University of Castilla-La Mancha

¥

A publication of the

Computing Systems Department

Metric Data Structures Supported by Heterogeneous Systems

Metric Data Structures Supported

by
Heter ogeneous Systems
by

Roberto Uribe-Paredes, Enrique Arias,
Jo® L. SAnchez, Diego Cazorla

Technical Report #DIAB-13-05-2 May, 2013.-

DEPARTAMENTO DE SISTEMAS INFORMTICOS
ESCUELA SUPERIOR DE INGENIER INFORMATICA
UNIVERSIDAD DE CASTILLA-LA MANCHA

Campus Universitario s/n
Albacete - 02071 - Spain
Phone +34.967.599200, Fax +34.967.599224

Metric Data Structures Supported by Heterogeneous
Systems

May 14, 2013

Abstract

In real applications, when dealing with high volume of data, it is necessary th
use of parallel platforms in order to obtain results in a reasonable time. Ngwad
GPU/MultiGPU devices are widely used to get this reasonable time at a low pihiee.
GPU/MultiGPU are managed by a CPU/core/multicore host. That is why thesedind
systems are called heterogeneous systems. However, in most caseldtber€multicore
is idle when the GPU/MultiGPU devices are processing. As a consequbadbeoret-
ical peak performance of the underlying architecture decreasesfarumljrse, the term
heterogeneous platform becomes more a conventional term than a neal ter

In this paper, we have carried out a real heterogeneous implementatiosirfg
on similarity search. Similarity search is becoming a field of increasing integestise
these kinds of methods can be applied to different areas in sciencegindening, such
as pattern recognition, information retrieval, etc. This search is carrieoveun metric
indexes that allow to decrease the number of distance evaluations durisgéatah
process, improving the efficiency of the overall process. Our heteemus platform
consists of a 8 core processor and 4 GPUs. Then, our algorithms ekga@omputa-
tional resources executing at the same time on cores and on the GPUsh€delsg
is carried out by OpenMP considering dynamic scheduling. In order tthéxbest
chunk or block size of the queries to be processed by each processingnt, different

approaches have been considered.

Content-Based Image Retrieval (CBIR Model)

query results

metric

structure

insertion
query results

feature
extraction

—- | [[[|||

features vector

image data
collection

Figure 1:Similarity Search applied on Content-Based Image Retrieval System.

Keywords. Similarity search, metric spaces, range queries, GPU platforms, multi-

core platforms.

1 Introduction

In the last decade, the search of similar objects in a large collection of stbject®
in a metric database has become a most interesting problem. This kind of saarch
be found in different applications such as voice and image recognitida,ndiaing,
plagiarism and many others. A typical query for these applications is tlye rsgarch
which consists in obtaining all the objects that are at some given distancetii®
consulted object. Figure 1 represents a typical content-based imagealetdeeme.
The increasing size of databases and the emergence of new data typstbe
need to process large volumes of data. In order to be able to deal with thisyaofo
data and get results in a reasonable time, the use of parallel platforms ssagcd-or
example, when a query (search a word) is made to a retrieval informatsb@nsyn a
database (dictionary), the response time has to be short in order to distothe user

requirements.

Nowadays, a typical server site is comprised by a cluster of multicores alticcmu
PUs [26, 25]. In most applications, data is distributed among the differenepsors in
a cluster, and is processed in a multicore/multiGPU platform. Therefore, thethigs
have to be optimized to deal with the underlying heterogeneous architelgtoreover,
the algorithms have to be able to be executed on cores and GPUs at the same time in
order to obtain the best performance.

In this paper the authors present two different implementations considesmngf-
ferent scenarios. The first one takes into account that the queeaoapletely pro-
cessed in a unigue kernel. Under this scenario more objects of the datavalse allo-
cated to the global memory of the GPU. Evidently, the consequence is that theptmte
in data transfer is increased and more calls to the unique kernel arednéiduen, the
second scenario corresponds to a block-oriented implementation tramgtechunk of
gueries at a time and processing it in the unique kernel, reducing the timeirsjgeta
transfer and calls to the kernel. However, less objects of the datalbrabe eflocated in
the global memory of the device. Moreover, a bigger data structure ige€elgo store
the results of the queries.

This paper is structured as follows. First, the following subsections inte@u
description of the GPU architecture and the programming model, then theptasfce
similarity search in metric spaces is introduced and finally related work is riezke
Thinking on the GPU implementation, Section 2 compares well-known data s&actur
pivot-based against a generic structure in the sequential implementatioden tor
achieve a suitable structure for GPU platforms, presenting the experinpdafalrm,
experimental results and discussion. From the previous starting point, thetarmge-
neous implementations considering the two scenarios previously descréddtailed
in Sections 4.1 and 4.2. Finally, in Section 5 the conclusions and future werud-

lined.

1.1 GraphicsProcessing Units

Graphics Processing Units (GPUSs) are considered as serious cleaiémthigh-performance
computing solutions because of its suitability for massively parallel proags3ineir

high number of computing cores and high-speed memory access havetttiliair
application to many real-world applications such as bioinformatics, computhfiena
nance, numerical computing, image/video processing, engineering sima|giforsics

and chemistry, etc.

In order to adapt to the available hardware and obtain good perfornignes-
ploiting the full potential of the GPU, the main manufacturers, such as NViaind
AMD/ATI, proposed new languages or extensions for the most commadg-high-
level programming languages. NVIDIA proposed CUDA, a software ptatffor pro-
gramming massively parallel high-performance. The NVIDIAs CUDA Paogmning
Model [1] considers the GPU as a computational device capable to exebigk num-
ber of parallel threads. CUDA includes C/C++ software development,tbaistion
libraries, and a hardware abstraction mechanism that hides the GPUanartiwthe
developers.

To take advantage of the GPU computational capacity, hundreds of shezad
launched simultaneously to execution. In order to hide memory access ladeneft
ficient usage of the memory hierarchy must be achieved. A CUDA kexeslutes a
sequential code in a large number of threads in parallel. The threadsyarézed into
grids of thread blocks. Threads within a block can work together effigierchanging
data via a local shared memory and synchronize low-latency executiomgthigyn-
chronization barriers (where threads in a block are suspended untibtheeach the
synchronization point). By contrast, the threads of different blocksarséime grid can
only coordinate their execution through high-latency accesses to globabmethe
graphic board memory). The programmer arranges parallelism by dectagmumber
of thread blocks, the number of threads per thread block and their digtribsubject

to the program constraints.

1.2 Similarity Search in Metric Spaces

Similarity is modeled in many interesting cases through metric spaces, and thle sear
of similar objects through range search or nearest neighbors. A metiie §p,d) is

a setX and a distance functioth: X? — R, so thatvx,y,z € X fulfills the properties of
positivenessd(x,y) > Oandd(x,y) =0 iff x=Yy), symmetry ¢(x,y) = d(y,x)) and
triangle inequality d(x,y) + d(y,z) > (d(x,2)).

In a given metric spacgX,d) and a finite data séf C X, a series of queries can be
made. The basic query is thenge query (x,r), a query being € X and a range € R.
The range query aroundwith ranger (or radiusr) is the set of objectg € Y such that
d(x,y) <r. A second type of query that can be built using the range quécyéarest
neighbors (KNN), the query being € X and objectk. k nearest neighbors toare a
subsetA of objectsY, such that iffA| = k and an objecy € A, there is no object ¢ A
such thad(z x) < d(y,X).

There are several metric data structures (or metric access methods) aimed to min
mize the amount of distance evaluations made to solve the query and thetabg tke
processing time. Searching methods for metric spaces are mainly baseddamdhe
space using the distance to one or more selected objects. As they do pairticaar
characteristics of the application, these methods work with any type of ofgcts

Some structures are based in clustering and others in pivots. The clgdtesad
structures divide the space into areas, where each area has a daeatle. Some data
is stored in each area, which allows easy discarding the whole area bgiparing the
guery with its centre. Some clustering-based indexes are BST [15], GHTM-Tree
[9], GNAT [6], EGNAT [19] and many others.

In the pivots-based methods, a set of pivots is selected and the distzetoeen
the pivots and database elements are precalculated. When a query istimeagiecry
distance to each pivot is calculated and the triangle inequality is used todiikeazan-
didates. Its objective is to filter objects during a request through the usériaihgular
inequality, without really measuring the distance between the object unglezsieand

the discarded object. Some pivots-based indexes are LAESA [18]dr@ts variants

[3], Spaghettis and its variants CMBY99, FQA [7], SSS-Index [20] atiebrs.

Array-type structures implement these concepts directly. The diffemoag dif-
ferent array-type structures lies on extra structures used to redeaithputational
cost to obtain the number of candidates keeping invariable the evaluatiastafaks.
Although there are also tree-type structures, however, array-tgpiabest to be im-
plemented on GPU-based platforms [24].

More details on current metric structures can be found in [8, 14].

1.3 Related Work

Currently, there are many parallel platforms for the implementation of metridstasc
In this context, basic research has focused on technologies for disttimemory appli-
cations, using high level libraries for message passing such as MPIMy & shared
memory, using the language or directives of OpenMP [13].

Some studies have focused on different structures parallelized on aisttimem-
ory platforms using MPI or BSP. In these cases, the aim was not only thibghization
of the algorithms, but also the balanced distribution of data [27, 2, 12].

In terms of shared memory, some studies analyze data distribution on multicore
nodes. Other works propose combining multithread queries processitly axgn-
chronous with massively synchronous, depending on traffic [11].

Most of the previous and current works developed in this area aredaut con-
sidering classical distributed or shared memory platforms, but few stuxkiigtsfecus
on GPU-based platforms. Some solutions considered till now developedPbls @re
based on kNN queries without using data structures. This means that &P Wbssi-
cally applied to exploit its parallelism only for exhaustive search [16, 0§eneral, in
the previous works the parallelization is applied in two stages. The firstamgsts in
building the distance matrix, and the second one consists in sorting this distatoe
in order to obtain the final result.

A patrticular variant of the above proposed algorithms is presented inHdienthe

search is structured into three steps. In the first step each block solpesya Each

thread keeps a heap where it storeskiN&l nearest elements processed by this thread.
Secondly, a reduction operation is applied to obtain a final heap. Finallyjréhdk
elements of this final heap are taken as a result of the query.

In [4, 5] a GPU version of the structure List of Clusters is presentedvener, in
this case, a single kernel is used and no restrictions about the size of therynare
made, i.e., they consider they can store in the memory of the device the whateistru
the database, the pivots and all the queries.

In [24] metric structures on a GPU were used and the results were cainpdhe

sequential versions, considering 2 and 3 kernels working on the GPU.

2 Preparing a Pivot-based Metric Data Structure

In metric spaces literature different data structures have been catsiaied classified
into two categories: clustering-based methods and pivot-based methd@sction 1.2
several references have been taken into account.

