, the singleton sets of activities
are written without braces.

4 Denotational semantics

In this section, we construct the denotational semantics in terms of a subclass of labeled discrete time stochastic
and immediate PNs (LDTSIPNs), called discrete time stochastic and immediate Petri boxes (dtsi-boxes).
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Figure 2: The transition system of E for E = [({a}, ρ)∗(({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, ϕ))))∗Stop]

4.1 Labeled DTSIPNs

Let us introduce a class of labeled discrete time stochastic and immediate Petri nets. First, we present a formal
definition of LDTSIPNs.

Definition 4.1 A labeled discrete time stochastic and immediate Petri net (LDTSIPN) is a tuple
N = (PN , TN ,WN ,ΩN , LN ,MN ), where

• PN and TN = TsN ∪ TiN are finite sets of places and stochastic and immediate transitions, respectively,
such that PN ∪ TN ̸= ∅, PN ∩ TN = ∅ and TsN ∩ TiN = ∅;

• WN : (PN × TN ) ∪ (TN × PN ) → IN is a function providing the weights of arcs between places and
transitions;

• ΩN : TN → (0; 1) ∪ (IN \ {0}) is the transition probability and weight function associating stochastic
transitions with probabilities and immediate ones with weights;

• LN : TN → L is the transition labeling function assigning multiactions to transitions;

• MN ∈ INPN

f is the initial marking.

The graphical representation of LDTSIPNs is like that for standard labeled PNs, but with probabilities
or weights written near the corresponding transitions. Square boxes of normal thickness depict stochastic
transitions, and those with thick borders represent immediate transitions. In the case the probabilities or the
weights are not given in the picture, they are considered to be of no importance in the corresponding examples,
such as those used to describe stationary behaviour. The weights of arcs are depicted with them. The names of
places and transitions are depicted near them when needed. If the names are omitted but used, it is supposed
that the places and transitions are numbered from left to right and from top to down.

Now we consider the semantics of LDTSIPNs.
Let N be an LDTSIPN and t ∈ TN , U ∈ INTN

f . The precondition •t and the postcondition t• of t are
the multisets of places defined as (•t)(p) = WN (p, t) and (t•)(p) = WN (t, p). The precondition •U and the
postcondition U• of U are the multisets of places defined as •U =

∑
t∈U

•t and U• =
∑
t∈U t

•.

Let N be an LDTSIPN and M, M̃ ∈ INPN

f .
Immediate transitions have a priority over stochastic ones, thus, immediate transitions always fire first, if

they can. Suppose that all stochastic transitions have priority 0 and all immediate ones have priority 1. A
transition t ∈ TN is enabled in M if •t ⊆M and one of the following holds:

1. t ∈ TiN or

2. ∀u ∈ TN ,
•u ⊆M ⇒ u ∈ TsN .

In other words, a transition is enabled in a marking if it has enough tokens in its input places (i.e., in the
places from its precondition) and it is either immediate or stochastic one, and in the latter case there exists no
immediate transition with enough tokens in its input places. Let Ena(M) be the set of all transitions enabled
in M . By definition, it follows that Ena(M) ⊆ TiN or Ena(M) ⊆ TsN . A set of transitions U ⊆ Ena(M)
is enabled in a marking M if •U ⊆ M . Firings of transitions are atomic operations, and transitions may fire
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concurrently in steps. We assume that all transitions participating in a step should differ, hence, only the
sets (not multisets) of transitions may fire. Thus, we do not allow self-concurrency, i.e., firing of transitions
concurrently to themselves. This restriction is introduced to avoid some technical difficulties while calculating
probabilities for multisets of transitions as we shall see after the following formal definitions. Moreover, we do
not need to consider self-concurrency, since denotational semantics of expressions will be defined via dtsi-boxes
which are safe LDTSIPNs (hence, no self-concurrency is possible).

The markingM is tangible, denoted by tang(M), if Ena(M) ⊆ TsN or Ena(M) = ∅. Otherwise, the marking
M is vanishing, denoted by vanish(M), and in this case Ena(M) ⊆ TiN and Ena(M) ̸= ∅. If tang(M) then a
stochastic transition t ∈ Ena(M) fires with probability ΩN (t) when no other stochastic transitions conflicting
with it are enabled.

Let U ⊆ Ena(M), U ̸= ∅ and •U ⊆ M . The probability of the set of stochastic transitions or the weight of
the set of immediate transitions U which is ready for firing in M is

PF (U,M) =


∏
t∈U

ΩN (t) ·
∏

u∈Ena(M)\U

(1− ΩN (u)), tang(M);∑
t∈U

ΩN (t), vanish(M).

In the case U = ∅ and tang(M) we define

PF (∅,M) =


∏

u∈Ena(M)

(1− ΩN (u)), Ena(M) ̸= ∅;

1, Ena(M) = ∅.

Thus, if tang(M) and Ena(M) ̸= ∅, then PF (U,M) could be interpreted as a joint probability of independent
events. Each such an event is interpreted as readiness or not readiness for firing of a particular transition from
U . The multiplication in the definition is used because it reflects the probability of the events intersection.
When no transitions are enabled in M , i.e., Ena(M) = ∅, we take PF (∅,M) = 1, since we stay in M in this
case. Note that if tang(M) then we have PF (∅,M) ∈ (0; 1], hence, we can stay in M at the next time moment
with a certain positive probability.

If vanish(M) then PF (U,M) could be interpreted as the overall weight of the immediate transitions from
U , i.e., the sum of all their weights.

Let U ⊆ Ena(M), U ̸= ∅ and •U ⊆ M . The concurrent firing of the transitions from U changes the

marking M to M̃ = M − •U + U•, denoted by M
U→P M̃ , where P = PT (U,M) is the probability that the set

of transitions U fires in M defined as

PT (U,M) =
PF (U,M)∑

{V |•V⊆M}

PF (V,M)
.

In the case U = ∅ and tang(M) we have M = M̃ and

PT (∅,M) =
PF (∅,M)∑

{V |•V⊆M}

PF (V,M)
.

Thus, PT (U,M) is the probability of the set of stochastic transitions or the weight of the set of immediate
transitions U which is ready for firing in M normalized by the probabilities or weights of all the sets enabled in
M . The denominator of the fraction above is a sum since it reflects the probability of the events union.

If tang(M) then PT (∅,M) ∈ (0; 1], hence, there is a non-zero probability to stay in the marking in the next
time moment, and the residence time in M is at least 1 discrete time unit.

Note that for all markings of an LDTSIPN N , the sum of outgoing probabilities is equal to 1. More formally,
∀M ∈ INPN

f , PT (∅,M) +
∑

{U |•U⊆M} PT (U,M) = 1. This obviously follows from the definition of PT (U,M)
and guarantees that it defines a probability distribution.

We write M
U→ M̃ if ∃P, M U→P M̃ and M → M̃ if ∃U, M U→ M̃ .

The probability to move from M to M̃ by firing any set of transitions is

PM(M, M̃) =
∑

{U |M U→M̃}

PT (U,M).
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Since PM(M, M̃) is the probability for any (including the empty one) transition set to change mark-

ing M to M̃ , we use summation in the definition. Note that ∀M ∈ INPN

f ,
∑

{M̃ |M→M̃} PM(M, M̃) =∑
{M̃ |M→M̃}

∑
{U |M U→M̃}

PT (U,M) =
∑

{U |•U⊆M} PT (U,M) = 1.

Definition 4.2 Let N be an LDTSIPN.

• The reachability set of N , denoted by RS(N), is the minimal set of markings such that

– MN ∈ RS(N);

– if M ∈ RS(N) and M → M̃ then M̃ ∈ RS(N).

• The reachability graph of N , denoted by RG(N), is a directed labeled graph with the set of nodes RS(N)

and the arcs labeled with (U,P) between nodes M and M̃ iff M
U→P M̃ .

The set of all tangible markings from RS(N) is denoted by RST (N), and the set of all vanishing markings
from RS(N) is denoted by RSV (N). Obviously, RS(N) = RST (N) ⊎RSV (N).

4.2 Algebra of dtsi-boxes

Now we introduce discrete time stochastic and immediate Petri boxes and the algebraic operations to define a
net representation of dtsiPBC expressions.

Definition 4.3 A discrete time stochastic and immediate Petri box (dtsi-box) is a tuple
N = (PN , TN ,WN ,ΛN ), where

• PN and TN are finite sets of places and transitions, respectively, such that PN ∪TN ̸= ∅ and PN ∩TN = ∅;

• WN : (PN×TN )∪(TN×PN ) → IN is a function providing the weights of arcs between places and transitions
and vice versa;

• ΛN is the place and transition labeling function such that

– ΛN |PN : PN → {e, i, x} (it specifies entry, internal and exit places, respectively);

– ΛN |TN : TN → {ϱ | ϱ ⊆ 2SIL × SIL} (it associates transitions with the relabeling relations on
activities).

Moreover, ∀t ∈ TN ,
•t ̸= ∅ ̸= t•. In addition, for the set of entry places of N , defined as ◦N = {p ∈ PN |

ΛN (p) = e}, and for the set of exit places of N , defined as N◦ = {p ∈ PN | ΛN (p) = x}, the following condition
holds: ◦N ̸= ∅ ̸= N◦, •(◦N) = ∅ = (N◦)•.

A dtsi-box is plain if ∀t ∈ TN , ΛN (t) ∈ SIL, i.e., ΛN (t) is the constant relabeling that will be defined
later. In the case of constant relabeling, the shorthand notation (by an activity) for ΛN (t) will be used. A
marked plain dtsi-box is a pair (N,MN ), where N is a plain dtsi-box and MN ∈ INPN

f is the initial marking.

We shall use the following notation: N = (N, ◦N) and N = (N,N◦). Note that a marked plain dtsi-box
(PN , TN ,WN ,ΛN ,MN ) could be interpreted as the LDTSIPN (PN , TN ,WN ,ΩN , LN ,MN ), where functions ΩN
and LN are defined as follows: ∀t ∈ TN , ΩN (t) = Ω(ΛN (t)) and LN (t) = L(ΛN (t)). The behaviour of marked
dtsi-boxes follows from the firing rule of LDTSIPNs. A plain dtsi-box N is n-bounded (n ∈ IN) if N is so,
i.e., ∀M ∈ RS(N), ∀p ∈ PN , M(p) ≤ n, and it is safe if it is 1-bounded. A plain dtsi-box N is clean if
∀M ∈ RS(N), ◦N ⊆M ⇒ M = ◦N and N◦ ⊆M ⇒ M = N◦, i.e., if there are tokens in all its entry (exit)
places then no other places have tokens.

To define the semantic function that associates a plain dtsi-box with every static expression of dtsiPBC, we
introduce the enumeration function Enu : TN → Num, which associates the numberings with transitions of a
plain dtsi-box N in accordance with those of activities. In the case of synchronization, the function associates
with the resulting new transition the concatenation of the parenthesized numberings of the transitions it comes
from.

The structure of the plain dtsi-box corresponding to a static expression is constructed like in PBC, see [5], i.e.,
we use simultaneous refinement and relabeling meta-operator (net refinement) in addition to the operator dtsi-
boxes corresponding to the algebraic operations of dtsiPBC and featuring transformational transition relabelings.
Thus, as we shall see in Theorem 4.1, the resulting plain dtsi-boxes are safe and clean. In the definition of the
denotational semantics, we shall apply standard constructions used for PBC. Let Θ denotes operator box and u
denotes transition name from PBC setting.

The relabeling relations ϱ ⊆ 2SIL × SIL are defined as follows:
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Figure 3: The plain and operator dtsi-boxes

• ϱid = {({(α, κ)}, (α, κ)) | (α, κ) ∈ SIL} is the identity relabeling keeping the interface as it is;

• ϱ(α,κ) = {(∅, (α, κ))} is the constant relabeling that can be identified with (α, κ) ∈ SIL itself;

• ϱ[f ] = {({(α, κ)}, (f(α), κ)) | (α, κ) ∈ SIL};

• ϱrs a = {({(α, κ)}, (α, κ)) | (α, κ) ∈ SIL, a, â ̸∈ α};

• ϱsy a is the least relabeling relation containing in ϱid such that if (Υ, (α, κ)), (Ξ, (β, λ)) ∈ ϱsy a and
a ∈ α, â ∈ β then

– (Υ + Ξ, (α⊕a β, κ · λ)) ∈ ϱsy a, if κ, λ ∈ (0; 1);

– (Υ + Ξ, (α⊕a β, κ+ λ)) ∈ ϱsy a, if κ, λ ∈ IN \ {0}.

The plain and operator dtsi-boxes are presented in Figure 3. Note that the label i of internal places is usually
omitted.

In the case of the synchronization, a decision that we must take is the selection of the operator box that we
shall use for the iteration, since we have two proposals in plain PBC for that purpose [5]. One of them provides
us with a safe version (with six transitions in the operator box), but there is also a simpler version, which
has only three transitions in the operator box. In general, in PBC, with the latter version we may generate
2-bounded nets, which only occurs when a parallel behavior appears at the highest level of the body of the
iteration. Nevertheless, in our case, and due to the syntactical restriction introduced for regular terms, this
particular case cannot occur, so that the net obtained will be always safe.

Now we define the enumeration function Enu for every operator of dtsiPBC. Let Boxdtsi(E) =
(PE , TE ,WE ,ΛE) be the plain dtsi-box corresponding to a static expression E, and EnuE be the enumeration
function for TE . We shall use the analogous notation for static expressions F and K.

• Boxdtsi(E ◦ F ) = Θ◦(Boxdtsi(E), Boxdtsi(F )), ◦ ∈ {; , [], ∥}. Since we do not introduce new transitions,
we preserve the initial numbering:

Enu(t) =

{
EnuE(t), t ∈ TE ;
EnuF (t), t ∈ TF .