In this work, clustering-based methods as EGNAT or GHT have not bawsidered
due to the fact that the tree-type structures do not suit well into the GRiiterture.
Thus, we only have considered array-type data structures as 888-Bpaghettis and
LAESA [23].

SSS-Index, Spaghettis and LAESA can be considered as a bidimersicmalthat
is, a distance table. These kinds of structures are appropriate to bedriafipa GPU
architecture, benefiting the execution of simple instructions by severaldhieer dif-
ferent data and avoiding jumps on the device memory. In the case of thgypee-
structures, mapping the structure on the GPU device implies jumps along theistruc
reducing the performance. This is the reason why we assess thatpeesttyctures do
not suit well into the GPU architecture.

In this work, the authors considered a Generic Metric Structure (GME&jites not
take into account a pivot selection, or, the pivots are randomly selesdenhposite to

SSS-Index and LAESA data structure. Besides, Spaghettis data strueteds to be

reordered before the search process. In GMS the structure doesatbto be ordered,
and then it is possible to obtain better performance on a GPU due to the fathdéha
ordering process is computationally expensive in this kind of device.

Therefore, this section tries to put in context different array-type datactures

before selecting one of them thinking of the GPU implementations.

2.1 Pivot-based and Array-type Data Structures

In the literature it is possible to find different array-type metric data strastuin this
section, we describe those taken into account in this work.

In particular, the considered metric data structures are:

Soaghettis: It is an array-type structure based on pivots and does not assume any
pivot selection method. However, each entry in the array, that refiedistances be-
tween an element in the database and the pivots, is sorted with respect tistdmsel
obtaining a reduction on the execution time by means of a binary search. lmdiks
the array is sorted considering only the first pivot.

SSSIndex: SSSIndex (Sparse Spatial Selection) [20] is basically the generic struc-
ture varying the way in which the pivots are selected. The selection methiidsew
introduced later.

LAESA: Like SSSIndey, it is a structure similar to the generic one, but the selection
of pivots is carried out using a method callgdximun Sum of Distances (MSD).

The choice of these metric structures is motivated because they arecrgptie® of
this field of knowledge, and we have considered structures basedais pind array-
type.

With respect to the choice of the pivot selection method, we have conditieze
following:

Randomly: As the name suggests, this method consists in selecting randomly the set
of pivots.

Soarse Fpatial Sclection (SS9): Sparse Fpatial Selection [20] is a method to se-

lect a dynamic set of pivots or centres distributed in the space.(Xet) be a met-

10

ric spacelU C X andM the largest distance between all pairs of objects, i.Me=
max{d(x,y)/x,y € U}. Initially, the set of pivots contains the first element of the col-
lection. After that, an element € U is selected as a pivot if and only if the distance
between it and the rest of selected pivots is greater than or eqikim, beinga a
constant whose optimum values are close to 0.4 [20].

Maximun Sum of Distances (MSD): MSD is used inLAESA (Linear Approximating
Search Algorithm) [18, 17]. The underlying idea is to select pivots considering that the
distance between them is always the maximum. Starting with a base pivot dspitrar
selected, the distance between the objects and the selected pivot is cd|anhatéhen
the new base pivot to be selected is the one located to the maximum distance. The
distances are added in a vector to calculate the next base pivot. This igaivete
process that ends when the required number of base pivots is obtained.

In general terms, Spaghettis metric data structure, SSS-Index and LAdSA
be considered as a generic bidimensional array data structure. Taieeddé between
these structures is the way of obtaining the pivots or the way in which thetsteus
stored.

From this initial analysis, we have extracted some conclusions that provisienue
clues about what kind of metric structure could be suitable to be implemented in a
GPU-based platform. Thus, in next section we introduce a structure cadeeric
Metric Structure as an alternative to the previously presented. The ideaiimpdfy
the structures and the processes thinking of the GPU architecture agimraing

model in order to obtain the best performance.

2.2 Generic Metric Structure

Considering that we are going to work on a GPU-based hardware phatfquivot-based
Generic Metric Structure (GMS) has been considered [23]. Duringdhstaction of
this metric structure, a set of pivofs, ..., px, which may or may not belong to the
database, are selected. A GMS can be seen then as a table of distameEnlbe

pivots and all the elements of the database, i. e., each cell stores the elignp;),

11

wherey; is an element of the database gmdhe pivots.
For this generic metric data structure, the searching process, givearyacqjand a

ranger, is carried out according to the following steps:

1. The distance betwegrand all the pivotgs, ..., px is calculated in order to obtain
K intervals in the formay, b, ..., [a, bk], wherea; = d(p;,q) - r andb; = d(pi,q)
+r.

2. The objects in the intersection of all intervals are considered as céeslidethe
queryq.

3. For each candidate objegtthe distancel(q,y) is calculated, and ifi(q,y) <r,

then the objecy is a solution to the query.

Details of the process are shown in Algorithm 1.

Algorithm 1 Generic Metric Index: Search Algorithm.

rangesearch(quexy ranger)

20:
21.

{LetY C X be the databaje
{Let P be set of pivot9s, ..., px € X}
{Let D be the table of distances associatgd
{Let Sbe Metric Index
for all pj € Pdo
Di —d(q, pi)
end for
for all y; € Y do
discarded < false
for all p; € Pdo
if Dj —r > §j||Dj+r < §j then
discarded < true
break;
end if
end for
if ldiscarded then
if d(yi,q) <r then
add to result
end if
end if
end for

Figure 2 represents a GMS built using 4 pivots. In this example, objet8&15 are

candidates and their real distance to the query must be calculated.

12

1 2 3 4 link DATA BASE
0|16 5|1 Object 1
6 0173 Object 3
516|704 Object 4
151413 (14| 5 Object 5
109 |9 |7 | 6 Object 6
919|767 Object 7
718|778 Object 8
5|46 |69 Object 9
8 | 7|7 8|10 Object 10
1/0|5 |7 |11 Object 11
212|816 |12 Object 12
BT - - ~{objedy
8 19|69 |14 Object 14
112 |10|10|16 Object 16
2121|6617 Object 17

Figure 2:Searching on GMS: Structure is built using 4 pivots. For a qgemth distances to pivots
d(q,pi) = {8,7,4,6} and a search range= 2, define the interval§(6,10), (5,9),(2,6),(4,8)} over
which the searching is going to be carried out. The cells within the intervalsharked with dark
gray. The cells hatched with lines indicate candidates (objedt3 25).

Considering the metric data structures introduced till this moment and the algorithm
described here, in next subsections we introduce the case studiel as the experi-
mental results and a discussion about them, in order to obtain some valuatliesoons

for the GPU implementation.

2.3 Experimental Environment

As case studies, we have considered two datasets: a subset of tighSletionary and

a color histograms database, obtained from the Metric Spaces Library/(inip.sisap.org).
The Spanish dictionary is a space of words composed @f@6words and the edit dis-
tance was used. Given two words, this distance is defined as the minimum mumbe
of insertions, deletions or substitutions of characters needed to makéd treeveords
equal to the other. For each query, a range search between 1 arsdcénsidered. The
second space is a set of 1682 color histograms (112-dimensional vectors) from an
image database. Any quadratic form can be used as a distance, thussed=titlidean
distance as the simplest meaningful alternative. The radius used wadldhdng to

retrieve 001, Q1 and 1% from the dataset.

13

For both databases we create the metric data structure with 90% of the dataset
domly chosen, and reserve the rest 10% for queries. We select 8@ pavbuilt the
generic structure because this amount of pivots gives the best reagiltsHivots are
also randomly selected. The time spent during the construction of the seistot
computed, this is considered as a preprocessing time.

This experimental framework was chosen because it is the most commoarenvir
ment used to evaluate the kinds of algorithms presented in this paper.

The hardware platform used is a 2 Quadcore Xeon E5530 at 2.4GH#48®H
of main memory with 4 Nvidia Tesla C1060 240 cores at 1.3GHz and 4 GB of lgloba
memory, using CUDA SDK v3.2 [1]. The compilation has been done using §cd 4

compiler and OpenMP library.

2.4 Discussion

We have considered this variety of structures in order to determine iequeally, if the
cost in the searching process compensates the complexity of the implemenékiiog,
into account that the decision taken here will condition the future implementatien o
GPU-based platform.

The relevant features considered in this work are:

Execution time. The execution time is a key factor in order to determine the best
implementation. In the literature lot of papers are found talking about evatuafio
distances [20, 19], but they do not consider execution time (floating ppiertations

and /O operations), memory accesses, etc.

Distance evaluations. In general, the reduction on evaluation of distances has been
considered as the main goal of the new structures design, and evidehds, d direct
impact on the execution time. However, the high processing capacity antwwom-
putational platforms implies that distance evaluation is not always the operaition

a higher computational cost. For instance, in GPU-based platforms, sopeargtion

14

affects to the execution time more than the evaluation of distances.

In order to compare all the structures under the same conditions, the nafigder
ots were previously selected according to the SSS-Index criteria, gatygnparameter
a. The reason was that for SSS-Index the pivots cannot be stablishiéaticopcause
they are dynamically generated. In this case, the number of pivots takeadcboint
are: 26, 44, 82, 328, 665, 1362 for the dictionary case study ar#b3@4, 57, 74, 119,
155, 244 for the histogram case study. Moreover, for GMS, SpaghetlitAESA data
structures 32 and 500 pivots were added for the dictionary case stdd3Zapivots the
for histogram case study, with the aim of having a more complete study of bawioe
of the different methods. In the case of SSS-Index, it is not possibleatiowdth this
number of pivots because there is not anthat provides them.

Figures 3 and 4 show the results for the sequential implementation related to the
selected methods previously described. The figures only show the babhgeen 32
and 500 pivots for dictionary case study and between 32 and 119 fordfogram case
study. Also, Figure 3 shows the results separately for search ra2g8 and 4, for the
dictionary case study. In general, the idea of considering an intensdparating by
search range is due to the fact that we want to focus on the relevaiisrasd then to
make easier their interpretation.

In general, the best execution time corresponds to the Spaghettis datiarstwvizen
low search range is considered, independently of the number of pila@s tato ac-
count. The reason is that the binary search process used to find tigaxge for the
first pivot, optimizes the rest of the searching process. GMS data s&ustihe second
one in terms of performance. Finally, the SSS and MSD methods have thigbebes/-
ior, being the random pivot selection method the best choice for thegestiaties. In
this point, it is important to mention that searching in metric spaces depends @athe
and intrinsic dimension of the space, and then all the methods could not leasertte
behavior. This is the case of SSS and LAESA, where better results weaeeted.

As the range or radius increases, the behavior of the Spaghettis{masiedd is

degraded because the number of discarded objects with the first pilmtes than

15

5000 T TTT TTT TTT 120 T T TTT 1T TTT T
B L g -
= o o 110 N o B
S 4000 | r=2 -8 ! - 100 o a]
L o =y o
5 -DMSD—Laesa 90 jm‘ 7) =+
o H - 80 B 2o o
& 3000 F GMS Spaghettis E 3 r=1 -0
0 H @ 70 | r=2 & i
= 1 o ®
5 sss s)
k= H H B} e 60 - GMS Spaghettis SSS MSD-Laesa
= o . = B
2 2000 [. ol e® o4
> o
o & O o7 &
g : : :) 40 1 o ! ; B
< 2} o . ‘ . N
s 1000 . & ., 7 30 | b 3 $ b
s} L - y { Py
g g® g B 20t b 1
I L &e I Lo~ I L P I 10 W I 11l I 111 I 11l I
® oy W G PR G W | 3 ® oy YR YW R G
Number of pivots Number of pivots
T 1T 1400 TTT T 01T TTT
50000 =3 -0
= r=3 ---o-- y Spaghettis r=4 —v—
I} r=4 —v— 1200 B
40000
o
& 1000 | 4
> —_
s ©
» 30000 8
5 o> 800 B
E o g
T 20000 : | =
% : “» SSS I 600 |- ,
3 3 s, . GMS Spaghettis SSS MSD-Laesa
=4 N . . N
£ 10000 [. - T 400 §- o 09 CI
a N N . by -0 %o o o o) ©-
(<} -0 [C R o © ©
o ! L1l ! L1l ! L1 L 200 LWL 1 L1l I L1l ! L1l |
Number of pivots Number of pivots

Figure 3: Calculations of average distance per query (left column) and total #sedime (right
column) for the Spanish dictionary case study considering the followingstiateiures: GMS, SSS-
Index, Spaghettis, MSD-Laesa.

considering low range. In this situation, the binary search becomes kprdiecause
it increases the execution time. For instance, in the histogram case studyr¢batage
of discarded objects is just 50%. However, in the dictionary case studyetitentage
of discarded objects decreases from538 for a low range till 3% for upper ranges,
considering just a pivot.

Tables 1 and 2 show, in detail, the execution time (in seconds) of the best cas
depending on the range or on the data retrieved percentage, resjyettithese tables
several modifications of the generic structure are considered. Initiediéications the
pivots were not selected randomly but following the pivots selection metheeid by
the other structures. Thus, first we randomly or using SSS get a afipdedts from the
database and then MSD is applied to get the number of pivots for the lrémthpance
case (32 or 44 depending on the range). Only modifications of the steueiilra good

performance are considered in the tables (e.g. “M®ID SSS/” cases are not included

16

> 30000 ‘ ‘ i ?
> - ! E ; i
I} 'SMD-Laesa B
= Database retrieved : : 500 - Database retrieved ; ; 1
725000 - 0,01% -0 i sss ® . Q01% o ', {MSD-Lacsa
o 0,10% &3 : g 107 | iR
& 100% --o-- : ‘ 400 |- 1.00% ---&-- ‘ . i
20000 [: : E 3 i sss o
© b i
e : o £ 300 - GMS Spaghettis 5 0 o -
n i ! i o
é 15000 aMS Spaghettis) o o '0§> . o oo
«© oo P ~ . i o
E T o, RN " 200 oo So g0 6, 4
10000 ® -l O 3 ° g,
8 OO“‘O OO“‘O a_.o o8
€ 5000 |- '- 9 i 100 b g dm, TR e
B . o Qlﬁlﬂ Sog-m loo 0 Hogme8 Qgm0
7] O ! S
e D.‘?,E ,,,,,, Q D.‘?,E ,,,,,, Q Il oo E Il B 0 Il Il QG A ? Il Il Il Il Il Il
2 3 5 % 3 o % 3 % 2 3 % 2 3 5 % o5 % 5 % 3 %
Numbers of pivots Number of pivots

Figure 4: Calculation of average distance per query (left column) and total exectitie (rigth
column) for the histogram of colors case study considering the followiteysteuctures: GMS, SSS-
Index, Spaghettis, MSD-Laesa.

Index | 2| 2| 3 | 4 |
Spaghettis 32 15.45) 90.66 | 375.80] 699.58
MSD 32 on GMS 665 || 22.51 | 89.86] 382.35| 703.83
MSD-Laesa 32 22.46| 98.05| 395.62 729.82
MSD 32 on GMS 1362 || 23.05| 90.15/ 380.10] 710.81
GMS 32 23.08| 95.92 378.41| 700.94

MSD 32 on SSS 1362 || 24.83| 96.33] 398.35] 738.19
MSD 32 on SSS 665 | 25.07| 92.33| 394.45| 747.89
MSD 44 on GMS 1362 || 25.78| 76.64 | 344.74| 705.13
SSS-Index 44d = 0.55) || 29.25 88.75| 406.80| 835.76

Table 1:Execution time for the best methods for the Spanish dictionary case studynftorange;
row: data structure)

in color histograms because they have a poor performance).

According to the experimental results, it is not possible to select a metridigieuc
as the best one, because it depends on the space distribution of thasdatéi fact,
in this context we expect that SSS-Index provides better results than GMSS, two
structures are candidates to be eligible as the best: Spaghettis and GM&drfrom

the point of view of a future GPU implementation the best one is GMS due to:

1. By using a generic structure it is not necessary to apply a binargtsd&e
Spaghettis does. Binary search operation is very expensive in a @G&adtiplat-

form in comparison with the evaluation of distances.

2. Thanks to the combination of a generic structure and MSD pivot seledgtiisn

17

Index | oo1] o1 | 10 |
Spaghettis 32 21.00|| 54.90 || 182.87
GMS 32 37.77| 69.89 || 190.74

MSD 32 on GMS 119 || 39.28| 71.85 || 190.26
MSD 32 on GMS 1014| 46.55| 96.10 || 246.91
SSS-Index 57¢ = 0.6) || 55.77|| 95.91 || 249.85
MSD-Laesa 35 91.33|| 199.75|| 406.99

Table 2: Execution time for the best methods for the color histograms case study (cohlaten
retrieved percentage; row: data structure)

possible to reduce the number of pivots till satisfying the memory constraints in-
herent to the GPU-based platforms, obtaining at the same time a slight improve-
ment in execution time. However, this benefit depends on the space distmibutio
For instance, good results were obtained in words space by applyidgmase-
lection of pivots and after that applying MSD, but no benefits were oldaime

color histograms (see Tables 1 and 2).

To sum up, using the generic structure we will take benefits in terms of tsacu
time and, in addition, the code is more simple.
Having that in mind, next sections present different HeterogeneouslizaBed ver-

sions of the similarity search algorithm.

3 Range Search on Heterogeneous Platforms

In this section we describe the proposed algorithm and discuss spet#ils delated

to the different considered implementations on the selected hardware iplatfifer-
ences between implementations are given by the type of computing elementeethat a
used in each of the implementations, i.e., CPU cores and/or GPUs. We haweted
three cases: one CPU core and one GPU, several CPU coresyaral 88U cores and
several GPUs.

There are some features in the implementations that are common to all:

e Data structures. The main data structures are used in all implementations, i.e.,

dataset, queries, GMS, and pivots. Maybe, each implementation can feserdif

18

auxiliary structures, and itis also possible that some of these structerearadled

in a different way and from different levels in the system memory hiegarch

e Processing. Obviously, all the essential computing operations arerpexdan
all the implementations. However, to fully solve all the queries some extra ac-
tions must be considered in some implementations, in particular those using GPU
devices. For instance, in these cases data structures must be texhéfemn

host/CPU main memory to device/GPU global memory.

e Pre-processing. Generic Metric Structure is built in a preprocessigg siad is
loaded during the program execution. That is, in this stage the numbevat$ pi

are defined, the pivots are randomly selected and the structure is gehera

Particular details of each implementation are included below.

3.1 Multicoreimplementation

In order to use the capability of our CPU with 8 cores, to carry out a pednce evalua-
tion on this platform and to compare the results between platforms (GPU and wnelti-c
CPU), we have implemented a multicore-based version of the same algorithm.

We have implemented the three parts described in Section 2.2 which are the most
expensive computationally as we have explained above. Mainly, this impletienta
consists in distributing the queries to all available cores using OpenMP psagima

particular, we have used thipr agma onp paral | el for directive inOpenMP.

3.2 GPU implementation

Unlike previous works [22], where 2 and 3 kernels were considéndtijs case all the
operations solving a given query are included into one kernel. Théaguaee distributed
to all available GPUs, and each GPU solves the queries one by one, i.e.elisis a
loop such that each iteration completely solves a query by means a kdinel ca
Before calling the kernel to be executed in the GPU, main data structurgaiase

ferred from host main memory to GPU global memory: dataset, GMS, antspSome

19

auxiliary structures are also located into global memory, and will be usestdong
temporal and final results.

After that, the kernel code corresponds to the following main actions:

e The queryq to be solved is directly transferred to the GPU shared memory by

using the CUDA parameter-passing mechanism.

e Then, in order to solve the query, as many threads as the number of abjdwts
dataset are launched to execution. A few of them compute the distanceshetwe
and the pivotg;, and the resulting distancdég, p;) are maintained into the shared
memory in each multiprocessor because they will be used by all the threegs (s

1 of basic algorithm).

e Inthe next step, all the threads determine whether the elements of the dadabas
or not candidates for the quegy Each thread checks out only one element (Steps

2 and 3 of basic algorithm).

e Finally, for each candidate element the corresponding thread determtretiser

that element is a valid solution for the quety

Finally, results are transferred from GPU global memory to CPU main memory.

Figure 5 shows the algorithm operation inside the GPU, in particular the steps 2
and 3 of the basic algorithm described in Section 2.2. The data distributionhiateds
memory and the accesses carried out by the threads to the data and es$rgetuibe

observed.

3.2.1 Memory access latency

When hundreds or thousands of threads are simultaneously runningjdteormous
pressure on the memory system, which can increase in a significant ameanttiage
memory latency, and as a consequence decrease the performarrcer o oeduce that

latency, some actions can be taken into consideration, e.g. to exploit the losareds

20

GPU

Shared Memory

Thre:
©

GMS
o[i s[5t

Pivots (P)
Py 1P T v [Py]

Block size

T FFFFfe

MAX_QUERIES_GPU

A2 sl elw G

Figure 5:Inside of a GPU. Steps 2 and 3 from the basic algorithm.

memory latency or promote coalesced access to global mémory

Our kernel places the most used data into shared memory, and transfermptuh
data structures for achieving coalesced memory access. Since ecath mieeds to
access an entire row of the GMS structure, and all the threads attempt to sgouksfn
access their respective rows, the GMS structure is transformed apfigitigansposed
operation previously to be transferred from host main memory to GPU ghobatory.
In this way, when threads in a given warp access to GMS structure, titiyna the

data in consecutive positions, allowing coalesced accesses to global ynemor

3.3 Resaultsand Discussion

In order to get a broader view on the use of a multicore and a GPU-béattolim,
Figure 6 shows absolute execution times for the following implementations: rsggjue
multicore (with 8 cores), and GPU using shared memory.