• Boxdtsi(E[f ]) = Θ[f ](Boxdtsi(E)). Since we only replace the labels of some multiactions by a bijection,
we preserve the initial numbering:

Enu(t) = EnuE(t), t ∈ TE .
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• Boxdtsi(E rs a) = Θrs a(Boxdtsi(E)). Since we remove all transitions labeled with multiactions containing
a or â, this does not change the numbering of the remaining transitions:

Enu(t) = EnuE(t), t ∈ TE , a, â ̸∈ L(ΛE(t)).

• Boxdtsi(E sy a) = Θsy a(Boxdtsi(E)). Note that ∀v, w ∈ TE , such that ΛE(v) = (α, κ), ΛE(w) = (β, λ)
and a ∈ α, â ∈ β, the new transition t resulting from synchronization of v and w has the label Λ(t) =
(α ⊕a β, κ · λ), if t is a stochastic transition, or Λ(t) = (α ⊕a β, κ+ λ), if t is an immediate one, and the
numbering Enu(t) = (EnuE(v))(EnuE(w)).

Thus, the enumeration function is defined as

Enu(t) =

{
EnuE(t), t ∈ TE ;
(EnuE(v))(EnuE(w)), t results from synchronization of v and w.

According to the definition of ϱsy a, the synchronization is only possible when all the transitions in the set
are stochastic or when all of them are immediate. If we synchronize the same set of transitions in different
orders, we obtain several resulting transitions with the same label and probability or weight, but with
the different numberings having the same content. Then, we only consider a single one from the resulting
transitions in the plain dtsi-box to avoid introducing redundant transitions.

For example, if the transitions t and u are generated by synchronizing v and w in different orders, we have
Λ(t) = (α ⊕a β, κ · λ) = Λ(u) for stochastic transitions or Λ(t) = (α ⊕a β, κ + λ) = Λ(u) for immediate
ones, but Enu(t) = (EnuE(v))(EnuE(w)) ̸= (EnuE(w))(EnuE(v)) = Enu(u) whereas Cont(Enu(t)) =
Cont(Enu(v)) ∪ Cont(Enu(w)) = Cont(Enu(u)). Then only one transition t (or, symmetrically, u) will
appear in Boxdtsi(E sy a).

• Boxdtsi([E ∗ F ∗K]) = Θ[∗∗](Boxdtsi(E), Boxdtsi(F ), Boxdtsi(K)). Since we do not introduce new tran-
sitions, we preserve the initial numbering:

Enu(t) =

 EnuE(t), t ∈ TE ;
EnuF (t), t ∈ TF ;
EnuK(t), t ∈ TK .

Now we can formally define the denotational semantics as a homomorphism.

Definition 4.4 Let (α, κ) ∈ SIL, a ∈ Act and E,F,K ∈ RegStatExpr. The denotational semantics of
dtsiPBC is a mapping Boxdtsi from RegStatExpr into the domain of plain dtsi-boxes defined as follows:

1. Boxdtsi((α, κ)ι) = N(α,κ)ι ;

2. Boxdtsi(E ◦ F ) = Θ◦(Boxdtsi(E), Boxdtsi(F )), ◦ ∈ {; , [], ∥};

3. Boxdtsi(E[f ]) = Θ[f ](Boxdtsi(E));

4. Boxdtsi(E ◦ a) = Θ◦a(Boxdtsi(E)), ◦ ∈ {rs, sy};

5. Boxdtsi([E ∗ F ∗K]) = Θ[∗∗](Boxdtsi(E), Boxdtsi(F ), Boxdtsi(K)).

The dtsi-boxes of dynamic expressions can be defined as well. For E ∈ RegStatExpr, let Boxdtsi(E) =
Boxdtsi(E) and Boxdtsi(E) = Boxdtsi(E).

Observe that this definition is compositional in the sense that for any arbitrary dynamic expression, we
may decompose it in some inner dynamic and static expressions, for which we may apply the definition, thus
obtaining the corresponding plain dtsi-boxes, which can be joined according to the term structure (definition
of Boxdtsi), the resulting plain box being marked in the places that were marked in the argument nets.

Theorem 4.1 For any static expression E, Boxdtsi(E) is safe and clean.

Proof. The structure of the net is obtained as in PBC, combining both refinement and relabeling. Consequently,
the dtsi-boxes thus obtained will be safe and clean. ⊓⊔

Let ≃ denote isomorphism between transition systems and reachability graphs that relates their initial states.
Note that the names of transitions of the dtsi-box corresponding to a static expression could be identified with
the enumerated activities of the latter.
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Theorem 4.2 For any static expression E,

TS(E) ≃ RG(Boxdtsi(E)).

Proof. As for the qualitative (functional) behaviour, we have the same isomorphism as in PBC.
The quantitative behaviour is the same by the following reasons. First, the activities of an expression have

the probability or weight parts coinciding with the probabilities or weights of the transitions belonging to the
corresponding dtsi-box. Second, we use analogous probability or weight functions to construct the corresponding
transition systems and reachability graphs. ⊓⊔

Example 4.1 Let E be from Example 3.2. In Figure 4, the marked dtsi-box N = Boxdtsi(E) and its reachability
graph RG(N) are presented. It is easy to see that TS(E) and RG(N) are isomorphic.

The following example demonstrates that without the syntactic restriction on regularity of expressions the
corresponding marked dtsi-boxes may be not safe.

Example 4.2 Let E = [(({a}, 12 ) ∗ (({b}, 12 )∥({c},
1
2 )) ∗ ({d}, 12 )]. In Figure 5, the marked dtsi-box N =

Boxdtsi(E) and its reachability graph RG(N) are presented. Symmetrically, in the marking (0, 1, 1, 2, 0, 0)
there are 2 tokens in the place p4. In the marking (0, 1, 1, 0, 2, 0) there are 2 tokens in the place p5. Thus,
allowing concurrency in the second argument of iteration in the expression E can lead to non-safeness of the
corresponding marked dtsi-box N , though, it is 2-bounded in the worst case, see [5]. The origin of the problem is
that N has as a self-loop with two subnets which can function independently. This explains why do we consider
regular expressions only.

5 Performance evaluation

In this section we demonstrate how Markov chains corresponding to the expressions and dtsi-boxes can be
constructed and then used for performance evaluation.

For a dynamic expression G, a discrete random variable is associated with every tangible state from DR(G).
The variable captures a residence time in the state. One can interpret staying in a state in the next discrete
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time moment as a failure and leaving it as a success of some trial series. It is easy to see that the random
variables are geometrically distributed, since the probability to stay in a tangible state s for k−1 time moments
and leave it at moment k ≥ 1 is PM(s, s)k−1(1 − PM(s, s)) (the residence time is k in this case). The mean
value formula for geometrical distribution allows us to calculate the average sojourn time in a tangible state s
as 1

1−PM(s,s) . Obviously, the average sojourn time in a vanishing state is zero. Thus, the average sojourn time

in the state s is

SJ(s) =

{ 1
1−PM(s,s) , s ∈ DRT (G);

0, s ∈ DRV (G).

The average sojourn time vector of G, denoted by SJ , is that with the elements SJ(s), s ∈ DR(G).
Analogously, the sojourn time variance in the state s is

VAR(s) =

{ 1
(1−PM(s,s))2 , s ∈ DRT (G);

0, s ∈ DRV (G).

The sojourn time variance vector of G, denoted by VAR, is that with the elements VAR(s), s ∈ DR(G).
To evaluate performance of the system specified by a dynamic expression G, we should investigate the

stochastic process associated with it. The process is the underlying semi-Markov chain (SMC) [37], denoted by
SMC (G), which can be analyzed by extracting from it the embedded (absorbing) discrete time Markov chain
(EDTMC) corresponding to G, denoted by EDTMC (G). The construction of the latter is similar to that applied
in the context of generalized stochastic PNs (GSPNs) in [23, 2, 3], and also in the framework of discrete time
deterministic and stochastic PNs (DTDSPNs) in [42]. EDTMC (G) only describes the state changes of SMC (G)
while ignoring any time characteristics.

Thus, to construct the EDTMC, we should abstract from all time aspects of behaviour, i.e., from the sojourn
time in the states. The sojourn time in every state of the EDTMC is deterministic and it is equal to one discrete
time unit. Let G be a dynamic expression. A transition system TS(G) can have self-loops going from a state
to itself which have a non-zero probability. Obviously, the current state remains unchanged in this case.

Let G be a dynamic expression and s, s̃ ∈ DR(G).
Let s→ s. The probability to stay in s due to k (k ≥ 1) self-loops is

(PM(s, s))k.

Let s → s̃ and s ̸= s̃. The probability to move from s to s̃ by executing any set of activities after possible
self-loops is
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PM∗(s, s̃) =

{
PM(s, s̃)

∑∞
k=0(PM(s, s))k = PM(s,s̃)

1−PM(s,s) , s→ s;

PM(s, s̃), otherwise;

}
= SL(s)PM(s, s̃), where

SL(s) =

{ 1
1−PM(s,s) , s→ s;

1, otherwise;

is the self-loops abstraction factor. The self-loops abstraction vector of G, denoted by SL, is that with the
elements SL(s), s ∈ DR(G). The value k = 0 in the summation above corresponds to the case when no
self-loops occur. Note that ∀s ∈ DRT (G), SL(s) = 1

1−PM(s,s) = SJ(s), hence, ∀s ∈ DRT (G), PM
∗(s, s̃) =

SJ(s)PM(s, s̃), since we always have the empty loop (which is a self-loop) s
∅→ s from every tangible state s.

Empty loops are not possible from vanishing states, hence, ∀s ∈ DRV (G), PM
∗(s, s̃) = PM(s,s̃)

1−PM(s,s) , when there

are non-empty self-loops (produced by iteration) from s, or PM∗(s, s̃) = PM(s, s̃), when there are no self-loops
from s.

Note that after abstraction from the probabilities of transitions which do not change the states, the remaining
transition probabilities are normalized. In order to calculate transition probabilities PT (Υ, s), we had to
normalize PF (Υ, s). Then, to obtain transition probabilities of the state-changing steps PM∗(s, s̃), we now
have to normalize PM(s, s̃). Thus, we have a two-stage normalization as a result.

PM∗(s, s̃) defines a probability distribution, since ∀s ∈ DR(G), such that s is not a terminal state, i.e.,
there are transitions to different states after possible self-loops from it, we have

∑
{s̃|s→s̃, s ̸=s̃} PM

∗(s, s̃) =
1

1−PM(s,s)

∑
{s̃|s→s̃, s ̸=s̃} PM(s, s̃) = 1

1−PM(s,s) (1− PM(s, s)) = 1.

We decided to consider self-loops followed only by a state-changing step just for convenience. Alternatively,
we could take a state-changing step followed by self-loops or a state-changing step preceded and followed by
self-loops. In all these three cases our sequence begins or/and ends with the loops which do not change states.
At the same time, the overall probabilities of the evolutions can differ, since self-loops have positive probabilities.
To avoid inconsistency of definitions and too complex description, we consider sequences ending with a state-
changing step. It resembles in some sense a construction of branching bisimulation [14] taking self-loops instead
of silent transitions.

Definition 5.1 Let G be a dynamic expression. The embedded (absorbing) discrete time Markov chain
(EDTMC) of G, denoted by EDTMC (G), has the state space DR(G) and the transitions s→→P s̃, if s→ s̃ and
s ̸= s̃, where P = PM∗(s, s̃).

EDTMCs and underlying SMCs of static expressions can be defined as well. For E ∈ RegStatExpr, let
EDTMC (E) = EDTMC (E) and SMC (E) = SMC (E).

Let G be a dynamic expression. The elements P∗
ij (1 ≤ i, j ≤ n = |DR(G)|) of the (one-step) transition

probability matrix (TPM) P∗ for EDTMC (G) are defined as

P∗
ij =

{
PM∗(si, sj), si → sj , si ̸= sj ;
0, otherwise.

The transient (k-step, k ∈ IN) probability mass function (PMF) ψ∗[k] = (ψ∗[k](s1), . . . , ψ
∗[k](sn)) for

EDTMC (G) is the solution of the equation system

ψ∗[k] = ψ∗[0](P∗)k,

where ψ∗[0] = (ψ∗[0](s1), . . . , ψ
∗[0](sn)) is the initial PMF defined as

ψ∗[0](si) =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ∗[k + 1] = ψ∗[k]P∗ (k ∈ IN).
The steady-state PMF ψ∗ = (ψ∗(s1), . . . , ψ

∗(sn)) for EDTMC (G) is the solution of the equation system{
ψ∗(P∗ −E) = 0
ψ∗1T = 1

,

where E is the unitary matrix of dimension n and 0 is the vector with n values 0, 1 is that with n values 1.
When EDTMC (G) has the single steady state, we have ψ∗ = limk→∞ ψ∗[k].
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The steady-state PMF for the underlying semi-Markov chain SMC (G) is calculated via multiplication of
every ψ∗(si) (1 ≤ i ≤ n) by the average sojourn time SJ(si) in the state si, after which we normalize the
resulting values. Remember that for a vanishing state s ∈ DRV (G) we have SJ(s) = 0.

Thus, the steady-state PMF φ = (φ(s1), . . . , φ(sn)) for SMC (G) is

φ(si) =

{
ψ∗(si)SJ(si)∑n

j=1 ψ
∗(sj)SJ(sj)

, si ∈ DRT (G);

0, si ∈ DRV (G).

Example 5.1 Let E be from Example 3.2. In Figure 6, the underlying SMC SMC (E) is presented. Average
sojourn time in the states of the underlying SMC is written next to them in bold font.

The average sojourn time vector of E is

SJ =

(
1

ρ
,
1

χ
, 0,

1

θ
,
1

ϕ

)
.

The sojourn time variance vector of E is

VAR =

(
1

ρ2
,
1

χ2
, 0,

1

θ2
,
1

ϕ2

)
.

The TPM for EDTMC (E) is

P∗ =


0 1 0 0 0
0 0 1 0 0
0 0 0 l

l+m
m
l+m

0 1 0 0 0
0 1 0 0 0

 .
The steady-state PMF for EDTMC (E) is

ψ∗ =

(
0,

1

3
,
1

3
,

l

3(l +m)
,

m

3(l +m)

)
.