As expected, graphics in Figure 6 show a considerable decrease kethdien time
when comparing the sequential version with both the multicore and the GPidn&rs

For the color histograms space, the behavior of the different versimvgssthe same

1Global memory accesses by threads of a warp (of a half wargedices of compute capability 1.x) are

coalesced by the device into as few as one transaction wisircaccess requirements are met.

21

700 A 250]
600 |) B
sequential ---<---
8 cores ---x--- 200 - 7
- --0-- K i .
500 1GPU sequential ---<---
- n 8 cores ---x-—-
8 g 150 g B
§ 400 o E 8 1GPU -0
2 2
g 800r 1 = 100 R
L0
200 | E
50 | E
100 | PR A
e)
B e N A bbby K
0 immimranens s d 0 k=== ;
1 2 3 4 0.01 0.1 1
Range Search Percentage retrieved from the database

(a) Execution time for the Spanish dictionary case study. (D) Execution time for the color histograms case study.

Figure 6:Execution time for sequential, multicore and GPU implementation.

differences when the search radius increases. In this case, thenverth 8 cores is
always better than the one with one GPU. For the space of words, sydanigy in the
behavior of the structures is lost. For ranges greater than 2 the GPUrplatéosions
have a better performance than those with 8 cores. This differenceitsalbague to
the characteristics of the space of words.

The number of elements we can discard may depend on the search ramngex- F
ample, with 16 pivots and a range= 1 in the space of words, more than.9% of
elements of the database can be discarded; however,rwith, this percentage de-
creases to 39%. Nevertheless, in the color histograms space these values range from
97% to 901% for the minor and major radius respectively, i. e., the structure has a more
stable behaviour in this space. The reason of this different behavidhe isature of
the distances: in the first case we use a discrete distance while in the sEsenthe
distance is continuous. We can conclude that, in order to discard the maximauna
of objects in the space of words, it is important to use all the pivots for taglyes.
Finally, we can say that for the space of words the number of threadaldeao re-
solve a query is very important, therefore, for high ranges the perfaenainthe GPU

implementation is better than the 8 cores implementation.

22

4 Heterogeneous implementations of the Similar-
ity Search Algorithm

Nowadays, GPU/MultiGPU devices are widely used to get reasonabletexetime

at a low price. The GPU/MultiGPU are managed by the CPU/core/multicore. This
is why these systems are called heterogeneous systems. However, inasestioe
CPU/core/multicore are idle when the GPU/MultiGPU devices are processisga A
consequence, the theoretical peak performance of the underlyimiteatare decreases,
and of course, the term heterogeneous platform becomes more a tonskterm than
areal term.

In this paper the authors have developed two different heterogemememen-
tations considering two different scenarios. The first one takes intouatthat the
queries are completely processed in a unigue kernel. Under this scer@ebjects
of the database can be allocated to the global memory of the GPU. Evidentbprihe
sequence is that the time spent in data transfer is penalized and more callanigtes
kernel are needed. The second scenario corresponds to a biented implementation
transferring a chunk of queries at a time and processing it in the uniqnelkeeduc-
ing the time spent in data transfer and calls to the kernel. However, lessobjebe
database can be allocated to the global memory of the device. Moreovggea bata
structure is required to store the results of the queries.

In general, a query is entirely resolved by a single device. The scheatedis
tributes queries on all the cores, including the GPUs core administrators.

The cores share the structures and data from the host's RAM. Thisnafimn is
also replicated to every GPU devices. The iterations are gotten out usi#gitlaeyna
onp paral |l el for directivein OpenMP. The number of iterations assigned to each
core and how queries are distributed over the set of cores depene typéhof schedul-
ing defined in thetpr agma directive. Four scheduling schemes can be considered for

this#pr agnma.

1. Dynamic: Some of the iterations are allocated to a smaller number of threads.

23

GPU Platform

(Transfers) GPU1
Secondary

Memor
Data A1
Structure s
] /// ”, AN _ solutions g, |-~ GPU
! ” f%
S 5
~ ; diflect resplution|by the core :
Pivots . /
:
|

'
| i | S —

Global shared
are
Database Memory

,,,,,,,,,,,,,, 1= Memor
| Datastructure____| | | o
Pivots 1] _|9@pj)

GPU 3
Cofes .
ialialis g/ f
Sis|=l=
) GPUTere GPU 4

Figure 7:Heterogeneous System Scheme.

Once a particular thread finishes its allocated iteration, it gets anotherame fr
the iterations that are left. The parameatbunkdefines the number of contiguous

iterations that are allocated to a thread at a time.

. Guided: Large chunks of contiguous iterations are allocated to easduwitaly-
namically. But the chunk is not constant, it decreases exponentially with each

successive allocation to a minimum size specified in the parameter chunk.
. Runtime: Scheduling decision is deferred until runtime by vari@vte SCHEDULE.

. Static: In this case, all the threads are allocated iterations before theytexhe
loop. The iterations are divided among threads equally by default. Howieise
possible to allocate a fixed number of contiguous iterations to a particuladthrea

by using the parameter chunk.

In general, when the differentiterations in the loop may take different timesicute

it is more convenient to usgy nami ¢ scheduling. Thus, this is the scheduling scheme

used in this work.

Figure 7 shows the operation diagram of the heterogeneous systemjnigcieU

core administrator. In the scheme it is possible to see the data transfer. ditatjriam

there are 8 cores and 4 GPUs.

24

4.1 Heterogeneousimplementation: one query - one kernel

In this section we introduce an implementation that considers the comments inysrevio
section, related to the scheduling scheme, but where the kernel pewessquery at a
time. The reason to consider this scenario is that under these circumstaoressbjects

of the database can be allocated to the global memory of the GPU. Howeyéimth
spent in data transfer increases and more calls to the unique kernerémered. On
the other hand, this implementation allows us to obtain a first approach to thédreha

of the GMS structure for this heterogeneous scheme applying diffenenkcsize.

4.1.1 Executiontime

Figures 8 and 9 show the results obtained when using a multicore implementation
against an implementation following the heterogeneous schemedisivagri ¢ schedul-

ing. In the graphs, the X axis represents the percentage of iteratidgaexs$o each

core (equivalent to the number of queries), except for 1q that megunery. For a better
visualization of the results, search ranges have been separated intduatigraphics.

On the other hand, in the legend YZ, Y means number of cores and Z nuimBetts.

Then, 80 means 8 cores and 0 GPUs, meanwhile 81 means 8 cores, lafttbam
manages 1 GPU.

In these figures, it can be observed that the implementation following theoheter
geneous scheme has better performance in terms of execution time than thermultico
version, except for 1% where all resources carried out the same number of iterations.
In this case, the GPU is underused.

The advantage of using all the available resources in 81 is shown in HiQuvbere
we can see that the heterogeneous version gets the best performance.

In particular, we can observe that the performance obtained by 8lemviolparallel
to the performance obtained by using just 1 GPU. The gap between theveristyi the
constant speed-up of using 8 cores.

Figures 11 and 12 show the results for the heterogeneous systemnesimg fo 4

GPUs. In general, the behavior of 84 is the best for all cases, epdéaidow number

25

>
>

T é 22 T x 80 T X 160 T T
2 e ‘ 20| (=2) 0L (=3 N 40| (=9 .
38 | 18 ></ N) X N 120 | NE
I - N X . _mmmm X N
g 361 16 ST A 4 50X “d 100 b x r
- E = X -
o 34 ><"><><’/ s . a’ x
gl 14 - , . 4 40 80 - o
[‘ g = -
3r X/X\E 12 + @ 4 30 - 60 | o g
28 B m 80 ——x-—- B I e <780 xee
268" 10 - 81 o 41 20g° 81 & 40 - o o) 81 8
24 I I I I i I I I I 10 I I I I 20 I I I I
% T s e e s Se C s R H Se s e R s Se T s %
Percentage of iterations assigned Percentage of iterations assigned

R EC)
Percentage of iterations assigned

Percentage of iterations assigned

Figure 8: Execution time depending on the chunk size when using dynamic schedypiace(sf
words).

7 T T T T A 18 T T T T T 55 T T T T T
0.01%) /' \ 17 + (0.1%) A4 sl (1.0%) X i
6.5 - A E P SN
A 16 / T PN
ffffff / \ 80 —--x-—- 45 |80 --x--- L -
g Joa 14 + A or e N
Zss5f P & A 1 x ."D'». d 35 g_x/x*' E
E s A 12 = Il -
- ot 4 " . B =
¥ 5</ - R 25 F B o u
_X - ; s B e L
45 ¥ DD - 10 e = 20 L D"DE - |
o 9t 58 | -
1 1 1 1 1 8 1 1 1 1 1 15 1 1 1 1 1
57 % S s o Ry BT s T s 0 o BT e S s 0 R
Percentage of iterations assigned Percentage of iterations assigned

Percentage of iterations assigned

Figure 9:Execution time depending on the chunk size when using dynamic schedwdinglfistro-
grams).

A]
* - 14 8cores ---x--- e
8cores -->¢-- o 1GPU --0-
25 1GPU —-o-- 12 8cores+1GPU -8
8cores+1GPU & B}
- 10 . -
=1 2 8
3 3 T R ORI
3 15 o 8
71 Q.
@ u L n 6 |
0F .1 o |
° -
°[- 2¢-7 i
0 | | 0 1
. 2 3 4 0.01 01 1
Range search

Percentage retrieved from the database
(a) Spanish dictionary. (b) Color histograms.

Figure 10:Speed-ups for heterogeneous system.

26

18

y
£
42+ (= 7] L (= A
(=1) 161 (=2 = 4 90 (r=4)
4r ‘ ; -4 80 s
. rad Vi
38 14 e 4 70} a B
S 36 ; o A
8 54l 12t g A 1 ¢r1 L i
932} o o 1 sof i
. s 10 . 7 B i L o o
'E 3r //’ g ,0 ,4"§/ 4 p ;’ﬁd) 81 N
Lo ATy --e , i —a—
26 R 4o DA BT g g 200 o0 84 -0
> 6 < 83 ; by
24 % o 84 o “ 4 10§ g
22 I I I I 4 I I I 4 0 I I I I
% T s e e s Se C s R H Se S s o R s S S s % A
Percentage of iterations assigned Percentage of iterations assigned Percentage of iterations assigned Percentage of iterations assigned

=

Figure 11:Adding GPUs to the heterogeneous scheme changing cores by GPUssStiationary

case study.

55

4.5

Time (sec.)