The steady-state PMF ψ∗ weighted by SJ is(
0,

1

3χ
, 0,

l

3θ(l +m)
,

m

3ϕ(l +m)

)
.

It remains to normalize the steady-state weighted PMF dividing it by the sum of its components

ψ∗SJT =
θϕ(l +m) + χ(ϕl + θm)

3χθϕ(l +m)
.

Thus, the steady-state PMF for SMC (E) is

φ =
1

θϕ(l +m) + χ(ϕl + θm)
(0, θϕ(l +m), 0, χϕl, χθm) .

In the case l = m and θ = ϕ we have

φ =
1

2(χ+ θ)
(0, 2θ, 0, χ, χ).

Let us also consider DTMCs of expressions based on the state change probabilities PM(s, s̃).

Definition 5.2 Let G be a dynamic expression. The discrete time Markov chain (DTMC) of G, denoted by
DTMC (G), has the state space DR(G) and the transitions s→P s̃, where P = PM(s, s̃).

DTMCs of static expressions can be defined as well. For E ∈ RegStatExpr, let DTMC (E) = DTMC (E).
Let G be a dynamic expression. The elements Pij (1 ≤ i, j ≤ n = |DR(G)|) of (one-step) transition

probability matrix (TPM) P for DTMC (G) are defined as

Pij =
{
PM(si, sj), si → sj ;
0, otherwise.
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Figure 6: The underlying SMC of E for E = [({a}, ρ)∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m); ({f}, ϕ))))∗Stop]

The steady-state PMF ψ for DTMC (G) is defined like the corresponding notion for EDTMC (G).
Let us determine a relationship between steady-state PMFs for DTMCs and EDTMCs. The following

theorem proposes the equation that relates the mentioned steady-state PMFs.
First, we introduce some helpful notation. For a vector v = (v1, . . . , vn), let Diag(v) be a diagonal matrix

of dimension n with the elements Diagij(v) (1 ≤ i, j ≤ n) defined as

Diagij(v) =

{
vi, i = j;
0, otherwise.

(1 ≤ i, j ≤ n).

Theorem 5.1 Let G be a dynamic expression and SL be its self-loops abstraction vector. Then the steady-state
PMFs ψ for DTMC (G) and ψ∗ for EDTMC (G) are related as follows: ∀s ∈ DR(G),

ψ(s) =
ψ∗(s)SL(s)∑

s̃∈DR(G)

ψ∗(s̃)SL(s̃)
.

Proof. Let PSL be a vector with the elements

PSL(s) =

{
PM(s, s), s→ s;
0, otherwise.

By definition of PM∗(s, s̃), we have P∗ = Diag(SL)(P−Diag(PSL)). Further,

ψ∗(P∗ −E) = 0 and ψ∗P∗ = ψ∗.

After replacement of P∗ by the expression with P we obtain

ψ∗Diag(SL)(P−Diag(PSL)) = ψ∗ and ψ∗Diag(SL)P = ψ∗(Diag(SL)Diag(PSL) +E).

Note that ∀s ∈ DR(G), we have

SL(s)PSL(s) + 1 =

{
SL(s)PM(s, s) + 1 = PM(s,s)

1−PM(s,s) + 1 = 1
1−PM(s,s) , s→ s;

SL(s) · 0 + 1 = 1, otherwise;

}
= SL(s).

Hence, Diag(SL)Diag(PSL) +E = Diag(SL). Thus,

ψ∗Diag(SL)P = ψ∗Diag(SL).

Then for v = ψ∗Diag(SL) we have

vP = v and v(P−E) = 0.

In order to calculate ψ on the basis of v, we must normalize it by dividing its elements by their sum, since
we should have ψ1T = 1 as a result:
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ψ =
1

v1T
v =

1

ψ∗Diag(SL)1T
ψ∗Diag(SL).

Thus, the elements of ψ are calculated as follows: ∀s ∈ DR(G),

ψ(s) =
ψ∗(s)SL(s)∑

s̃∈DR(G) ψ
∗(s̃)SL(s̃)

.

It is easy to check that ψ is the solution of the equation system{
ψ(P−E) = 0
ψ1T = 1

,

hence, it is indeed the steady-state PMF for DTMC (G). ⊓⊔

Proposition 5.1 Let G be a dynamic expression, φ be the steady-state PMF for SMC (G) and ψ be the steady-
state PMF for DTMC (G). Then ∀s ∈ DR(G),

φ(s) =

{
ψ(s), s ∈ DRT (G);
0, s ∈ DRV (G).

Proof. By Theorem 5.1, since ∀s ∈ DRT (G), SL(s) = SJ(s). ⊓⊔
Let G be a dynamic expression and s, s̃ ∈ DR(G), S, S̃ ⊆ DR(G). The following standard performance

indices (measures) can be calculated based on the steady-state PMF for SMC (G), see, in particular, [24].

• The average recurrence (return) time in the state s (i.e., the number of discrete time units or steps required
for this) is 1

φ(s) .

• The fraction of residence time in the state s is φ(s).

• The fraction of residence time in the set of states S ⊆ DR(G) or the probability of the event determined
by a condition that is true for all states from S is

∑
s∈S φ(s).

• The relative fraction of residence time in the set of states S with respect to that in S̃ is
∑

s∈S φ(s)∑
s̃∈S̃ φ(s̃)

.

• The rate of leaving the state s is φ(s)
SJ(s) .

• The steady-state probability to perform a step with an activity (α, κ) is∑
s∈DR(G) φ(s)

∑
{Υ|(α,κ)∈Υ} PT (Υ, s).

• The probability of the event determined by a reward function r on the states is
∑
s∈DR(G) φ(s)r(s).

Let N = (PN , TN ,WN ,ΩN , LN ,MN ) be a LDTSIPN and M, M̃ ∈ INPN

f . Then the average sojourn time

SJ(M), the sojourn time variance VAR(M), the probabilities PM∗(M, M̃), the transition relation M →→P M̃ ,
the EDTMC EDTMC (N), the underlying SMC SMC (N) and the steady-state PMF for it are defined like the
corresponding notions for dynamic expressions.

As we have mentioned earlier, every marked plain dtsi-box could be interpreted as the LDTSIPN. Therefore,
we can evaluate performance with the LDTSIPNs corresponding to dtsi-boxes and then transfer the results to
the latter.

Let ≃ denote isomorphism between SMCs that relates their initial states.

Proposition 5.2 For any static expression E,

SMC (E) ≃ SMC (Boxdtsi(E)).

Proof. By Theorem 4.2 and definitions of underlying SMCs for dynamic expressions and LDTSIPNs taking into
account the following. First, for the associated SMCs, the average sojourn time in the states is the same since it
is defined via the analogous probability functions. Second, the transition probabilities of the associated SMCs
are the sums of those belonging to transition systems or reachability graphs. ⊓⊔

Example 5.2 Let E be from Example 3.2. In Figure 7, the underlying SMC SMC (N) is presented. It is easy
to see that SMC (E) and SMC (N) are isomorphic. Thus, the steady-state PMF for SMC (N) is the same as for
SMC (E).
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Figure 7: The underlying SMC of N = Boxdtsi(E) for E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](({e},m);
({f}, ϕ)))) ∗ Stop]

6 Stochastic equivalences

Consider the expressions E = ({a}, 12 ) and E′ = ({a}, 13 )1[]({a},
1
3 )2, for which E ̸=ts E′, since TS(E) has

only one transition from the initial to the final state (with probability 1
2 ) while TS(E′) has two such ones

(with probabilities 1
4 ). On the other hand, all the mentioned transitions are labeled by activities with the same

multiaction part {a}. Moreover, the overall probabilities of the mentioned transitions of TS(E) and TS(E′)
coincide: 1

2 = 1
4 + 1

4 . Further, TS(E) (as well as TS(E′)) has one empty loop transition from the initial
state to itself with probability 1

2 and one empty loop transition from the final state to itself with probability
1. The empty loop transitions are labeled by the empty set of activities. Unlike =ts, most of the probabilistic
and stochastic equivalences proposed in the literature do not differentiate between the processes such as those
specified by E and E′.

Since the semantic equivalence =ts is too discriminating in many cases, we need weaker equivalence notions.
These equivalences should possess the following necessary properties. First, any two equivalent processes must
have the same sequences of multisets of multiactions, which are the multiaction parts of the activities executed
in steps starting from the initial states of the processes. Second, for every such sequence, its execution prob-
abilities within both processes must coincide. Third, the desired equivalence should preserve the branching
structure of computations, i.e., the points of choice of an external observer between several extensions of a
particular computation should be taken into account. In this section, we define one such notion: step stochastic
bisimulation equivalence.

6.1 Step stochastic bisimulation equivalence

Bisimulation equivalences respect the particular points of choice in the behavior of a system. To define stochastic
bisimulation equivalences, we have to consider a bisimulation as an equivalence relation which partitions the
states of the union of the transition systems TS∗(G) and TS∗(G′) of two dynamic expressions G and G′ to be
compared. For G and G′ to be bisimulation equivalent, the initial states of their transition systems, [G]≈ and
[G′]≈, are to be related by a bisimulation having the following transfer property: two states are related if in each
of them the same multisets of multiactions can occur, and the resulting states belong to the same equivalence
class. In addition, the sums of probabilities for all such occurrences should be the same for both states. Thus,
we follow the approaches of [19, 21, 6].

In the definition below, we consider L(Υ) ∈ INL
f for Υ ∈ INSIL

f , i.e., (possibly empty) multisets of multiac-
tions. The multiactions can be empty, then L(Υ) contains the elements ∅, and it is not empty itself.

Let G be a dynamic expression and H ⊆ DR(G). Then for any s ∈ DR(G) and A ∈ INL
f we write s

A→P H,
where P = PMA(s,H) is the overall probability to move from s into the set of states H via steps with the
multiaction part A defined as

PMA(s,H) =
∑

{Υ|∃s̃∈H, sΥ→s̃, L(Υ)=A}

PT (Υ, s).

We write s
A→ H if ∃P, s A→P H. Further, we write s →P H if ∃A, s A→ H, where P = PM(s,H) is the

overall probability to move from s into the set of states H via any steps defined as
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PM(s,H) =
∑

{Υ|∃s̃∈H, sΥ→s̃}

PT (Υ, s).

To introduce a stochastic bisimulation between dynamic expressions G and G′, we should consider the
“composite” set of states DR(G) ∪DR(G′), since we have to identify the probabilities to come from any two
equivalent states into the same “composite” equivalence class (with respect to the stochastic bisimulation).
Note that, for G ̸= G′, transitions starting from the states of DR(G) (or DR(G′)) always lead to those from
the same set, since DR(G) ∩ DR(G′) = ∅, and this allows us to “mix” the sets of states in the definition of
stochastic bisimulation.

Definition 6.1 Let G and G′ be dynamic expressions. An equivalence relation R ⊆ (DR(G) ∪DR(G′))2 is a
step stochastic bisimulation between G and G′, denoted by R : G↔ssG

′, if:

1. ([G]≈, [G
′]≈) ∈ R.

2. (s1, s2) ∈ R ⇒ ∀H ∈ (DR(G) ∪DR(G′))/R, ∀A ∈ INL
f ,

s1
A→P H ⇔ s2

A→P H.

Two dynamic expressions G and G′ are step stochastic bisimulation equivalent, denoted by G↔ssG
′, if

∃R : G↔ssG
′.

The following proposition states that every step stochastic bisimulation relates tangible states only with
tangible ones and the same is valid for vanishing states.

Proposition 6.1 Let G and G′ be dynamic expressions and R : G↔ssG
′. Then R ⊆ (DRT (G)∪DRT (G′))2 ⊎

(DRV (G) ∪DRV (G′))2.

Proof. By definition of transition systems of expressions, for every tangible state, there is an empty loop from
it, and no empty loop transitions are possible from vanishing states.

Further, R preserves empty loops. To verify this fact, first take A = ∅ in its definition to get ∀(s1, s2) ∈
R, ∀H ∈ (DR(G) ∪ DR(G′))/R, s1

∅→P H ⇔ s2
∅→P H, and then observe that the empty loop transition

from a state leads only to the same state. ⊓⊔
Let Rss(G,G

′) =
∪
{R | R : G↔ssG

′}, be the union of all step stochastic bisimulations between G and G′.
The following proposition proves that Rss(G,G

′) is also an equivalence and Rss(G,G
′) : G↔ssG

′.

Proposition 6.2 Let G and G′ be dynamic expressions and G↔ssG
′. Then Rss(G,G

′) is the largest step
stochastic bisimulation between G and G′.

Proof. See Appendix A.1. ⊓⊔

6.2 Interrelations of the stochastic equivalences

Now we compare the discrimination power of the stochastic equivalences.

Theorem 6.1 For dynamic expressions G and G′ the following strict implications hold:

G ≈ G′ ⇒ G =ts G
′ ⇒ G↔ssG

′.

Proof. Let us check the validity of the implications.

• The implication =ts→ ↔ss is proved as follows. Let β : G =ts G
′. Then it is easy to see that R : G↔ssG

′,
where R = {(s, β(s)) | s ∈ DR(G)}.

• The implication ≈→=ts is valid, since the transition system of a dynamic formula is defined based on its
structural equivalence class.

Let us see that the reverse implications do not work, by the following counterexamples.

(a) Let E = ({a}, 12 ) and E
′ = ({a}, 13 )1[]({a},

1
3 )2. Then E↔ssE

′, but E ̸=ts E′, since TS(E) has only one

transition from the initial to the final state while TS(E′) has two such ones.