35

Percentage of iterations assigned

Percentage of iterations assigned

Percentage of iterations assigned

T T T T T 14 T T T |£| T 40 T T T T T
| (0.01%) S B o 1 35t 4
e 12 F (0.1%) (1.0%) G
28N = 30 A
B . VAN A n AL A
5 i s TN T 25 | " E
o Sl DA 9| g-d A B R
g'g 7 _o;,i/ gl e o LT e | 0o T /’g E
> ey 24 h Paemie g - .
L R4 g1 m 759 F S W= T T S N e T
ho .0 82 ---o- 6F a8 82 --o- | oo 83 —a—
5 83 —-a— 7 o o ¢ 83 —an— 10 o E
e sLe o 88 e i o 84 o
1 1 1 84 I<> 1 4 1 1 1 1 84 1 © 5 1 1 1 1 1
%7 < 8 25 % /;?6‘ %7 <% & 25 % ’%« 7 2 8 25 %

7
<s

Figure 12:Adding GPUs to the heterogeneous scheme changing cores by GPUs histdgram

case study.

of queries. When the number of queries increases the cores receigequeries and,

due to the fact that they are slower than GPUs, the global behavior isdsniaied to

them.

Another aspect to consider is the chunk size. Unexpectedly, one cinkdhht hav-

ing a chunk size that balances the computational load will be the best optovevdr,

according to our results the best chunk size is just one query. Thiseargbained

considering that, in spite the chunk size used by the dynamic schedulingithtioe:

OpenMP#pr agma# directive, actually the system resolves just one query at a time,

i.e., OpenMP internally makes a for loop of chunk size and sends to the deite

one query at a time. Moreover, the time spent on transferring querieseigandent of

the chunk size.

In the next section we are going to analyze in detail the execution time distribution

the number of queries assigned to every device and the relationship hedwemition

time and number of queries assigned.

27

4.1.2 Distribution of execution time and queries

Firstly, we show the behaviour of the heterogeneous system using 8 @edeone of
them managing one GPU (81).

Left column in Figures 13 and 14 shows the amount of queries resolvabeby
GPU or the cores. In the case of cores, due to the fact that there ege @dres, we
have considered the average number of queries processed. Theotighn shows the

execution time used by the different devices (GPU or cores) splitted in plares

1. Transfer process: it represents the time spent in transferring #reeguo the

GPU and retrieving the solutions of the query.

2. Kernel process: it represents the calculations of the solutions ébr eqaeery by

the GPU.

3. Other processes: it represents other needed operations bafwfetring or cal-
culating. For instance, some operations carried out for the core thagemttae

GPU.

In the case of cores, there is not transfer process or additionadgwes, then all the
time represents calculation of solutions for the queries.

In both cases, as the computational load increases (increasing thdoatiggedic-
tionary case study or increasing the retrieval percentage for the ciskmgram) the
heterogeneous system takes benefits of the power of the GPU. In tees it is nec-
essary to evaluate more objects in the database, and then the GPU is able leteomp
more queries than the cores. For instance, in the last graph in Figureadd cere
processes almost 1000 queries meanwhile the GPU processes almost 6000

With respect to the execution time, there are two parts almost constant. One of
them is related to other processes. This time is difficult to avoid becauserthéa®
to manage the GPU. The other one is the transfer process. As we exfieaiioed, the
transfer time is independent of the chunk size, due to the way in which Opeseiids
the queries to the GPU (in the case of cores there are not transféreldoagever, this

time could be reduced if we deceive OpenMP and really we send a completk th

28

4
' ' 1 GPU xxx= T T T T T T T other procedses ke |
2000 - Average per Core ¥o=em | 35 F kernel process m— |
9 transfer process
%’r 3r Average per Core & b
3 1500 b ~ 25
@]
@)
[~
8 2 [} 2
S 1000r K K R E
5 als olee o
g S0 R .
T 500} K64 o S
S RS L4 B e
= oo RIS 0.5
o e ol
0 & ?j‘ = . Sl 0 & & 18D, Tn 6 & ;&' &‘ 2, 7 6.5
- y 5 4 SRS o 7 SRS 0
1 8 86 172 215 430 645 860 1075 O D%y ORI
. . X GP% tlm? rocess . PU time process
Dynamic scheduling. Iterations per core Number of ;?rocessed queries (iterations) per core
(range search r=1) (range search: r=1)
@r=1
5000 14
‘ ‘]_GPL‘_] e " other p‘rocess‘es‘ 3 |
» Average per Core E&Ee kernel process
8 12 transfer process b
T 4000 [R
g 10k Average per Core £ o Vo
° 4
& 3000 | e S
1% (9]
8 L
g g
(=%
o 2000 - R £
9]
o
E 1000 | o
b= _ _ % 52 b
93 LS I R T Pl G Rded K
o LB K& B 6Ot K (ot (et 5480 DRl
T & o N, % % 10)6‘ 7O & %% 10)6\ 7O G %% 10%
. . . GPL[J)time rocess . CPU time process
Dynamic scheduling. Iterations per core mber of Brocessed queries (iterations) per core
(range search r=2) (range search: r=2)
(b)r=2
T T T T 50
6000 F 1GPU &xxx |
» Average per Core e=oR 45 other processes EzaEza i
2 40 + kernel process mm— i
2 5000 b transfer process
s 35 | T
Q4000 4 S 30k Average per Core : i
3 3
S = 25 E
S 3000 b o4
o £ 20 4
5 =
% 2000 4 15 4
=)
E 10
= 1000 - 3 ,
5o ROb X 5 T
o Lz R R R R o P
1)\3 \O,\S\ 7‘90 6‘76‘ c%b }0)@ e & 2)é \3):? %05'7@‘%‘0 /0)6 7 & 2)é e,@ VQOG‘% ‘96’0 }0)@
. . . GPLétime rocess . CPU time process
Dynamic scheduling. Iterations per core Number of processed queries (iterations) per core
(range search r=3) (range search: r=3)
(c)r=3
7000 T T T T 100 T T T T T T T T T T T T T
1GPU EXX=
o 6000 L Average per Core o | 90 =
2 80 other processes &S i
] kernel process mws——m
S 5000 b 70 transfer process 4
o
% 4000 + 4 é 60 | Average per Core #7773 i B
S S 5S0F SR
S 3000 b £ n i
< £ 40 .
g 2000 E 1
€ i
Z 1000 | I
L RS8R g B
0 by oy S K RS e
e & 2 % % % % 10%9 7S & 2 %0 7 S % 2 s, % @@on%?
i i X GP% tim? rocess X PU time process
Dynamic scheduling. Iterations per core Number of ;?rocessed queries (iterations) per core
(range search r=4) (range search: r=4)

(d)r=4

Figure 13: Distribution of queries and execution time obtained by the heterogeneotesnsfer
the Spanish dictionary case study, considering 8 cores and 1 GPUcdleftin represents query
distribution and right column represents execggon time distribution.

4000

3500

3000

2500

2000

1500

Number of processed queries

1000

500

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

Number of processed queries

6000

5000

4000

3000

2000

Number of processed queries

1000

Figure 14:Distribution of queries and execution time obtained by the heterogeneaessfs the
color histogram case study, considering 8 cores and 1 GPU. Left cakpnesents query distribution

T T T T
1 GPU EXX=X
| Average per Core 6553 |
S
- - Q
<
[}
. R £
E
ol e B i 22‘ i I Wl E@:
LRI e KB K W KA IS R B
S RE Rl R e D KIS e i
g RE RS K (o] Bl 1] KRS s
1 11 112 225 281 563 845 1126 1408
Dynamic scheduling. Iterations per core
(range search equivalent to 0.01%)
(a) 0,01%
T T T T T
1GPU EXxX=
- Average per Core =z
mn
- . Q
@
(3]
B] £
| | [
L RE
m s e Kem S PSR e]
b Bk
7 7, 7; & 7, 7
7% B %
Dynamic scheduling. Iterations per core
(range search equivalent to 0.1%)
(b) 0,1%
- T T T T 7
1 GPU EXXX
Average per Core #ezwr?
Q
&
(]
B] £
E
N s o ké}j‘ i
e S Xm0 K KBS RS K3 RS
7 7, 7, Sk 7, 7
7 2 % B % % oy
Dynamic scheduling. Iterations per core
(range search equivalent to 1%)
(c) 1,0%

12

10

35

30

25

20

15

10

T T T T T T T T
r other processes ks b
kernel process m—
transfer process

Average per Core #7775

7 7, 7, S &, 7, 7 7y, 7 S &, 7, 2
7 %, T %%y,
GPU time process . CPU time process
Number of processed queries (iterations) per core

(range search equivalent to 0.01%)

T T T T T T T T T

other processes EzXR
kernel process m—

transfer process

Average per Core

N

7y 7, Sa &, 7, 7

7 % % o,

GPLétim? rocess . CPU time process

Number o Brocessed queries (iterations) per core
(range search equivalent to 0.1%)

7y 2y 202 0 By 7
7R G R Y,

other processes B
kernel process mess—=
transfer process

Average per Core &

S 7, Sk 7y 7
7% % 75 %% %%
time process . CPU time process
Number of Brocessed queries (iterations) per core
(range search equivalent to 0.1%)

i
7)'}

N

7y
25°%,
S %G

(9]
)
C

and right column represents execution time distribution.

30

the GPU.

Regarding the execution time of the cores, as the number of queries as&igraeh
core increases, the system forces the cores to spend more prodesnsiagd reduces
the global system performance because it can not take benefits frarsetioé the GPU.

If we consider the complete system, the behavior is exactly the same we lesire pr
ously commented, although the queries are better gotten out among the Gidsam

be seen in Figures 15 and 16.

4.1.3 Scaling thenumber of queries

In order to study the robustness of the system, that is, if it behaves ageetewe are
going to scale the number of queries for both databases. To words sgapeocessed
40 thousand new queries selected from a sample of the Chilean Web whsdialesn
from the TODOCL search engine. As vectors space we using a datatihgbe same
features as the previous sections. This is a synthetic database with 1 millimnsvec
This database represents a set of color histograms with 112 dimensiornsuild/ehe
data structure with 100 thousand objects and the rest 900 thousandias que

A priori, if the database remains constant, the execution time increases liasarly
the number of queries also increases linearly, that is, the global systealable.

Then, Figure 17 shows the results for the words space when increhsingieries
from 10 thousand to 40 thousand considering the whole system (8 quies @PUSs)
and the smaller and bigger range (1 and 4 respectively). The leger@ 10Q and
1000 represents the chunk size. Figure 18 shows the results for thehistlmgram
database when increasing the queries from 100 thousand to 900 tHaeesidering
the whole system and the smaller and bigger range (equivaler@t@@d 1 percentage
of retrieved information respectively). The legend 1, 10, 100, 100A.a&000 represents
the chunk size.