(b) Let E = ({a}, 12 ); ({â},
1
2 ) and E

′ = (({a}, 12 ); ({â},
1
2 )) sy a. Then E =ts E′, but E ̸≈ E′, since E and E′

cannot be reached from each other by applying inaction rules. ⊓⊔

Example 6.1 In Figure 8, the marked dtsi-boxes corresponding to the dynamic expressions from equivalence
examples of Theorem 6.1 are presented, i.e., N = Boxdtsi(E) and N ′ = Boxdtsi(E′) for each picture (a)–(b).
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Figure 8: Dtsi-boxes of the dynamic expressions from equivalence examples of Theorem 6.1

7 Reduction modulo equivalences

The equivalences which we proposed can be used to reduce transition systems and SMCs of expressions (reach-
ability graphs and SMCs of dtsi-boxes). Reductions of graph-based models like transition systems, reachability
graphs and SMCs result to those with less states (the graph nodes). The goal of the reduction is to decrease the
number of states in the semantic representation of the modeled system while preserving its important qualitative
and quantitative properties. Thus, the reduction allows one to simplify behavioural and performance analysis
of systems.

An autobisimulation is a bisimulation between an expression and itself. For a dynamic expression G and
a step stochastic autobisimulation on it R : G↔ssG let K ∈ DR(G)/R and s1, s2 ∈ K. We have ∀K̃ ∈
DR(G)/R, ∀A ∈ INL

f , s1
A→P K̃ ⇔ s2

A→P K̃. The previous equality is valid for all s1, s2 ∈ K, hence, we can

rewrite it as K A→P K̃, where P = PMA(K, K̃) = PMA(s1, K̃) = PMA(s2, K̃).

We write K A→ K̃ if ∃P, K A→P K̃ and K → K̃ if ∃A, K A→ K̃. The similar arguments allow us to write
K →P K̃, where P = PM(K, K̃) = PM(s1, K̃) = PM(s2, K̃).

By Proposition 6.1, R ⊆ (DRT (G))
2 ⊎ (DRV (G))

2. Hence, ∀K ∈ DR(G)/R, all states from K are tangible,
when K ∈ DRT (G)/R, or all of them are vanishing, when K ∈ DRV (G)/R.

The average sojourn time in the equivalence class (with respect to R) of states K is

SJR(K) =

{ 1
1−PM(K,K) , K ∈ DRT (G)/R;

0, K ∈ DRV (G)/R.

The average sojourn time vector for the equivalence classes (with respect to R) of states of G, denoted by
SJR, is that with the elements SJR(K), K ∈ DR(G)/R.

The sojourn time variance in the equivalence class (with respect to R) of states K is

VARR(K) =

{ 1
(1−PM(K,K))2 , K ∈ DRT (G)/R;

0, K ∈ DRV (G)/R.

The sojourn time variance vector for the equivalence classes (with respect to R) of states of G, denoted by
VARR, is that with the elements VARR(K), K ∈ DR(G)/R.

Let Rss(G) =
∪
{R | R : G↔ssG} be the union of all step stochastic autobisimulations on G. By Proposition

6.2, Rss(G) is the largest step stochastic autobisimulation on G. Based on the equivalence classes with respect
to Rss(G), the quotient (by ↔ss) transition systems and the quotient (by ↔ss) underlying SMCs of expressions
can be defined. The mentioned equivalence classes become the quotient states. The average sojourn time
in a quotient state is that in the corresponding equivalence class. Every quotient transition between two such
composite states represents all steps (having the same multiaction part in case of the transition system quotient)
from the first state to the second one.

Definition 7.1 Let G be a dynamic expression. The quotient (by ↔ss) (labeled probabilistic) transition system
of G is a quadruple TS↔ss

(G) = (S↔ss
, L↔ss

, T↔ss
, s↔ss

), where

• S↔ss
= DR(G)/Rss(G);
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• L↔ss
⊆ INL

f × (0; 1];

• T↔ss
= {(K, (A,PMA(K, K̃)), K̃) | K ∈ DR(G)/Rss(G), K A→ K̃};

• s↔ss
= {[G]≈}.

The transition (K, (A,P), K̃) ∈ T↔ss
will be written as K A→P K̃.

The quotient (by↔ss) transition systems of static expressions can be defined as well. For E ∈ RegStatExpr,
let TS↔ss

(E) = TS↔ss
(E).

Let K → K̃ and K ̸= K̃. The probability to move from K to K̃ by executing any set of activities after possible
self-loops is

PM∗(K, K̃) =

{
PM(K, K̃)

∑∞
k=0(PM(K,K))k = PM(K,K̃)

1−PM(K,K) , K → K;

PM(K, K̃), otherwise.

The value k = 0 in the summation above corresponds to the case when no self-loops occur. Note that
∀K ∈ DRT (G)/Rss(G), PM

∗(K, K̃) = SJ(K)PM(K, K̃), since we always have the empty loop (which is a self-

loop) K ∅→ K from every equivalence class of tangible states K. Empty loops are not possible from equivalence

classes of vanishing states, hence, ∀K ∈ DRV (G)/Rss(G), PM
∗(K, K̃) = PM(K,K̃)

1−PM(K,K) , when there are non-empty

self-loops (produced by iteration) from K, or PM∗(K, K̃) = PM(K, K̃), when there are no self-loops from K.

Definition 7.2 Let G be a dynamic expression. The quotient (by ↔ss) EDTMC of G, denoted by

EDTMC↔ss
(G), has the state space DR(G)/Rss(G) and the transitions K →→P K̃, if K → K̃ and K ≠ K̃, where

P = PM∗(K, K̃). The quotient (by ↔ss) underlying SMC of G, denoted by SMC↔ss
(G), has the EDTMC

EDTMC↔ss
(G) and the quotient (by ↔ss) average sojourn time vector of G, defined as SJ↔ss

= SJRss(G).

The quotient (by ↔ss) underlying SMCs of static expressions can be defined as well. For E ∈ RegStatExpr,
let SMC↔ss

(E) = SMC↔ss
(E).

The quotient (by ↔ss) sojourn time variance vector of G is defined as VAR↔ss
= VARRss(G).

The quotients of both transition systems and underlying SMCs are the minimal reductions of the mentioned
objects modulo step stochastic bisimulations. The quotients can be used to simplify analysis of system properties
which are preserved by ↔ss, since less states should be examined for it. Such reduction method resembles that
from [1] based on place bisimulation equivalence for PNs. Moreover, the algorithms which can be adapted
for our framework exist for constructing the quotients of transition systems by bisimulation [35] and those of
(discrete or continuous time) Markov chains by ordinary lumping [13]. The algorithms have time complexity
O(m lg n) and space complexity O(m+ n) (the case of Markov chains), where n is the number of states and m
is the number of transitions. The comprehensive reduction example will be presented in Section 9.

8 Stationary behaviour

Let us examine how the proposed equivalences can be used to compare the behaviour of stochastic processes
in their steady states. We shall consider only formulas specifying stochastic processes with infinite behavior,
i.e., expressions with the iteration operator. Note that the iteration operator does not guarantee infiniteness
of behaviour, since there can exist a deadlock within the body (the second argument) of iteration when the
corresponding subprocess does not reach its final state by some reasons.

Like in the framework of SMCs, in LDTSIPNs the most common systems for performance analysis are
ergodic (recurrent non-null, aperiodic and irreducible) ones. For ergodic LDTSIPNs, the steady-state marking
probabilities exist and can be determined. In [29], the following sufficient (but not necessary) conditions for
ergodicity of DTSPNs are stated: liveness (for each transition and any reachable marking there exist a sequence
of markings from it leading to the marking enabling that transition), boundedness (the number of tokens in every
place is not greater than some fixed number for any reachable marking) and nondeterminism (the transition
probabilities are strictly less than 1). For the dtsi-box of a dynamic expression with no deadlocks in at least one
of the bodies of the iteration operators it contains these three conditions are satisfied: the subnet corresponding
to the deadlock-free iteration body is live, safe (1-bounded) and nondeterministic (since all markings of the
live subnet are non-terminal, the probabilities of transitions from them are strictly less than 1). Hence, its
SMC restricted to the states between the initial and final states of the deadlock-free iteration body is ergodic.
The isomorphism between SMCs of expressions and those of the corresponding dtsi-boxes which is stated by
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Proposition 5.2 guarantees that the underlying SMC of an expression with infinite behaviour is ergodic if
restricted to the states in which a deadlock-free iteration body is executed.

In this section, we consider the expressions such that their underlined SMCs contain one ergodic subset of
states to guarantee that the single steady state exists.

8.1 Steady state and equivalences

The following proposition demonstrates that for two dynamic expressions related by ↔ss the steady-state
probabilities to come in an equivalence class coincide. One can also interpret the result stating that the mean
recurrence time for an equivalence class is the same for both expressions.

Proposition 8.1 Let G,G′ be dynamic expressions with R : G↔ssG
′. Then ∀H ∈ (DR(G) ∪DR(G′))/R,∑

s∈H∩DR(G)

φ(s) =
∑

s′∈H∩DR(G′)

φ′(s′).

Proof. See Appendix A.2. ⊓⊔
In the proof of Proposition 8.1 a limit construction was used to go from transient to stationary case. Thus,

the result of the proposition is valid if we replace steady-state probabilities with transient ones.
By Proposition 8.1, ↔ss preserves the quantitative properties of the stationary behaviour (the level of

SMCs). Now we intend to demonstrate that the qualitative properties of the stationary behaviour based of the
multiaction labels are preserved as well (the level of transition systems).

Definition 8.1 A derived step trace of a dynamic expression G is a chain Σ = A1 · · ·An ∈ (INL
f )

∗ where

∃s ∈ DR(G), s
Υ1→ s1

Υ2→ · · · Υn→ sn, L(Υi) = Ai (1 ≤ i ≤ n). Then the probability to execute the derived step
trace Σ in s is

PT (Σ, s) =
∑

{Υ1,...,Υn|s=s0
Υ1→s1

Υ2→···Υn→sn, L(Υi)=Ai (1≤i≤n)}

n∏
i=1

PT (Υi, si−1).

The following theorem demonstrates that for two dynamic expressions related by ↔ss the steady-state
probabilities to come in an equivalence class and start a derived step trace from it coincide.

Theorem 8.1 Let G,G′ be dynamic expressions with R : G↔ssG
′ and Σ be a derived step trace of G and G′.

Then ∀H ∈ (DR(G) ∪DR(G′))/R,∑
s∈H∩DR(G)

φ(s)PT (Σ, s) =
∑

s′∈H∩DR(G′)

φ′(s′)PT (Σ, s′).

Proof. See Appendix A.3. ⊓⊔
In the proof of Theorem 8.1 a limit construction was used to go from transient to stationary case. Thus, the

result of the theorem is valid if we replace steady-state probabilities with transient ones.

Example 8.1 The expression Stop = ({c}, 12 ) rs c specifies the non-terminating process that performs only
empty loops with probability 1. Let

E = [({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
3 )1[]({c},

1
3 )2)) ∗ Stop],

E′ = [({a}, 12 ) ∗ ((({b},
1
3 )1; ({c},

1
2 )1)[](({b},

1
3 )2; ({c},

1
2 )2)) ∗ Stop].

We have E↔ssE
′.

DR(E) consists of the equivalence classes

s1 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
3 )1[]({c},

1
3 )2)) ∗ Stop]]≈,

s2 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
3 )1[]({c},

1
3 )2)) ∗ Stop]]≈,

s3 = [[({a}, 12 ) ∗ (({b},
1
2 ); (({c},

1
3 )1[]({c},

1
3 )2)) ∗ Stop]]≈.

DR(E′) consists of the equivalence classes
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Figure 9: ↔ss implies a coincidence of the steady-state probabilities to come in an equivalence class and start
a trace from it

s′1 = [[({a}, 12 ) ∗ ((({b},
1
3 )1; ({c},

1
2 )1)[](({b},

1
3 )2; ({c},

1
2 )2)) ∗ Stop]]≈,

s′2 = [[({a}, 12 ) ∗ ((({b},
1
3 )1; ({c},

1
2 )1)[](({b},

1
3 )2; ({c},

1
2 )2)) ∗ Stop]]≈,

s′3 = [[({a}, 12 ) ∗ ((({b},
1
3 )1; ({c},

1
2 )1)[](({b},

1
3 )2; ({c},

1
2 )2)) ∗ Stop]]≈,

s′4 = [[({a}, 12 ) ∗ ((({b},
1
3 )1; ({c},

1
2 )1)[](({b},

1
3 )2; ({c},

1
2 )2)) ∗ Stop]]≈.

The steady-state PMFs φ for SMC (E) and φ′ for SMC (E′) are

φ =

(
0,

1

2
,
1

2

)
, φ′ =

(
0,

1

2
,
1

4
,
1

4

)
.

Consider the equivalence class (with respect to Rss(E,E′)) H = {s3, s′3, s′4}. One can see that the steady-state
probabilities for H coincide:

∑
s∈H∩DR(E) φ(s) = φ(s3) =

1
2 = 1

4 + 1
4 = φ′(s′3) + φ′(s′4) =

∑
s′∈H∩DR(E′) φ

′(s′).

Let Σ = {{c}}. The steady-state probabilities to come in the equivalence class H and start the step trace Σ
from it coincide as well: φ(s3)(PT ({({c}, 13 )1}, s3) + PT ({({c}, 13 )2}, s3)) = 1

2

(
1
4 + 1

4

)
= 1

4 = 1
4 · 1

2 + 1
4 · 1

2 =
φ′(s′3)PT ({({c}, 12 )1}, s

′
3) + φ′(s′4)PT ({({c}, 12 )2}, s

′
4).

In Figure 9, the marked dtsi-boxes corresponding to the dynamic expressions above are presented, i.e., N =
Boxdtsi(E) and N ′ = Boxdtsi(E′).

8.2 Preservation of performance and simplification of its analysis

Many performance indices are based on the steady-state probabilities to come in a set of similar states or,
after coming in it, to start a step trace from this set. The similarity of states is usually captured by an
equivalence relation, hence, the sets are often the equivalence classes. Proposition 8.1 and Theorem 8.1 guarantee
a coincidence of the mentioned indices for the expressions related by ↔ss. Thus, ↔ss (hence, all the stronger
equivalences we have considered) preserves the performance of stochastic systems modeled by expressions of
dtsiPBC.