For the color histogram database, we can observe the linear behather fstem
meaning that the implementation is scalable. Notice that there is a slight improvement

by using a chunk of size 1 query, as we commented in previous sectiots tthesopera-

31

4
}\v. pérGPU m T ‘Avera‘ge‘pe‘r epd: T T T T
2000 ol 35 F other processes Bz i
3 kernel process
5 3k transfer process i
=]
S 1500 b ~ 25l Average per Core & |
Q o . I
@ 2 ‘
[~
8 - © 2
2 1000 5 2
a . X £
5 P KE KP4 w0 [0 = 15
5 5ok i bas 5 R
£ 00 BB KR KR KR 2l !
S ‘k(oj ‘,foj ‘to‘} to3 ?3 :3
= e B ke o K 09
B ke 9 R o LEE o e,
0 — o : =L 7O IS G, T O G S, D G S
1 8 86 172 215 430 645 860 1075 GG ORI GGG 2N
. . X GP% tlm? rocess . PU time process
Dynamic scheduling. Iterations per core Number of ;?rocessed queries (iterations) per core
(range search r=1) (range search: r=1)
@r=1
T T T T 14 T T T T T T T e
Av. per GPU ExXxXx :
n 2000 Av. per Core Fezom | 1k Average per GPU: |
2 other processes &z
[& kernel process messsa
S 1500 (9 i 10 transfer process :
3 K
Q Il - -
@2 ¥ s gl Average per Core ¢
g K 8
8 % o)
g 1000 4 & E 6
5 K 5] =
s (9 XS
@ (X o K5 4
8 i X s
€ 500 K3 50
= < "4 ;'i ‘,y?‘;‘ 2
= R [K
o LKt Kl KR K3 i e 0 - :
S RN N % 10)6 7e G ”~°o°%~°’0o’0»s I RPN X &5‘010)@
. . . GPL[J)time rocess . CPU time process
Dynamic scheduling. Iterations per core Number of Brocessed queries (iterations) per core
(range search r=2) (range search: r=2)
(b)r=2
T T T T 50 T T T T T T T
Av. per GPU EXXxX
I 2000 Av. per Core s&Eea | 45 - Average per GPU: o
2 a0 F other processes EXxzR |
] kernel process m—
= L transfer process ,
5 1500 E _ 35
@ 3 30 |+ Average per Core -
Q £
2 1000 5 o % T
o 5 £ 20 i
Y Xl d
S) 5 0 [
s QKL
3 3 BB K 15 1
SR KN
E S0 = K DS K 10
b4 2Kl (K S
s o 2 r‘QN -
20 [K & 5
= S e kS K 1
0 X L L8 L 0 L L L " i
7 7‘90 6‘76\ 000 }0)@ 7 &)é \3{? %05'7@‘%‘0 /0)6 7 &7)é é,@ VQOG‘% ‘96’0 }0)@
. X X GPLétime rocess . CPU time process
Dynamic scheduling. Iterations per core Number of processed queries (iterations) per core
(range search r=3) (range search: r=3)
(c)r=3
T T T T 90 T T T T T T T
2 Av. per GPU EXXX
" 000 - Av. per Core ol 80 Average per GPU: B
.% 70 b other processes & ,
=] kernel process ===
g 1500 K B 60 transfer process
D o -
8 ::: g so0f Average per Core -
Q X ~
2 1000 ::: 2 e 4l
5 ;g fiﬁ [=
N X 3 30
@ S &
2 K)
E 500 by Sl 20 |-
2 K3 o
3 KRS '3 ‘"?fl)
o Lt B S (O 8 ! ki _ Py ,
e & 2 s]0%9 7O G G s T % ’fo@@%os‘{s\d’%’o%
. X . GP%time rocess . CPU time process
Dynamic scheduling. Iterations per core Number of Brocessed queries (iterations) per core

(range search r=4)

(d)r=4

(range search: r=4)

Figure 15: Distribution of queries and execution time obtained by the heterogeneotesnsfer
the Spanish Dictionary case study, considering 8 cores and 4 GPUcdlaftn represents query
distribution and right column represents execggon time distribution.

2000

1800

1600

1400

1200

Number of processed queries

1000

800

2500

2000

1500

1000

Number of processed queries

500

3000

2500

2000

1500

1000

Number of processed queries

500

Figure 16:Distribution of queries and execution time obtained by the heterogeneaessfs the
color histogram case study, considering 8 cores and 4 GPU. Left cakpnesents query distribution

T T T T T
Average per GPU EXXX
Average per Core &X&zR
S
Q
&L
v @
() E
3 (=
\é/j .
S o N o B 1K K =
S5 KE K SRR 2
o DA% Qi Psa @‘ S K V»Qj‘
1 11 112 225 281 563 845 1126 1408
Dynamic scheduling. Iterations per core
(range search equivalent to 0.01%)
(a) 0,01%

T T T T T
Average per GPU KxXxx -
STl

o]
g

Average per Core

17
QRS
ORISR
1 1
Time (sec.)

, 5 bl
2 Kb RSy

o K
AR L
7 7 7 <2 < S & 7, 7
e R TS R e Ty

Dynamic scheduling. Iterations per core
(range search equivalent to 0.1%)

(b) 0,1%
T T T T T
Average per GPU EXXX
Average per Core #6xwr?
D]
K
o] ,
}’4 -
X 8
X)
}.{ a ~
KJ o)
K 3 £
el 2 [=
K SRS
K3 b bl KE
K B pas oS
)) o [-
o SN o SRS
c B K RIS 165 KEer (s Rkt R
SR R K R K [[R
[N 2 % % % ’1%‘ ’700
Dynamic schedule. Iterations per Core
(range search equivalent to 1%)
(c) 1,0%

6T T T T T T

Average per GPU:

5L other processes &z
kernel process m— .

transfer process e

Average per Core

7 7, 7, S &, 7, 7 7 7, 7 S &, 7, 2
7 %, T %%y,
GPU time process . CPU time process
Number of processed queries (iterations) per core

(range search equivalent to 0.01%)

12
' A‘ver‘ag‘e pbr CPUZ T T
other processes &z
10 kernel process m— 4
transfer process
8 [Average per Core T

b

77y 7y 2 8 8, 7, 7 7 7y 7y 25 8 8, 7
7 % %, 7 R, G R T,

GPLEl)time rocess . CPU time process

Number of processed queries (iterations) per core

(range search equivalent to 0.1%)

35

30 - i

25 b Average per GPU: g i
others processes &z

20 kernel process s—— i
transfer process

15 |- Average per Core T

10

7 7 7 7y 7 S &, 7y 2
” (AN &% 7,

time_process

7, Sk 7,
%5 %% (35,’70&
GPL{)time rocess . CPUt

Number of processed queries (iterations) per core
(range search equivalent to 1.0%)

and right column represents execution time distribution.

33

[
w

2R e
o R N

Time (sec.)

N WA OO N 0 ©

Figure 17:System scalability. Execution time vs. chunk size when the number of queriasés
from 10 thousand to 40 thousand considering 1 and 4 as range searsiistem with 8 cores and 4

GPUs.

400

Time (sec.)

Figure 18:System scalability. Execution time vs. chunk size when the number of queriasésl
from 100 thousand to 900 thousand considerifd @ and 1% of percentage of retrieved information

Number of processed queries x10.000.—
(range search r=1)

3 4 5 6 7 8 9

Number of processed queries x100.000.—
(range search equivalent to 0.01%)

in a system with 8 cores and 4 GPUs.

34

Time (sec.)

Time (sec.)

90

80 -

70 |
60
50 |

40 -

1000

Number of processed queries x10.000.—

(range search r=4)

2

3 4 5 6 7 8 9

Number of processed queries x100.000.—
(range search equivalent to 1.0%)

tion way of OpenMP. However, considering such a huge amount oftth@tahunk sizes
10, 100 and also 1000 provide good results, being between alnddst@®f the number
of queries (chunk size 10 over 9000 queries) and 1% (chunk size 1000 over.000
queries), i.e, relative small chunks. However, as this percentageaseséchunk size
10.000 over 10000 queries) the behavior is worst.

For the words space the behaviour is similar. Nevertheless, we can $dertha
a chunk size of 1000 and range search 4 the performance is very lpottis case,
independently of the number of queries (from 10 to 40 thousand), eaehresolves
one chunk (1000 queries) while the GPU resolves the remaining quernigs dbe
same time (6 to 36 thousand). The reason of this behaviour is the use ofizerbig
chunk size (10% to .B%) that gives more work to the cores and leaves the GPUs idle

(see Figure 15(d)).

4.1.4 Discussion

Along this section, a heterogeneous implementation has been introduced thier
gueries are simultaneously processed in the multicore and the GPUs.

The first thing to remark is that the heterogeneous implementation, which exploits
all the underlying resources in the system, improves the execution time witctesp
ing only multicores or GPUs. The heterogeneous implementation tested usisga ba
configuration (8 cores and 1 GPU) is up to 31 times faster than the sequegiat
mentation, up to 4 times faster than the multicore implementation and up to 1.3 times
faster than the GPU implementation for the Spanish Dictionary case study.

This computational power has been increased using up to 8 cores ands4 @Rch-
ing from 9 to 95 times faster than the sequential implementation for the Spanish-Dictio
nary case study, and from 10 to 32 times faster for the color histograms.

Regarding the queries distribution, the more computational complexity the more
benefits from the use of the GPUs because they can process more gohaqtigries
and then the cores do not act as a bottleneck.

With respect to the execution time distribution, notice that the time spent in auxiliary

35

processes and in transferring data remain almost constant, meanwhilertblgdkecess
increases as the complexity of the problem also increases. This situation igaoite
because it indicates that most time is spent in processing. However, er daegysis
leads to think that it is possible to improve the performance if the time spent iridrans
process is reduced (other processes can not be avoided becaysepitesent needed
operations carried out by the core to manage the GPU). The key poinie&ang why
the best performance is obtained by processing one query at a time. é@neented,
this is due to the fact that despite we indicate to OpenMP to process a chgokrads,
internally OpenMP interprets to process a set of queries one by one irpa Toen,
OpenMP sends one query at a time to the GPU which results in increasing the time
spent transferring the queries. Thus, this algorithm could be improvee ifegeive the
OpenMP internal operation way and we send to the GPU a real chunledéqu

Finally, as we expected, the algorithm is scalable.

4.2 Heterogeneousimplementation considering abatch of queries
- onekernel

According to the final comment of the last section, in this section we introdbteck-
oriented implementation in order to reduce the number of calls to the kernéhgsav
time) and, of course, reduce the number of transferences (saving moje time

To carry out this block-oriented implementation, different changes habe iotro-
duced in the code.

Firstly, we have to change the code which calls the kernel because, saidvin
Section 4.1.2, it is necessary to deceive OpenMP in order to send a coctplete of
queries to the kernel instead of one query at a time.

The key point is that, the loop variable does not vary for all the quenethis case,
it varies till the number of blocksNUM BLOCKS= MEM-32ERES),

Notice, that before calling the kernel, a complete block of queries hasdhieeated

to the global memory of the GPU.

36

Regarding the changes carried out in the proposed kernel desariSedtion 3.2,

we have the following:

1. To allocate to global memory of the GPU the needed structures containing the

solutions of processing a block MQ queries, being/Q the size of the block.

2. After that, theMQ queries are transferred to the global memory of the GPU during

the resolution stage.

3. Really, the kernel is the same that was presented in Section 3.2, but img$kis c

instead of processing just a query, it iterates to solve the complete block.