In addition, it is easier to evaluate performance using an SMC with less states, since in this case the
dimension of the transition probability matrix will be smaller, and we shall solve systems of less equations to
calculate steady-state probabilities. The reasoning above validates the following method of performance analysis
simplification.

1. The investigated system is specified by a static expression of dtsiPBC.

2. The transition system of the expression is constructed.
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Figure 10: The diagram of the shared memory system

3. After treating the transition system for self-similarity, a step stochastic autobisimulation equivalence for
the expression is determined.

4. The quotient underlying SMC is constructed.

5. Stationary probabilities and performance indices are calculated using the SMC.

The limitation of the method above is its applicability only to the expressions such that their corresponding
SMCs contain one irreducible subset of states, i.e., the existence of exactly one stationary state is required. If
a SMC contains several irreducible subsets of states then several steady states can exist which depend on the
initial PMF. There is an analytical method to determine the stable states for SMCs of this kind as well. Note
that, for every expression, the underlying SMC has by definition only one initial PMF (that at the time moment
0), hence, the stationary state will be only one in this case too. In addition, it is worth to apply the method
only to the systems with similar subprocesses.

9 Shared memory system

In this section with a case study of the shared memory system we demonstrate how steady-state distribution
can be used for performance evaluation. The example also illustrates the method of performance analysis
simplification described above.

9.1 The standard system

Consider a model of two processors accessing a common shared memory described in [25, 2, 3] in the continuous
time setting on GSPNs. We shall analyze this shared memory system in the discrete time stochastic setting of
dtsiPBC where concurrent execution of activities is possible. The model performs as follows. After activation
of the system (turning the computer on), two processors are active, and the common memory is available.
Each processor can request an access to the memory after which the instantaneous decision is made. When the
decision is made in favour of a processor, it starts an acquisition of the memory and another processor should
wait until the former one ends its memory operations, and the system returns to the state with both active
processors and the available common memory. The diagram of the system is depicted in Figure 10.

Let us explain the meaning of actions from syntax of the dtsiPBC expressions which will specify the system
modules. The action a corresponds to the system activation. The actions ri (1 ≤ i ≤ 2) represent the common
memory request of processor i. The instantaneous actions di correspond to the decision on the memory allocation
in favour of the processor i. The actions mi represent the common memory access of processor i. The other
actions are used for communication purposes only via synchronization, and we abstract from them later using
restriction.

The static expression of the first processor is

E1 = [({x1},
1

2
) ∗ (({r1},

1

2
); ({d1, y1}, 1); ({m1, z1},

1

2
)) ∗ Stop].

The static expression of the second processor is

E2 = [({x2},
1

2
) ∗ (({r2},

1

2
); ({d2, y2}, 1); ({m2, z2},

1

2
)) ∗ Stop].

The static expression of the shared memory is
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E3 = [({a, x̂1, x̂2},
1

2
) ∗ ((({ŷ1}, 1); ({ẑ1},

1

2
))[](({ŷ2}, 1); ({ẑ2},

1

2
))) ∗ Stop].

The static expression of the shared memory system with two processors is

E = (E1∥E2∥E3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.

Let us illustrate an effect of synchronization. As result of the synchronization of immediate multiactions
({di, yi}, 1) and ({ŷi}, 1) we obtain ({di}, 2) (1 ≤ i ≤ 2). The synchronization of stochastic multiactions
({mi, zi}, 12 ) and ({ẑi}, 12 ) produces ({mi}, 14 ) (1 ≤ i ≤ 2). The result of synchronization of ({a, x̂1, x̂2}, 12 )
with ({x1}, 12 ) is ({a, x̂2},

1
4 ), and that of synchronization of ({a, x̂1, x̂2}, 12 ) with ({x2}, 12 ) is ({a, x̂1},

1
4 ). After

applying synchronization to ({a, x̂2}, 14 ) and ({x2}, 12 ), as well as to ({a, x̂1}, 14 ) and ({x1}, 12 ) we obtain the
same activity ({a}, 18 ).

DR(E) consists of the equivalence classes

s1 = [([({x1}, 12 ) ∗ (({r1},
1
2 ); ({d1, y1}, 1); ({m1, z1}, 12 )) ∗ Stop]∥

[({x2}, 12 ) ∗ (({r2},
1
2 ); ({d2, y2}, 1); ({m2, z2}, 12 )) ∗ Stop]∥

[({a, x̂1, x̂2}, 12 ) ∗ ((({ŷ1}, 1); ({ẑ1},
1
2 ))[](({ŷ2}, 1); ({ẑ2},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s2 = [([({x1}, 12 ) ∗ (({r1},
1
2 ); ({d1, y1}, 1); ({m1, z1}, 12 )) ∗ Stop]∥

[({x2}, 12 ) ∗ (({r2},
1
2 ); ({d2, y2}, 1); ({m2, z2}, 12 )) ∗ Stop]∥

[({a, x̂1, x̂2}, 12 ) ∗ ((({ŷ1}, 1); ({ẑ1},
1
2 ))[](({ŷ2}, 1); ({ẑ2},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s3 = [([({x1}, 12 ) ∗ (({r1},
1
2 ); ({d1, y1}, 1); ({m1, z1}, 12 )) ∗ Stop]∥

[({x2}, 12 ) ∗ (({r2},
1
2 ); ({d2, y2}, 1); ({m2, z2}, 12 )) ∗ Stop]∥

[({a, x̂1, x̂2}, 12 ) ∗ ((({ŷ1}, 1); ({ẑ1},
1
2 ))[](({ŷ2}, 1); ({ẑ2},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s4 = [([({x1}, 12 ) ∗ (({r1},
1
2 ); ({d1, y1}, 1); ({m1, z1}, 12 )) ∗ Stop]∥

[({x2}, 12 ) ∗ (({r2},
1
2 ); ({d2, y2}, 1); ({m2, z2}, 12 )) ∗ Stop]∥

[({a, x̂1, x̂2}, 12 ) ∗ ((({ŷ1}, 1); ({ẑ1},
1
2 ))[](({ŷ2}, 1); ({ẑ2},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s5 = [([({x1}, 12 ) ∗ (({r1},
1
2 ); ({d1, y1}, 1); ({m1, z1}, 12 )) ∗ Stop]∥

[({x2}, 12 ) ∗ (({r2},
1
2 ); ({d2, y2}, 1); ({m2, z2}, 12 )) ∗ Stop]∥

[({a, x̂1, x̂2}, 12 ) ∗ ((({ŷ1}, 1); ({ẑ1},
1
2 ))[](({ŷ2}, 1); ({ẑ2},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s6 = [([({x1}, 12 ) ∗ (({r1},
1
2 ); ({d1, y1}, 1); ({m1, z1}, 12 )) ∗ Stop]∥

[({x2}, 12 ) ∗ (({r2},
1
2 ); ({d2, y2}, 1); ({m2, z2}, 12 )) ∗ Stop]∥

[({a, x̂1, x̂2}, 12 ) ∗ ((({ŷ1}, 1); ({ẑ1},
1
2 ))[](({ŷ2}, 1); ({ẑ2},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s7 = [([({x1}, 12 ) ∗ (({r1},
1
2 ); ({d1, y1}, 1); ({m1, z1}, 12 )) ∗ Stop]∥

[({x2}, 12 ) ∗ (({r2},
1
2 ); ({d2, y2}, 1); ({m2, z2}, 12 )) ∗ Stop]∥

[({a, x̂1, x̂2}, 12 ) ∗ ((({ŷ1}, 1); ({ẑ1},
1
2 ))[](({ŷ2}, 1); ({ẑ2},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s8 = [([({x1}, 12 ) ∗ (({r1},
1
2 ); ({d1, y1}, 1); ({m1, z1}, 12 )) ∗ Stop]∥

[({x2}, 12 ) ∗ (({r2},
1
2 ); ({d2, y2}, 1); ({m2, z2}, 12 )) ∗ Stop]∥

[({a, x̂1, x̂2}, 12 ) ∗ ((({ŷ1}, 1); ({ẑ1},
1
2 ))[](({ŷ2}, 1); ({ẑ2},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈,

s9 = [([({x1}, 12 ) ∗ (({r1},
1
2 ); ({d1, y1}, 1); ({m1, z1}, 12 )) ∗ Stop]∥

[({x2}, 12 ) ∗ (({r2},
1
2 ); ({d2, y2}, 1); ({m2, z2}, 12 )) ∗ Stop]∥

[({a, x̂1, x̂2}, 12 ) ∗ ((({ŷ1}, 1); ({ẑ1},
1
2 ))[](({ŷ2}, 1); ({ẑ2},

1
2 ))) ∗ Stop])

sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2]≈.

31



�
�
�
�s1

�
�
�
�s2

�
�
�
�s5

�
�
�
�s8

�
�
�
�s7

�
�
�
�s9

?

?

?

?

?

?

TS(E)

�������������������1

�
�

�
�
�
���

- �

� -

({a}, 1
8
), 1

8

({r1}, 1
2
), 1

4
({r2}, 1

2
), 1

4

{({r1}, 1
2
),({r2}, 1

2
)}, 1

4

({d1},2),1 ({d2},2),1

({r2}, 1
2
), 3

8
({r1}, 1

2
), 3

8

{({r1}, 1
2
),

({m2}, 1
4
)}, 1

8

{({r2}, 1
2
),

({m1}, 1
4
)}, 1

8

({m1}, 1
4
), 1

8
({m2}, 1

4
), 1

8

({d1},2), 1
2

({d2},2), 1
2

!!!!!!!!!!!!!!

















�

aaaaaaaaaaaaaa
J

J
J

J
J

J
J

J
J]

({m1}, 1
4
), 1

4
({m2}, 1

4
), 1

4

@
@

@
@

@
@@I

PPPPPPPPPPPPPPPPPPPi
s3 s4

s6

-��

-�� ���

���

� �6

� �6∅, 3
8

∅, 3
4

∅, 3
8

∅, 3
4

∅, 7
8

∅, 1
4

Figure 11: The transition system of the shared memory system

We have DRT (E) = {s1, s2, s5, s5, s8, s9} and DRV (E) = {s3, s4, s6}.
The states are interpreted as follows: s1 is the initial state, s2: the system is activated and the memory is

not requested, s3: the memory is requested by the first processor, s4: the memory is requested by the second
processor, s5: the memory is allocated to the first processor, s6: the memory is requested by two processors,
s7: the memory is allocated to the second processor, s8: the memory is allocated to the first processor and
the memory is requested by the second processor, s9: the memory is allocated to the second processor and the
memory is requested by the first processor.

In Figure 11, the transition system TS(E) is presented. In Figure 12, the underlying SMC SMC (E) is
depicted.

The average sojourn time vector of E is

SJ =

(
8,

4

3
, 0, 0,

8

5
, 0,

8

5
, 4, 4

)
.

The sojourn time variance vector of E is

VAR =

(
64,

16

9
, 0, 0,

64

25
, 0,

64

25
, 16, 16

)
.

The TPM for EDTMC (E) is

P∗ =



0 1 0 0 0 0 0 0 0
0 0 1

3
1
3 0 1

3 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1

5 0 1
5 0 0 0 3

5 0
0 0 0 0 0 0 0 1

2
1
2

0 1
5

1
5 0 0 0 0 0 3

5
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0


.

In Table 4, the transient and the steady-state probabilities ψ∗
i [k] (i ∈ {1, 2, 3, 5, 6, 8}) for the EDTMC of the

shared memory system at the time moments k (0 ≤ k ≤ 10) and k = ∞ are presented, and in Figure 13, the
alteration diagram (evolution in time) for the transient probabilities is depicted. It is sufficient to consider the
probabilities for the states s1, s2, s3, s5, s6, s8 only, since the corresponding values coincide for s3, s4 as well as
for s5, s7 as well as for s8, s9.
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Figure 12: The underlying SMC of the shared memory system

Table 4: Transient and steady-state probabilities for the EDTMC of the shared memory system

k 0 1 2 3 4 5 6 7 8 9 10 ∞
ψ∗
1 [k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ∗
2 [k] 0 1 0 0 0.1333 0 0.0933 0.0978 0.0187 0.0969 0.0754 0.0682

ψ∗
3 [k] 0 0 0.3333 0 0.2333 0.2444 0.0467 0.2422 0.1886 0.0982 0.2316 0.1705

ψ∗
5 [k] 0 0 0 0.3333 0 0.2333 0.2444 0.0467 0.2422 0.1886 0.0982 0.1705

ψ∗
6 [k] 0 0 0.3333 0 0 0.0444 0 0.0311 0.0326 0.0062 0.0323 0.0227

ψ∗
8 [k] 0 0 0 0.1667 0.2000 0 0.1622 0.1467 0.0436 0.1616 0.1163 0.1136
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Figure 13: Transient probabilities alteration diagram for the EDTMC of the shared memory system

The steady-state PMF for EDTMC (E) is

ψ∗ =

(
0,

3

44
,
15

88
,
15

88
,
15

88
,
1

44
,
15

88
,
5

44
,
5

44

)
.

The steady-state PMF ψ∗ weighted by SJ is(
0,

1

11
, 0, 0,

3

11
, 0,

3

11
,
5

11
,
5

11

)
.

It remains to normalize the steady-state weighted PMF dividing it by the sum of its components

ψ∗SJT =
17

11
.

Thus, the steady-state PMF for SMC (E) is

φ =

(
0,

1

17
, 0, 0,

3

17
, 0,

3

17
,
5

17
,
5

17

)
.

We can now calculate the main performance indices.

• The average recurrence time in the state s2, where no processor requests the memory, called the average
system run-through, is 1

φ2
= 17.

• The common memory is available only in the states s2, s3, s4, s6. Then the steady-state probability that
the memory is available is φ2 +φ3 +φ4 +φ6 = 1

17 +0+0+0 = 1
17 . The steady-state probability that the

memory is used (i.e., not available), called the shared memory utilization, is 1− 1
17 = 16

17 .

• After activation of the system, we leave the state s1 for ever, and the common memory is either requested
or allocated in every remaining state, with exception of s2. Thus, the rate with which the shared memory
necessity emerges coincides with the rate of leaving s2, calculated as φ2

SJ2
= 1

17 · 3
4 = 3

68 .

34



({m2,z2}, 12 )

({d2,y2},1)

�

�
��u e

({r2}, 12 )

�
��
?

?

�
��

?

�
��x

�
��

�

�

�

({m1,z1}, 12 )

�
��
({d1,y1},1)

�
��x

({r1}, 12 )

�
��
?

?

	

�
��u e

�
��

?

�

�

-

({x1}, 12 )
?

?

?

?

?

?

({x2}, 12 )
?

?

N1 N2

({a,x̂1,x̂2}, 12 )
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({ŷ1},1) ({ŷ2},1)
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Figure 14: The marked dtsi-boxes of two processors and shared memory

• The common memory request of the first processor ({r1}, 12 ) is only possible from the states s2, s7. In
each of the states the request probability is the sum of the execution probabilities for all sets of activities
containing ({r1}, 12 ). The steady-state probability of the shared memory request from the first processor is
φ2

∑
{Υ|({r1}, 12 )∈Υ} PT (Υ, s2) + φ7

∑
{Υ|({r1}, 12 )∈Υ} PT (Υ, s7) =

1
17

(
1
4 + 1

4

)
+ 3

17

(
3
8 + 1

8

)
= 2

17 .

In Figure 14, the marked dtsi-boxes corresponding to the dynamic expressions of two processors and shared
memory are presented, i.e., Ni = Boxdtsi(Ei) (1 ≤ i ≤ 3). In Figure 15, the marked dtsi-box corresponding to
the dynamic expression of the shared memory system is depicted, i.e., N = Boxdtsi(E).

9.2 The abstract system and its reduction

Let us consider a modification of the shared memory system with abstraction from identifiers of the processors,
i.e., such that the processors are indistinguishable. For example, we can just see that a processor requires
memory or the memory is allocated to it but cannot observe which processor is it. We call this system the
abstract shared memory one.

The static expression of the first processor is

F1 = [({x1},
1

2
) ∗ (({r}, 1

2
); ({d, y1}, 1); ({m, z1},

1

2
)) ∗ Stop].

The static expression of the second processor is

F2 = [({x2},
1

2
) ∗ (({r}, 1

2
); ({d, y2}, 1); ({m, z2},

1

2
)) ∗ Stop].

The static expression of the shared memory is

F3 = [({a, x̂1, x̂2},
1

2
) ∗ ((({ŷ1}, 1); ({ẑ1},

1

2
))[](({ŷ2}, 1); ({ẑ2},

1

2
))) ∗ Stop].

The static expression of the abstract shared memory system with two processors is

F = (F1∥F2∥F3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.

DR(F ) resembles DR(E), and TS(F ) is similar to TS(E). We have SMC (F ) = SMC (E). Thus, the
average sojourn time vectors of F and E, as well as the TPMs and the steady-state PMFs for EDTMC (F ) and
EDTMC (E), coincide.
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Figure 15: The marked dtsi-box of the shared memory system

The first and second performance indices are the same for the standard and the abstract systems. Let us
consider the following performance index which is a specific to the abstract system.

• The common memory request of a processor ({r}, 12 ) is only possible from the states s2, s5, s7. In each
of the states the request probability is the sum of the execution probabilities for all sets of activi-
ties containing ({r}, 12 ). The steady-state probability of the shared memory request from a processor is
φ2

∑
{Υ|({r}, 12 )∈Υ} PT (Υ, s2) + φ5

∑
{Υ|({r}, 12 )∈Υ} PT (Υ, s5) + φ7

∑
{Υ|({r}, 12 )∈Υ} PT (Υ, s7) =

1
17

(
1
4 + 1

4 + 1
4

)
+ 3

17

(
3
8 + 1

8

)
+ 3

17

(
3
8 + 1

8

)
= 15

68 .

The marked dtsi-boxes corresponding to the dynamic expressions of the standard and the abstract two
processors and shared memory are similar as well as the marked dtsi-boxes corresponding to the dynamic
expression of the standard and the abstract shared memory systems.

We have DR(F )/Rss(F ) = {K1,K2,K3,K4,K5,K6}, where K1 = {s1} (the initial state), K2 = {s2} (the

system is activated and the memory is not requested), K3 = {s3, s4} (the memory is requested by one processor),
K4 = {s5, s7} (the memory is allocated to a processor), K5 = {s6} (the memory is requested by two processors),
K6 = {s8, s9} (the memory is allocated to a processor and the memory is requested by another processor).

In Figure 16, the quotient transition system TS↔ss
(F ) is presented. In Figure 17, the quotient underlying

SMC SMC↔ss
(F ) is depicted.

The quotient average sojourn time vector of F is

SJ ′ =

(
8,

4

3
, 0,

8

5
, 0, 4

)
.

The quotient sojourn time variance vector of F is

VAR′ =

(
64,

16

9
, 0,

64

25
, 0, 16

)
.

The TPM for EDTMC↔ss
(F ) is

P′∗ =


0 1 0 0 0 0
0 0 2

3 0 1
3 0

0 0 0 1 0 0
0 1

5
1
5 0 0 3

5
0 0 0 0 0 1
0 0 1 0 0 0

 .
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Figure 16: The quotient transition system of the abstract shared memory system

SMC↔ss
(F )

�
�
�
�K6 K5

K3

�
�
�
�K4

�
�
�
�K2

�
�
�
�K1

1

1
5

1

3
5

1
3

2
31

1

1
5

?

??

-

�














�J

J
J

J
J

J]J
J
J
J
J
Ĵ
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Figure 17: The quotient underlying SMC of the abstract shared memory system
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Table 5: Transient and steady-state probabilities for the quotient EDTMC of the abstract shared memory
system

k 0 1 2 3 4 5 6 7 8 9 10 ∞
ψ′
1
∗
[k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ′
2
∗
[k] 0 1 0 0 0.1333 0 0.0933 0.0978 0.0187 0.0969 0.0754 0.0682

ψ′
3
∗
[k] 0 0 0.6667 0 0.4667 0.4889 0.0933 0.4844 0.3772 0.1964 0.4633 0.3409

ψ′
4
∗
[k] 0 0 0 0.6667 0 0.4667 0.4889 0.0933 0.4844 0.3772 0.1964 0.3409

ψ′
5
∗
[k] 0 0 0.3333 0 0 0.0444 0 0.0311 0.0326 0.0062 0.0323 0.0227

ψ′
6
∗
[k] 0 0 0 0.3333 0.4000 0 0.3244 0.2933 0.0871 0.3233 0.2325 0.2273

In Table 5, the transient and the steady-state probabilities ψ′
i
∗
[k] (1 ≤ i ≤ 6) for the quotient EDTMC of

the abstract shared memory system at the time moments k (0 ≤ k ≤ 10) and k = ∞ are presented, and in
Figure 18, the alteration diagram (evolution in time) for the transient probabilities is depicted.

The steady-state PMF for EDTMC↔ss
(F ) is

ψ′∗ =

(
0,

3

44
,
15

44
,
15

44
,
1

44
,
5

22

)
.

The steady-state PMF ψ′∗ weighted by SJ ′ is(
0,

1

11
, 0,

6

11
, 0,

10

11

)
.

It remains to normalize the steady-state weighted PMF dividing it by the sum of its components

ψ′∗SJ ′T =
17

11
.

Thus, the steady-state PMF for SMC↔ss
(F ) is

φ′ =

(
0,

1

17
, 0,

6

17
, 0,

10

17

)
.

We can now calculate the main performance indices.

• The average recurrence time in the state K2, where no processor requests the memory, called the average
system run-through, is 1

φ′
2
= 17

1 = 17.

• The common memory is available only in the states K2,K3,K5. Then the steady-state probability that
the memory is available is φ′

2 +φ′
3 +φ′

5 = 1
17 +0+0 = 1

17 . The steady-state probability that the memory
is used (i.e., not available), called the shared memory utilization, is 1− 1

17 = 16
17 .

• After activation of the system, we leave the state K1 for ever, and the common memory is either requested
or allocated in every remaining state, with exception of K2. Thus, the rate with which the shared memory

necessity emerges coincides with the rate of leaving K2, calculated as
φ′

2

SJ ′
2
= 1

17 · 3
4 = 3

68 .

• The common memory request of a processor {r} is only possible from the states K2,K4. In each of
the states the request probability is the sum of the execution probabilities for all multisets of multiac-
tions containing {r}. Thus, the steady-state probability of the shared memory request from a processor is

φ′
2

∑
{A,K̃|{r}∈A, K2

A→K̃}
PMA(K2, K̃) + φ′

4

∑
{A,K̃|{r}∈A, K4

A→K̃}
PMA(K, K̃) = 1

17

(
1
2 + 1

4

)
+ 6

17

(
3
8 + 1

8

)
=

15
68 .

One can see that the performance indices are the same for the complete and the quotient abstract shared
memory systems. The coincidence of the first and second performance indices obviously illustrates the result of
Proposition 8.1. The coincidence of the third performance index is due to Theorem 8.1: one should just apply
its result to the step traces {{r}}, {{r}, {r}}, {{r}, {m}} of the expression F and itself, and then sum the left
and right parts of the three resulting equalities.
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Figure 18: Transient probabilities alteration diagram for the quotient EDTMC of the abstract shared memory
system
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Figure 19: The transition system of the generalized shared memory system

9.3 The generalized system

Now we obtain the performance indices taking general values for all multiaction probabilities and weights. Let
us suppose that all the mentioned multiactions have the same generalized probability ρ, and generalized weight
l. The resulting specification K of the generalized shared memory system is defined as follows.

The static expression of the first processor is

K1 = [({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, l); ({m1, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

K2 = [({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, l); ({m2, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

K3 = [({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, l); ({ẑ1}, ρ))[](({ŷ2}, l); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the generalized shared memory system with two processors is

K = (K1∥K2∥K3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.

In Figure 19, the transition system TS(K) is presented. In Figure 20, the underlying SMC SMC (K) is
depicted.

The average sojourn time vector of K is

S̃J =

(
1

ρ3
,

1

ρ(2− ρ)
, 0, 0,

1

ρ(1 + ρ− ρ2)
, 0,

1

ρ(1 + ρ− ρ2)
,
1

ρ2
,
1

ρ2

)
.

The sojourn time variance vector of K is

ṼAR =

(
1

ρ6
,

1

ρ2(2− ρ)2
, 0, 0,

1

ρ2(1 + ρ− ρ2)2
, 0,

1

ρ2(1 + ρ− ρ2)2
,
1

ρ4
,
1

ρ4

)
.

The TPM for EDTMC (K) is
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Figure 20: The underlying SMC of the generalized shared memory system

P̃∗ =



0 1 0 0 0 0 0 0 0

0 0 1−ρ
2−ρ

1−ρ
2−ρ 0 ρ

2−ρ 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0

0 ρ(1−ρ)
1+ρ−ρ2 0 ρ2

1+ρ−ρ2 0 0 0 1−ρ2
1+ρ−ρ2 0

0 0 0 0 0 0 0 1
2

1
2

0 ρ(1−ρ)
1+ρ−ρ2

ρ2

1+ρ−ρ2 0 0 0 0 0 1−ρ2
1+ρ−ρ2

0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0


.

The steady-state PMF for EDTMC (K) is

ψ̃∗ = 1
2(6+3ρ−9ρ2+2ρ3) (0, 2ρ(2− 3ρ− ρ2), 2 + ρ− 3ρ2 + ρ3, 2 + ρ− 3ρ2 + ρ3, 2 + ρ− 3ρ2 + ρ3, 2ρ2(1− ρ),

2 + ρ− 3ρ2 + ρ3, 2− ρ− ρ2, 2− ρ− ρ2).

The steady-state PMF ψ̃∗ weighted by S̃J is

1

2ρ2(6 + 3ρ− 9ρ2 + 2ρ3)
(0, 2ρ2(1− ρ), 0, 0, ρ(2− ρ), 0, ρ(2− ρ), 2− ρ− ρ2, 2− ρ− ρ2).

It remains to normalize the steady-state weighted PMF dividing it by the sum of its components

ψ̃∗S̃J
T
=

2 + ρ− ρ2 − ρ3

ρ2(6 + 3ρ− 9ρ2 + 2ρ3)
.

Thus, the steady-state PMF for SMC (K) is

φ̃ =
1

2(2 + ρ− ρ2 − ρ3)
(0, 2ρ2(1− ρ), 0, 0, ρ(2− ρ), 0, ρ(2− ρ), 2− ρ− ρ2, 2− ρ− ρ2).

We can now calculate the main performance indices.

• The average recurrence time in the state s̃2, where no processor requests the memory, called the average

system run-through, is 1
φ̃2

= 2+ρ−ρ2−ρ3
ρ2(1−ρ) .
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• The common memory is available only in the states s̃2, s̃3, s̃4, s̃6. Then the steady-state probability that

the memory is available is φ̃2 + φ̃3 + φ̃4 + φ̃6 = ρ2(1−ρ)
2+ρ−ρ2−ρ3 + 0 + 0 + 0 = ρ2(1−ρ)

2+ρ−ρ2−ρ3 . Then the steady-

state probability that the memory is used (i.e., not available), called the shared memory utilization, is

1− ρ2(1−ρ)
2+ρ−ρ2−ρ3 = 2+ρ−2ρ2

2+ρ−ρ2−ρ3 .