4. Finally, solutions of th&1Q queries are transferred to the host memory.

A special case is when the last block has less t&hqueries. In this case this

block is resolved query by query using the whole system (as version 1).

421 Executiontime

In Figures 19, 20 and 21 the results in terms of execution time for the Spaitishiriary
are presented. Each graph corresponds to a range seatch 2, 3,4), and the same
notation as in Figures 8 and 9 is used for indicating the number of cores Bb3.G
Axis X corresponds to the percentage of queries (exceptdahdt means 1 query). In
Y axis, the execution time in seconds is represented.

In Figure 19 we can observe that when the complexity of the problem sesea
the size of the block has a negative influence because no improvemerutstaireed
considering more GPUs in the system. This occurs, especially for highek bizes,
because the cores become the bottleneck of the system. When the blockssizl s
the GPUs have the capacity of solving more queries and then the behathersyfstem
is better (see Figure 25).

Figure 20 shows the result of the implementation presented in Section 4.1 (v1 in
legend) with respect to the one here presented (v2 in legend). Obyidlisigystem
improves the execution time, especially when considering a small block sideedn

if we make a zoom (see Figure 21) we can observe that the improvemehedeaith

37

- A 0 4
L (=3) 7 (r=4) e
pa 80 s
L A -4
~ & 70 | e E
> L y | o
9 = 60 - o 1
) B i A
< e 50 - 7 g
g 3 S 1 ol i
= r = - 81 8 1 e 8l -8
L g o 82 o~ o 308 2 82 -0
o 83 —a— | 208 4&’ 83 —-a— |
e 84 —--omer G 84 - omr
B o 4 0% 1
. Il Il Il Il 0 Il Il Il Il
K)) S -)) I D T T A S S N AN
Query blocksize assigned to device Query blocksize assigned to device Query blocksize assigned to device Query blocksize assigned to device

Figure 19: Adding GPUs to the second version for the heterogeneous schemejrahanres by
GPUs. Spanish dictionary case study.

38 : 16 : 55 : 100
36 E A1 s0F 4 90 4
34 b (=1 { U e A asp] o 9 E
: o P
32t 4 12r 5 4 sl 4 70t A
g 3t By 35 4 60 e
8 10 - b ; &
<28t 1, i 30| A 1 sof .
E 26 | B \ E i 1 25t 4 40t E
[~ g X X g ¥4 o =
244 - 1 6F oFf 1 20} - 30
. - V2 --oXe-- V2 X - V2 --oXe-- V2 X
221 % e R = * VR A v oo 4 200 s Vi me
2 X B 10 | g 4 10 87 B
18 Il Il Il Il 2 Il Il Il Il 5 ” Il Il Il Il 0 Il Il Il Il
P e T s o Ry B Ss T s o ol Se S s o Ry B Ss T s o %

Query blocksize assigned to device i Query blocksize assigned to device i Query blocksize assigned to device i Query blocksize assigned to device i

Figure 20:Comparing results for version v1 and v2. Spanish dictionary case study.

the new implementation is up to 17% in the best case, decreasing as the rargeesc
until 1.5% (block size in X axis, not percentage). Another important result caebe
in Figure 21 is that the best performance is not obtained for 1 quenrypbuat small
block size (8), that is around D% of the total queries.

In Figures 22, 23 and 24 the results in terms of execution time for the color his-
togram are presented. Each graph corresponds to a percentageéevtd information
(0.01%, Q1%, 1%). Axis X corresponds to percentage of queries (exceptgandt

means 1 query). In Y axis, the execution time in seconds is representese Tib-

2.6 7 T 6.5 7 13 22
& i
25 b (=1) o 1 6F =2 /12 (=3) A 20 (=4 A
& B TN A
~ 2 V2 -exees 1B b A . 16
2 23}t vi -8 g e // 10 + /5 1o}
<7 e 5+ L X X 14) g
[: a5 po e 12 at s]
21 b 8 g 1 10 V2 x|
| X | V2 --o%e- § N
2 J“ B - i 40k vl f 7k 7 s o |
X~ x o vl -8 B2
1.9 Il Il Il 3.5 Il Il Il 6 A Il Il 6 Il Il Il
18 86 _ 172 215 18 86 _ 172 215 18 86 _ 172 215 18 86 _ 172 215
Query blocksize assigned to device Query blocksize assigned to device Query blocksize assigned to device Query blocksize assigned to device

Figure 21:Details for small blocksizes, using real blocksize: 1 - 1q, 8196, 86 - 1%, 172 - 2%,
215 - 25%. Spanish dictionary case study.

38

T T T T T 40 T T T T T
- 4
5.5 i L 3B
(0.1%) (1.0%)
5 - o1 30t
3 i A2
g 45 i 1 =5t)
2 4 o 1 20F &7
[2] b
35 . 4 15| o OB
B -
3 g 1 10 E{; -
25 5 f 1 1 1 1 1
7 s & CRERN O N IO T S RN

Query Blocksize Assigned to Device

Query Blocksize Assigned to Device

Query Blocksize Assigned to Device

Figure 22: Adding GPUs to the second version for the heterogeneous schemejrapaores by

GPUs. Color histogram case study.

55 T T T T T 14 T T T T T 40 T T T T T
13 E
0.01% ’ - 0 A
5t (0.01%) . 4 12t (0.1%) 435 (1.0%) g
S P 11 | P - A
—~ 45 A0 A L /)[j] % A
o o 10 o -
@ .8 ® 9| e 1 25} e 4
° AT BTN s 1 st - i B
£ o , 20 | p i
£ = o 7} - /
F 354) . .
6 B E{/ V2 e T 15 |+ 4 V2 —--%---
S T ~ e e g
af et BE Sl aoaq b & vLoa
x v 4k 1 e x
25 1 1 1 1 1 3 1 1 1 1 1 5 1 1 1 1 1
O N T I N A A

Percentage of Queries Resolved

Percentage of Queries Resolved

Percentage of Queries Resolved

Figure 23:Comparing results for version v1 and v2. Color histogram case study.

ures endorse the results previously obtained for the Spanish Dictioaseystudy. The

improvement reached with the new implementation is up to 25% in the best case, de-

creasing as the percentage of retrieved information increases until Iri%is case

the best performance is obtained for a block size of 11, that is arodftl 6f the total

gueries.

In both cases when the range increases the improvement of the executiafetime

creases. This behaviour was expected because the benefits obtaieesidn 2 are due

to less time spent in transferences and kernel calls, and this time remains mhess o

constant, leading to less influence on the overall result.

4.2.2 Distribution of execution time and queries

Figures 25 and 26 show the queries distribution among the devices (lefticpand the

execution time distribution (right column) for a system of 8 cores and 4 GRIdsce

that for a small block size, the GPUs carried out an important percentdbje qtieries

39

4 . T 6.5 T T 13 1 T T
L V2 -] V2 —-X- a8 R
38 vl &) a” 6F vl-—8 P 4 12 xl s Bn' B
36 g E o
—~ . - L | X |
G 3.4 - 55 = ,‘E 1 TN
=32} 1 5fF 7 /410 b N
2 | o =y / < \
E gL LT ‘ N e
= ! 45 [4 9F v |
2.8 X (0.01%) - | o
f - \ e i o L i
2.6 B 4 4 e (0.1%) 8 (1.0%)
24 1 1 1 35 1 1 1 7 ‘X/” 1 1
111 112 225 281 111 112 225 281 1411 112 225 281
Batch of Queries Resolved by device Batch of Queries Resolved by device Batch of Queries Resolved by device

Figure 24:Details for small blocksizes, using real blocksize: 1 - 1q, 1196 112 - 1%, 225 - 2%,
281 - 25%. case Color histogram study.

(see bottom of both figures).
Regarding the execution time distribution, we observe that the time spent ifetrans
ring the queries has been dramatically reduced up to 50% respect to the imfd&ore

in Section 4.1.

4.2.3 Scalingthe number of queries

When we increase the number of queries in order to observe the bebathersystem
in a stress operation mode, the best behavior does not corresponcits bfosize 1
query as in the version 1, but also for block size between 10 and 1@@fovords space
(see Figure 27) and between 100 and 1000 to the vector space (se=Z8yu-or color
histograms, a block size of 10000 cannnot be used because the s&edades cannot
be allocated to the global memory.

Figures 29 and 30 show the comparative results for words space atudt gpace
using the best choice in version 1, presented in Section 4.1, and vergimre2pre-
sented). We appreciate that the block-oriented implementation improves theiere
time. This improvement ranges from 20% (100 thousand queries) to 28%h80sand
gueries) for the color histograms.

For the words space we need to make a deeper analysis. For a blodkéi2e o
and range search 1, the improvement ranges from 19% (10 thousaridsjuo 21%
(40 thousand queries). Nevertheless, a blocksize of 100 was ragragie for range 4,

getting better results for a blocksize of 10 with an improvement of 9% for 4@stad

40

4
}\v. pérGPU m T ‘Avera‘ge‘pe‘r epd: T T T T
2000 - Av. per Core &&=sm | 35 F other processes &z ,
8 kernel process
°;’, 3k transfer process i
% 1500 - R] ~ 25} Average per Core #2775
5
8 8
© ~ 2
S 5)
£ 1000 S £
b £
“— o PSP = 15
° Sl
= 2
2 S ke 1
E 500 SRR
2 2 B 05
& on‘ R RRRss
% Ry 0 ERSSRKEES ; !
0 - L & &, & ® & &, &
1 8 86 172 215 430 645 860 1075 70 B %My 70 B ey
. . GPU time process. CPLétime rocess
Query batch size processed by device. Query batch size processed by device.
(range search r=1) (range search: r=1)
@r=1
\A T GP[‘J T 14 T T T T T T T
v. per KX XX
, 2000 F Av. per Core §%5%2 | 2| Average per GPU: i
2 other processes &z
[s kernel process messsa
_g 1500 F ::: | 10 transfer process :
g’ ::: S g Average per Core :
g K Y
<] L 4 I)
£ 1000 5 2 2 5
= 19 o KR [
o (9 X KX
g L RS 4
Qo 4 o] i3
€ 500 [" 9 KES R T
=1 X4l A7
. = K X S SR K
= ko K S8 K R K S kO 2
o LB Ko b R I8 k48 R R [0 ‘
T & o N, % % 10)6 7e G 7"’06“7&&6’0)0)\5\ I RPN X 0%}0)@
. . GPU time Bocess_ CP% time process
Query batch size processed by device. Quer)P atch size processed by device.
(range search r=2) (range search: r=2)
(b)r=2
Av. per GPU £xx %0
v. per
@ 2000 - Av. per Core &gz |
2 50 - i
3 Average per GPU: g
g 1500 E a0 - other processes B
2 n kernel process mm—
4 9 transfer process -
o ~ 30 + -
2 1000 - E&ﬂ - 2 Average per Core ¢
2 %S £
5 R R =]
5 o K
£ 500 | SR R A
S £ 5K %33 i
Z & 3 (5 Rl
3] 2 SR RS
- IS [K
0 2l S QK Ko P R : :
7 7‘90 6‘76\ 000 }0)@ 7 &)é \3{? %05'7@‘%‘0 /0)6 7 &7)é é,@ VQOG‘% ‘96’0 }0)@
. . GPU time process . CPU time process
Query batch size processed by device. Query batch size processed by device.
(range search r=3) (range search: r=3)
(c)r=3
‘A‘GPL‘J‘ 100 T T T T T T T T T T T T T
V. per KX XX
, 2000 - Av. per Core wm] 90 - e
-% 80 | Average per GPU: B
=]
= | i 70 - other processes B i
5 1500 = kernel process s
§ 8 60 |- transfer process -
[} Z
S <5 50+ g
g 1000 | ng | g Average per Core e
s 1 £ 40r
= S
2 4 30 -
£ 500 S |
2 2 2
5 ok
o LD D [% o L
e &]0%9 7S & 2 s, % 06‘0,0).5\ 7 & 2 s, % ‘%‘070)0«
. X GPU time process. CP%time Process
Query batch size processed by device. Query batch size processed by device.
(range search r=4) (range search: r=4)

(d)r=4

Figure 25: Distribution of queries and execution time obtained by the heterogeneotesnsfer
the Spanish Dictionary case study, considering 8 cores and 4 GPUcdlaftn represents query
distribution and right column represents execyiion time distribution.