• After activation of the system, we leave the state s̃1 for ever, and the common memory is either requested or
allocated in every remaining state, with exception of s̃2. Thus, the rate with which the shared memory ne-

cessity emerges coincides with the rate of leaving s̃2, calculated as φ̃2

S̃J2
= ρ2(1−ρ)

2+ρ−ρ2−ρ3 ·
ρ(2−ρ)

1 = ρ3(1−ρ)(2−ρ)
2+ρ−ρ2−ρ3 .

• The common memory request of the first processor ({r1}, ρ) is only possible from the states s̃2, s̃7. In
each of the states the request probability is the sum of the execution probabilities for all sets of activities
containing ({r1}, ρ). Thus, the steady-state probability of the shared memory request from the first proces-

sor is φ̃2

∑
{Υ|({r1}, 12 )∈Υ} PT (Υ, s̃2) + φ̃7

∑
{Υ|({r1}, 12 )∈Υ} PT (Υ, s̃7) =

ρ2(1−ρ)
2+ρ−ρ2−ρ3 (ρ(1 − ρ) + ρ(1 − ρ)) +

ρ(2−ρ)
2(2+ρ−ρ2−ρ3) (ρ(1− ρ2) + ρ3) = ρ2(2+3ρ−8ρ2+4ρ3)

2(2+ρ−ρ2−ρ3) .

9.4 The abstract generalized system and its reduction

Let us consider a modification of the generalized shared memory system with abstraction from identifiers of the
processors. We call this system the abstract generalized shared memory one.

The static expression of the first processor is

L1 = [({x1}, ρ) ∗ (({r}, ρ); ({d, y1}, l); ({m, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

L2 = [({x2}, ρ) ∗ (({r}, ρ); ({d, y2}, l); ({m, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

L3 = [({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, l); ({ẑ1}, ρ))[](({ŷ2}, l); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the abstract generalized shared memory system with two processors is

L = (L1∥L2∥L3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2 rs y1 rs y2 rs z1 rs z2.

DR(L) resembles DR(K), and TS(L) is similar to TS(K). We have SMC (L) = SMC (K). Thus, the
average sojourn time vectors of L and K, as well as the TPMs and the steady-state PMFs for EDTMC (L) and
EDTMC (K), coincide.

The first and second performance indices are the same for the generalized system and its abstract modifica-
tion. Let us consider the following performance index which is again specific to the abstract system.

• The common memory request of a processor ({r}, ρ) is only possible from the states s̃2, s̃5, s̃7. In each
of the states the request probability is the sum of the execution probabilities for all sets of activities
containing ({r}, ρ). Thus, the steady-state probability of the shared memory request from a processor is
φ̃2

∑
{Υ|({r},ρ)∈Υ} PT (Υ, s̃2) + φ̃5

∑
{Υ|({r},ρ)∈Υ} PT (Υ, s̃5) + φ̃7

∑
{Υ|({r},ρ)∈Υ} PT (Υ, s̃7) =

ρ2(1−ρ)
2+ρ−ρ2−ρ3 (ρ(1 − ρ) + ρ(1 − ρ) + ρ2) + ρ(2−ρ)

2(2+ρ−ρ2−ρ3) (ρ(1 − ρ2) + ρ3) + ρ(2−ρ)
2(2+ρ−ρ2−ρ3) (ρ(1 − ρ2) + ρ3) =

ρ2(2−ρ)(1+ρ−ρ2)
2+ρ−ρ2−ρ3 .

We have DR(L)/Rss(L)
= {K̃1, K̃2, K̃3, K̃4, K̃5, K̃6}, where K̃1 = {s̃1} (the initial state), K̃2 = {s̃2} (the

system is activated and the memory is not requested), K̃3 = {s̃3, s̃4} (the memory is requested by one processor),

K̃4 = {s̃5, s̃7} (the memory is allocated to a processor), K̃5 = {s̃6} (the memory is requested by two processors),

K̃6 = {s̃8, s̃9} (the memory is allocated to a processor and the memory is requested by another processor).
In Figure 21, the quotient transition system TS↔ss

(L) is presented. In Figure 22, the quotient underlying

SMC SMC↔ss
(L) is depicted.

The quotient average sojourn time vector of F is

S̃J
′
=

(
1

ρ3
,

1

ρ(2− ρ)
, 0,

1

ρ(1 + ρ− ρ2)
, 0,

1

ρ2

)
.

The quotient sojourn time variance vector of F is
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Figure 21: The quotient transition system of the abstract generalized shared memory system
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Figure 22: The quotient underlying SMC of the abstract generalized shared memory system
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ṼAR
′
=

(
1

ρ6
,

1

ρ2(2− ρ)2
, 0,

1

ρ2(1 + ρ− ρ2)2
, 0,

1

ρ4

)
.

The TPM for EDTMC↔ss
(L) is

P̃′∗ =



0 1 0 0 0 0

0 0 2(1−ρ)
2−ρ 0 ρ

2−ρ 0

0 0 0 1 0 0

0 ρ(1−ρ)
1+ρ−ρ2

ρ2

1+ρ−ρ2 0 0 1−ρ2
1+ρ−ρ2

0 0 0 0 0 1
0 0 1 0 0 0


.

The steady-state PMF for EDTMC↔ss
(L) is

ψ̃′∗ =
1

6 + 3ρ− 9ρ2 + 2ρ3
(0, ρ(2− 3ρ+ ρ2), 2 + ρ− 3ρ2 + ρ3, 2 + ρ− 3ρ2 + ρ3, ρ2(1− ρ), 2− ρ− ρ2).

The steady-state PMF ψ̃′∗ weighted by S̃J
′
is

1

ρ2(6 + 3ρ− 9ρ2 + 2ρ3)
(0, ρ2(1− ρ), 0, ρ(2− ρ), 0, 2− ρ− ρ2).

It remains to normalize the steady-state weighted PMF dividing it by the sum of its components

ψ̃′∗S̃J
′T

=
2 + ρ− ρ2 − ρ3

ρ2(6 + 3ρ− 9ρ2 + 2ρ3)
.

Thus, the steady-state PMF for SMC↔ss
(L) is

φ̃′ =
1

2 + ρ− ρ2 − ρ3
(0, ρ2(1− ρ), 0, ρ(2− ρ), 0, 2− ρ− ρ2).

We can now calculate the main performance indices.

• The average recurrence time in the state K̃2, where no processor requests the memory, called the average

system run-through, is 1
φ̃′

2
= 2+ρ−ρ2−ρ3

ρ2(1−ρ) .

• The common memory is available only in the states K̃2, K̃3, K̃5. Then the steady-state probability that the

memory is available is φ̃′
2+φ̃

′
3+φ̃

′
5 = ρ2(1−ρ)

2+ρ−ρ2−ρ3+0+0 = ρ2(1−ρ)
2+ρ−ρ2−ρ3 . Thee steady-state probability that the

memory is used (i.e., not available), called the shared memory utilization, is 1− ρ2(1−ρ)
2+ρ−ρ2−ρ3 = 2+ρ−2ρ2

2+ρ−ρ2−ρ3 .

• After activation of the system, we leave the state K̃1 for ever, and the common memory is either requested
or allocated in every remaining state, with exception of K̃2. Thus, the rate with which the shared mem-

ory necessity emerges coincides with the rate of leaving K̃2, calculated as
φ̃′

2

S̃J
′
2

= ρ2(1−ρ)
2+ρ−ρ2−ρ3 · ρ(2−ρ)1 =

ρ3(1−ρ)(2−ρ)
2+ρ−ρ2−ρ3 .

• The common memory request of a processor {r} is only possible from the states K̃2, K̃4. In each of
the states the request probability is the sum of the execution probabilities for all multisets of multiac-
tions containing {r}. Thus, the steady-state probability of the shared memory request from a processor is

φ̃′
2

∑
{A,K̃|{r}∈A, K2

A→K̃}
PMA(K̃2, K̃)+ φ̃′

4

∑
{A,K̃|{r}∈A, K̃4

A→K̃}
PMA(K̃, K̃) = ρ2(1−ρ)

2+ρ−ρ2−ρ3 (2ρ(1−ρ)+ρ
2)+

ρ(2−ρ)
2+ρ−ρ2−ρ3 (ρ(1− ρ2) + ρ3) = ρ2(2−ρ)(1+ρ−ρ2)

2+ρ−ρ2−ρ3 .

One can see that the performance indices are the same for the complete and the quotient abstract generalized
shared memory systems. The coincidence of the first and second performance indices obviously illustrates the
result of Proposition 8.1. The coincidence of the third performance index is due to Theorem 8.1: one should
just apply its result to the step traces {{r}}, {{r}, {r}}, {{r}, {m}} of the expression L and itself, and then
sum the left and right parts of the three resulting equalities.

Let us consider which effect have quantitative changes of the parameter ρ upon performance of the quotient
abstract generalized shared memory system in its steady state. Remember that ρ ∈ (0; 1) is the probability of
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Figure 23: Alteration diagrams for the steady-state probabilities φ̃′
2, φ̃

′
4, φ̃

′
6 depending on the parameter ρ

every multiaction of the system. The closer is ρ to 0, the less is the probability to execute some activities at
every discrete time step, hence, the system will most probably stand idle. The closer is ρ to 1, the greater is the
probability to execute some activities at every discrete time step, hence, the system will most probably operate.

Since φ̃′
1 = φ̃′

3 = φ̃′
5 = 0, only φ̃′

2 = ρ2(1−ρ)
2+ρ−ρ2−ρ3 , φ̃

′
4 = ρ(2−ρ)

2+ρ−ρ2−ρ3 , φ̃
′
6 = 2−ρ−ρ2

2+ρ−ρ2−ρ3 depend on ρ. In Figure

23, the alteration diagrams are depicted for φ̃′
2, φ̃

′
4, φ̃

′
6 considered as the functions depending on ρ. Notice

that, however, we do not allow ρ = 0 or ρ = 1.
One can see that φ̃′

2, φ̃
′
4 tend to 0 and φ̃′

6 tends to 1 when ρ approaches 0. Thus, when ρ is closer to 0,
the probability that the memory is allocated to a processor and the memory is requested by another processor
increases, hence, we have more unsatisfied memory requests.

Further, φ̃′
2, φ̃

′
6 tend to 0 and φ̃′

4 tends to 1 when ρ approaches 1. Thus, when ρ is closer to 1, the probability
that the memory is allocated to a processor (and not requested by another one) increases, hence, we have less
unsatisfied memory requests.

The maximal value 0.0797 of φ̃′
2 is reached when ρ = 0.7433. In this case, the probability that the system

is activated and the memory is not requested is maximal, i.e., the maximal shared memory availability is about
8%.

In Figure 24, the alteration diagram are depicted for the shared memory utilization calculated as 1− φ̃′
2 −

φ̃′
3− φ̃′

5 and considered as the function depending on ρ. One can see that the utilization tends to 1 both when ρ
approaches 0 and when ρ approaches 1. The minimal value 0.9203 of the utilization is reached when ρ = 0.7433.
Thus, the minimal shared memory utilization is about 92%. To increase the utilization, one should take the
parameter ρ closer to 0 or 1.

The influence of value ρ to the remaining performance indices presented before is investigated according to
the same pattern as above.

10 Conclusion

In this paper, we have proposed a discrete time stochastic extension dtsiPBC of a finite part of PBC enriched
with iteration and immediate multiactions. The calculus has the concurrent step operational semantics based
on labeled probabilistic transition systems and the denotational semantics in terms of a subclass of LDTSIPNs.
A method of performance evaluation in the framework of the calculus has been presented. Step stochastic
bisimulation equivalence of process expressions has been defined and its interrelations with other equivalences
of the calculus have been investigated. We have explained how to reduce transition systems and underlying
SMCs of expressions with respect to the introduced equivalence. We have proved that the mentioned equivalence
guarantees identity of the stationary behaviour and thus preserves performance measures. A case study of the
shared memory system has been presented as an example of modeling, performance evaluation and performance
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Figure 24: Alteration diagram for the shared memory utilization 1− φ̃′
2 − φ̃′

3 − φ̃′
5 depending on the parameter

ρ

preserving reduction in the framework of the calculus.
Future work will consist in constructing a congruence relation for dtsiPBC, i.e., the equivalence that with-

stands application of all operations of the algebra. The first possible candidate is a stronger version of ↔ss

defined via transition systems equipped with two extra transitions skip and redo like those from [31]. We also
plan to extend the calculus with deterministically timed multiactions having a fixed time delay (including the
zero one which is the case of immediate multiactions) to enhance expressiveness of the calculus and to extend
application area of the associated analysis techniques. Moreover, recursion operation could be added to dtsiPBC
to increase further specification power of the algebra.
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A Proofs

A.1 Proof of Proposition 6.2

Like it has been done for strong equivalence in Proposition 8.2.1 from [16], we shall prove the following fact
about step stochastic bisimulation. Let for some index set J we have ∀j ∈ J , Rj : G↔ssG

′. Then the transitive
closure of the union of all the relations R = (∪j∈JRj)

∗ is also an equivalence and R : G↔ssG
′.

Since ∀j ∈ J , Rj is an equivalence, by definition of R we get that R is also an equivalence.
Let j ∈ J , then by definition of R, (s1, s2) ∈ Rj implies (s1, s2) ∈ R. Hence, ∀Hjk ∈ (DR(G) ∪

DR(G′))/Rj , ∃H ∈ (DR(G) ∪DR(G′))/R, Hjk ⊆ H. Moreover, ∃J ′, H = ∪k∈J ′Hjk.
We denote R(n) = (∪j∈JRj)

n. Let (s1, s2) ∈ R, then by definition of R, ∃n > 0, (s1, s2) ∈ R(n). We shall
prove that R : G↔ssG

′ by induction over n.
It is clear that ∀j ∈ J , Rj : G↔ssG

′ implies ∀j ∈ J , ([G]≈, [G′]≈) ∈ Rj and we have ([G]≈, [G
′]≈) ∈ R by

definition of R.
It remains to prove that (s1, s2) ∈ R implies SJ(s1) = SJ(s2) and ∀H ∈ (DR(G) ∪ DR(G′))/R, ∀A ∈

INL
f , PMA(s1,H) = PMA(s2,H).
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• n = 1

In this case, (s1, s2) ∈ R implies ∃j ∈ J , (s1, s2) ∈ Rj . Since Rj : G↔ssG
′, we get SJ(s1) = SJ(s2) and

∀H ∈ (DR(G) ∪DR(G′))/R, ∀A ∈ INL
f ,

PMA(s1,H) =
∑
k∈J ′

PMA(s1,Hjk) =
∑
k∈J ′

PMA(s2,Hjk) = PMA(s2,H).

• n→ n+ 1

Suppose that ∀m ≤ n, (s1, s2) ∈ R(m) implies ∀H ∈ (DR(G) ∪DR(G′))/R, ∀A ∈ INL
f , PMA(s1,H) =

PMA(s2,H).

Then (s1, s2) ∈ R(n+ 1) implies ∃j ∈ J , (s1, s2) ∈ Rj ◦ R(n), i.e., ∃s3 ∈ (DR(G) ∪DR(G′)), such that
(s1, s3) ∈ Rj and (s3, s2) ∈ R(n).

Then, like for the case n = 1, we get SJ(s1) = SJ(s3) and PMA(s1,H) = PMA(s3,H). By the induction
hypothesis, we get SJ(s3) = SJ(s2) and PMA(s3,H) = PMA(s2,H). Thus, SJ(s1) = SJ(s3) = SJ(s2)
and ∀H ∈ (DR(G) ∪DR(G′))/R, ∀A ∈ INL

f ,

PMA(s1,H) = PMA(s3,H) = PMA(s2,H).

By definition, Rss(G,G
′), is at least as large as the largest step stochastic bisimulation between G and G′. It

follows from above that Rss(G,G
′) : G↔ssG

′. ⊓⊔

A.2 Proof of Proposition 8.1

By Proposition 6.1, (DR(G) ∪DR(G′))/R = ((DRT (G) ∪DRT (G′))/R) ⊎ ((DRV (G) ∪DRV (G′))/R). Hence,
∀H ∈ (DR(G)∪DR(G′))/R, all states from H are tangible, when H ∈ (DRT (G)∪DRT (G′))/R, or all of them
are vanishing, when H ∈ (DRV (G) ∪DRV (G′))/R.

By definition of the steady-state PMFs for SMCs, ∀s ∈ DRV (G), φ(s) = 0 and ∀s′ ∈ DRV (G
′), φ′(s′) = 0.

Thus, ∀H ∈ (DRV (G)∪DRV (G′))/R,
∑
s∈H∩DR(G) φ(s) =

∑
s∈H∩DRV (G) φ(s) = 0 =

∑
s′∈H∩DRV (G′) φ

′(s′) =∑
s′∈H∩DR(G′) φ

′(s′).

By Proposition 5.1, ∀s ∈ DRT (G), φ(s) = ψ(s) and ∀s′ ∈ DRV (G
′), φ′(s′) = ψ′(s′), where ψ and ψ′ are

the steady-state PMFs for DTMC (G) and DTMC (G′), respectively. Thus, ∀H ∈ (DRT (G) ∪DRT (G′))/R,∑
s∈H∩DR(G) φ(s) =

∑
s∈H∩DRT (G) φ(s) =

∑
s∈H∩DRT (G) ψ(s) and∑

s′∈H∩DR(G′) φ
′(s′) =

∑
s′∈H∩DRT (G′) φ

′(s′) =
∑
s′∈H∩DRT (G′) ψ

′(s′).

It remains to prove that ∀H ∈ (DRT (G)∪DRT (G′))/R,
∑
s∈H∩DRT (G) ψ(s) =

∑
s′∈H∩DRT (G′) ψ

′(s′). Since

(DR(G) ∪ DR(G′))/R = ((DRT (G) ∪ DRT (G′))/R) ⊎ ((DRV (G) ∪ DRV (G′))/R), the previous equality is a
consequence of the following one: ∀H ∈ (DR(G) ∪ DR(G′))/R,

∑
s∈H∩DR(G) ψ(s) =

∑
s′∈H∩DR(G′) ψ

′(s′).

It is sufficient to prove the previous statement for transient PMFs only, since ψ = limk→∞ ψ[k] and ψ′ =
limk→∞ ψ′[k]. We proceed by induction on k.

• k = 0

Note that the only nonzero values of the initial PMFs of DTMC (G) and DTMC (G′) are ψ[0]([G]≈)
and ψ[0]([G′]≈). The only equivalence class containing [G]≈ or [G′]≈ is H0 = {[G]≈, [G′]≈}. Thus,∑
s∈H0∩DR(G) ψ[0](s) = ψ[0]([G]≈) = 1 = ψ′[0]([G′]≈) =

∑
s′∈H0∩DR(G′) ψ

′[0](s′).

As for other equivalence classes, ∀H ∈ ((DR(G) ∪DR(G′))/R) \ H0, we have∑
s∈H∩DR(G) ψ[0](s) = 0 =

∑
s′∈H∩DR(G′) ψ

′[0](s′).

• k → k + 1

Let H ∈ (DR(G) ∪DR(G′))/R and s1, s2 ∈ H. We have ∀H̃ ∈ (DR(G) ∪DR(G′))/R, ∀A ∈ INL
f ,

s1
A→P H̃ ⇔ s2

A→P H̃. Therefore, PM(s1, H̃) =
∑

{Υ|∃s̃1∈H̃, s1
Υ→s̃1}

PT (Υ, s1) =∑
A∈INL

f

∑
{Υ|∃s̃1∈H̃, s1

Υ→s̃1, L(Υ)=A}
PT (Υ, s1) =

∑
A∈INL

f
PMA(s1, H̃) =

∑
A∈INL

f
PMA(s2, H̃) =∑

A∈INL
f

∑
{Υ|∃s̃2∈H̃, s2

Υ→s̃2, L(Υ)=A}
PT (Υ, s2) =

∑
{Υ|∃s̃2∈H̃, s2

Υ→s̃2}
PT (Υ, s2) = PM(s2, H̃). Since we

have the previous equality for all s1, s2 ∈ H, we can denote PM(H, H̃) = PM(s1, H̃) = PM(s2, H̃).
Note that transitions from the states of DR(G) always lead to those from the same set, hence, ∀s ∈
DR(G), PM(s, H̃) = PM(s, H̃ ∩DR(G)). The same is true for DR(G′).
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By induction hypothesis,
∑
s∈H∩DR(G) ψ[k](s) =

∑
s′∈H∩DR(G′) ψ

′[k](s′). Further,∑
s̃∈H̃∩DR(G) ψ[k + 1](s̃) =

∑
s̃∈H̃∩DR(G)

∑
s∈DR(G) ψ[k](s)PM(s, s̃) =∑

s∈DR(G)

∑
s̃∈H̃∩DR(G) ψ[k](s)PM(s, s̃) =

∑
s∈DR(G) ψ[k](s)

∑
s̃∈H̃∩DR(G) PM(s, s̃) =∑

H
∑
s∈H∩DR(G) ψ[k](s)

∑
s̃∈H̃∩DR(G) PM(s, s̃) =∑

H
∑
s∈H∩DR(G) ψ[k](s)

∑
s̃∈H̃∩DR(G)

∑
{Υ|sΥ→s̃}

PT (Υ, s) =∑
H
∑
s∈H∩DR(G) ψ[k](s)

∑
{Υ|∃s̃∈H̃∩DR(G), s

Υ→s̃}
PT (Υ, s) =∑

H
∑
s∈H∩DR(G) ψ[k](s)PM(s, H̃) =

∑
H
∑
s∈H∩DR(G) ψ[k](s)PM(H, H̃) =∑

H PM(H, H̃)
∑
s∈H∩DR(G) ψ[k](s) =

∑
H PM(H, H̃)

∑
s′∈H∩DR(G′) ψ

′[k](s′) =∑
H
∑
s′∈H∩DR(G′) ψ

′[k](s′)PM(H, H̃) =
∑

H
∑
s′∈H′∩DR(G′) ψ

′[k](s′)PM(s′, H̃) =∑
H
∑
s′∈H∩DR(G′) ψ

′[k](s′)
∑

{Υ|∃s̃′∈H̃∩DR(G′), s′
Υ→s̃′}

PT (Υ, s′) =∑
H
∑
s′∈H∩DR(G′) ψ

′[k](s′)
∑
s̃′∈H̃∩DR(G′)

∑
{Υ|∃s̃′, s′ Υ→s̃′}

PT (Υ, s′) =∑
H
∑
s′∈H∩DR(G′) ψ

′[k](s′)
∑
s̃′∈H̃∩DR(G′) PM(s′, s̃′) =∑

s′∈DR(G′) ψ
′[k](s′)

∑
s̃′∈H̃∩DR(G′) PM(s′, s̃′) =

∑
s′∈DR(G′)

∑
s̃′∈H̃∩DR(G′) ψ

′[k](s′)PM(s′, s̃′) =∑
s̃′∈H̃∩DR(G′)

∑
s′∈DR(G′) ψ

′[k](s′)PM(s′, s̃′) =
∑
s̃′∈H̃∩DR(G′) ψ

′[k + 1](s̃′). ⊓⊔

A.3 Proof of Theorem 8.1

Let H ∈ (DR(G) ∪DR(G′))/R and s, s̄ ∈ H. We have ∀H̃ ∈ (DR(G) ∪DR(G′))/R, ∀A ∈ INL
f , s

A→P H̃ ⇔
s̄

A→P H̃. The previous equality is valid for all s, s̄ ∈ H, hence, we can rewrite it as H A→P H̃ and denote
PMA(H, H̃) = PMA(s, H̃) = PMA(s̄, H̃). Note that transitions from the states of DR(G) always lead to those

from the same set, hence, ∀s ∈ DR(G), PMA(s, H̃) = PMA(s, H̃ ∩DR(G)). The same is true for DR(G′).

Let Σ = A1 · · ·An be a step trace of G and G′. We have ∃H0, . . . ,∃Hn ∈ (DR(G) ∪DR(G′))/R, H0
A1→P1

H1
A2→P2 · · · An→Pn Hn. Now we intend to prove that the sum of probabilities of all the paths starting in every

s0 ∈ H0 and going through the states from H1, . . . ,Hn is equal to the product of P1, . . . ,Pn:∑
{Υ1,...,Υn|s0

Υ1→···Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

n∏
i=1

PT (Υi, si−1) =

n∏
i=1

PMAi(Hi−1,Hi).

We prove this equality by induction on the step trace length n.

• n = 1∑
{Υ1|s0

Υ1→s1, L(Υ1)=A1, s1∈H1}
PT (Υ1, s0) = PMA1(s0,H1) = PMA1(H0,H1).

• n→ n+ 1∑
{Υ1,...,Υn,Υn+1|s0

Υ1→···Υn→sn
Υn+1→ sn+1, L(Υi)=Ai, si∈Hi (1≤i≤n+1)}

∏n+1
i=1 PT (Υi, si−1) =∑

{Υn+1|sn
Υn+1→ sn+1, L(Υn+1)=An+1, sn∈Hn, sn+1∈Hn+1}

∑
{Υ1,...,Υn|s0

Υ1→···Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}∏n
i=1 PT (Υi, si−1)PT (Υn+1, sn) =∑
{Υ1,...,Υn|s0

Υ1→···Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}[∏n
i=1 PT (Υi, si−1)

∑
{Υn+1|sn

Υn+1→ sn+1, L(Υn+1)=An+1, sn∈Hn, sn+1∈Hn+1}
PT (Υn+1, sn)

]
=∑

{Υ1,...,Υn|s0
Υ1→···Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, si−1)PMAn+1(sn,Hn+1) =∑

{Υ1,...,Υn|s0
Υ1→···Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, si−1)PMAn+1(Hn,Hn+1) =

PMAn+1(Hn,Hn+1)
∑

{Υ1,...,Υn|s0
Υ1→···Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, si−1) =

PMAn+1(Hn,Hn+1)
∏n
i=1 PMAi(Hi−1,Hi) =

∏n+1
i=1 PMAi(Hi−1,Hi).

Let s0, s̄0 ∈ H0. We have
PT (A1 · · ·An, s0) =

∑
{Υ1,...,Υn|s0

Υ1→···Υn→sn, L(Υi)=Ai, (1≤i≤n)}

∏n
i=1 PT (Υi, si−1) =∑

H1,...,Hn

∑
{Υ1,...,Υn|s0

Υ1→···Υn→sn, L(Υi)=Ai, si∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, si−1) =∑

H1,...,Hn

∏n
i=1 PMAi

(Hi−1,Hi) =∑
H1,...,Hn

∑
{Υ1,...,Υn|s̄0

Υ1→···Υn→ s̄n, L(Υi)=Ai, s̄i∈Hi (1≤i≤n)}

∏n
i=1 PT (Υi, s̄i−1) =∑

{Υ1,...,Υn|s̄0
Υ1→···Υn→ s̄n, L(Υi)=Ai, (1≤i≤n)}

∏n
i=1 PT (Υi, s̄i−1) = PT (A1 · · ·An, s̄0).
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Since we have the previous equality for all s0, s̄0 ∈ H0, we can denote PT (A1 · · ·An,H0) =
PT (A1 · · ·An, s0) = PT (A1 · · ·An, s̄0).

By Proposition 8.1,
∑
s∈H∩DR(G) φ(s) =

∑
s′∈H∩DR(G′) φ

′(s′). Now we can complete the proof:∑
s∈H∩DR(G) φ(s)PT (Σ, s) =

∑
s∈H∩DR(G) φ(s)PT (Σ,H) = PT (Σ,H)

∑
s∈H∩DR(G) φ(s) =

PT (Σ,H)
∑
s′∈H∩DR(G′) φ

′(s′) =
∑
s′∈H∩DR(G′) φ

′(s′)PT (Σ,H) =
∑
s′∈H∩DR(G′) φ

′(s′)PT (Σ, s′). ⊓⊔
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