2200
2000
1800
1600
1400
1200

1000

Number of processed queries

800
600

2500

2000

1500

1000

500

Number of processed queries

3000

2500

2000

1500

1000

Number of processed queries

500

Figure 26:Distribution of queries and execution time obtained by the heterogeneaessfs the
case color histogram study, considering 8 cores and 4 GPU. Left cakpnesents query distribution

T T T T T
Average per GPU EXXX
Average per Core &2 |
1 3
Q
<
v]
) E
5
‘R
Ol
- Sk
% 9K 8
% i 4 [R [
S Wb Kamr KB PR KEer [Kk K
1R K KSR RE B KB K
1 11 112 225 281 563 845 1126 1408
Query batch size processed by device.
(range search equivalent to 0.01%)
(a) 0,01%
T T T T T 7]
Average per GPU EXxX=
STl
n
! Q
&£
[}
E
b [
5 K ke 1
o O 1548
S goj oj‘
7 7 7,
7 %
Query batch size processed by device.
(range search equivalent to 0.1%)
(b) 0,1%
T T T T T
Average per GPU EXXX
Average per Core #6xwr?
n
Q
, &
g
’S =
ol
arE 1"
5% A8 fé”‘
Eo'\ >]
el {1 e
2 Reey R R
; . K SIS %l ot
5 K Soa KB KRB S R s ok
S ORI KR K I [s B RO
7, Sk 7
7 7y 1@ e%\ 90,) &76‘ 1]%‘ 70&
Query batch size processed by device.
(range search equivalent to 1.0%)
(c) 1,0%

6T T T T T T

Average per GPU:
5L other processes &z

kernel process m—
transfer process

Average per Core

7, S &, 7, 7 7 7, 7 S &, 7, 2
7 Y S, T o %%
GPU time process . CPU time process

Query batch size processed by device.

(range search equivalent to 0.01%)

12 T T T T T T T 1 LA I I L R B B
10 Average per GPU:
B other processes ERRR 1
kernel process uuu——
gk transfer process i
Average per Core 7
6 .

7y 20 2 G & 7y X 7 7y 7y 20 2 G &, 7
7 % %, 7 %

7%
)) &%
GPU time process . CPU time process
Query batch size processed by device.
(range search equivalent to 0.1%)

35

30+ il

25 b Average per GPU:

other processes &z
kernel process ——
transfer process

20 -

15 |- Average per Core

10

2 2 G &, 7y 7 7y 7 R0 80 8 7,
5 %% 7, 7 o % 2%,

GPU timerprocess X CPU time process
Query batch size processed by device.

(range search equivalent to 1.0%)

N
2

and right column represents execution time distribution.

42

12 T T 80— <'> 7777777777777777777 R R 4
1 70 b
10 60
n 1o]
° 10 ---¢
S 8 3 Sor 100 —v— b
@ @ 1000 ---<---
2 7 2 40 | E
= 6 =
5
4
3
2 0 1 1
1 2 3 4 1 2 3 4
Number of processed queries x10.000.— Number of processed queries x10.000.—
(range search r=1) (range search r=4)

Figure 27:Version 2: System scalability. Execution time vs. chunk size when the nurhjaedes
is varied from 10 thousand to 40 thousand considering range seanth4lia a system with 8 cores
and 4 GPUs.

S S
() [}
K L
() [}
£ £
= =
o 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Number of processed queries x100.000.— Number of processed queries x100.000.—
(range search equivalent to 0.01%) (range search equivalent to 1.0%)

Figure 28:Version 2: System scalability. Execution time vs. chunk size when the nurheedes
is varied from 100 thousand to 900 thousand consideriQ@% and 1% of percentage of retrieved
information in a system with 8 cores and 4 GPUs.

43

[
N

T T 35 T T
1 F v2-100 —v— P
vl-001 ---o---
10 B
9
S8 m
3 3
F 6 S
5
4
3F
2 1 1 5 1 1
1 2 3 4 1 2 3 4
Number of processed queries x10.000.— Number of processed queries x10.000.—
(range search r=1) (range search r=4)

Figure 29:Version 2: Scaling the number of queries from 10 thousand to 40 thowsarsidering
range search 1 and 4 in a system with 8 cores and 4 GPUs. Comparittg feswersion 1, best
option with number of queries equal to 1, versus the second version witk bipe equal to 100
(MQ = 100) and also equal to 10 for range 4.

350 T T T T T T T K 800 T T T T T T T
L - 700 | =
300 V2 - 100 —o— /,,/C’ o
v1-001 ---¢--- 600 | |
250 - v2-100 —v— o
—_ - vl-001 ---o--- - 7
g 200 2
@ f2 .
[(3]
E 150 £
[[E
100 |
50 .
O 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Number of processed queries x100.000.— Number of processed queries x100.000.—
(range search equivalent to 0.01%) (range search equivalent to 1.0%)

Figure 30:Version 2: Scaling the number of queries from 100 thousand to 900 thdusasidering
0.01% and 1% of percentage of retrieved information in a system with 8 coced &PUs. Com-
paring results for version 1, best option with number of queries equalverdus the second version
with block size equal to 100MQ = 100).

gueries but no improvement for 10 thousand queries, i.e., this blocksiti# Bgsfor

the amount of queries considered.

424 Discussion

As expected, the block-oriented implementation improves the performance df th
qguery implementation. This is due to the fact that the time spent in transferring the
gueries has been dramatically reduced up to 50% with respect to the vérsibine

execution time has been improved (with respect to v1) up to 25%, and up tovRéd

44

scaling.

However, dealing with a block of queries has a fault. That is, dealing witbhcklof
queries forces to allocate needed structures in the global memory to ste@utiens.
In particular, in the worst case we need a bidimensional array of dimeMf@x D,
beingMQ the block size an® the number of objects in database. In version 1, we only
need, as a maximum, an array of dimensianThus, the block size used in version 2
is limited by the available storage. However, this situation is not of concemukeave
have proved along the paper that small block sizes are more suitable.

With respect to the sequential version, the speed-ups obtained rangd 3rto 36

for color histograms, and from 10 to 97 for words space.

5 Conclusion and Future Works

In this paper two heterogeneous implementations for similarity search in metdesspa
using a generic metric structure (GMS), were presented. The firsivengdn 1) takes
into account that each query is completely processed in a unique kenesiery - one
kernel). The second one (version 2) corresponds to a block-odiémiglementation
transferring a chunk of querieMQ queries) at a time and processing it in the unique
kernel MQ queries - one kernel).

With respect to memory usage, more queries need to be allocated to the global me
ory in version 2, leaving less space for the GMS and the database (dogpéth ver-
sion 1). Moreover, also a bigger data structure is required to store shés®f the
queries.

The time spent in data transfer and calls to the kernel has been reducadion2
with respect to version 1. Although the amount of data transferred is the saboth
versions, it is faster to transf&tQ queries in one packet (one kernel) than trans€y
“packets” of one queryMIQ kernels). In general, the reduction in transfering data is up
to 50%.

Another measure of the speed of the algorithm is answering the questiomaiay

45

Spaces| Spanish Dictionary| Color Histograms
Algorithms 1 ‘ 4 01 1.0

sequential (1 core) || 409 12 333 44
multicore (8 cores) || 3098 95 2472 342

1GPU(1g-1Kk) 616 290 648 336
1GPU(MQq-1k) | 769 310 873 372

4GPU(1q-1k) | 2131 1122 2069, 1305
4GPUMQq-1Kk)| 2922| 1216 3086, 1493
Full Systemv 1 3638 1152 3292 1411
Full System v 2 4378 1169 4362| 1586

Table 3:Number of queries per second for all versions, considering only thémoax and minimum
range.

gueries are processed per second?. The answer is given in Table 3.

In Table 3 the worst case is given when considering the upper rarmgehstor
Spanish dictionary case study (r=4) or the upper percentage of iniormatrieved
for the color histograms case study (1%). On the other hand, the bessaagen when
considering the lower range search for the Spanish dictionary case (stud or the
lower percentage of information retrieved for the color histograms cadg L01%).
As we expected, the number of queries processed for both case stugiieslar, and
evidently the version 2 processes a high number of queries, especially tiv best
case is considered.

Comparing the sequential version against the full system v2 we can s$éerthaall
ranges we get a speed-up between 10 and 13, while for high ranggst\wespeed-up
between 36 and 97. The reason of these results is related to the beluitoeimetric
structure. For small ranges more objects are discarded, so less distaheations are
performed. On the contrary, for high ranges the behaviour of thetstauis worst, more
distance evaluations are performed, there is more computational load, anthenefits
can be obtained from the parallel platform.

If the measure to take into account is the number of queries processee Gyths
versus the number of queries processed by the core, this ratio vanieselpel.5 and 20
for the Spanish dictionary case study and between 2 and 6 for the cdlogiaiss case

study. In both cases, the best results are obtained when the complexity mitiiem

46

increases. That profs that the GPUs are better exploited.

Finally, as shown, the system scales properly, obtaining an almost lingar-pe
mance.

According to the experimental results, sometimes the use of the CPU corexlinste
of benefitting the performance represents a bottleneck. Thus, in a futarkeother
kind of load distribution can be considered. For instance, due to the &oGPUs are
quicker than CPU cores, it is possible to assign a fix amount of queriestteeaBPUs
(for example, 80% of queries) and the rest to the CPU cores. Then¥io8queries
are processed by the GPUs in blocks as in this paper. The rest ofgjaegiprocessed
dynamically one-by-one by the CPU cores. Evidently, in this case it is saget® tune
in this percentage according to a previous speed-up study.

During this paper, we have considered different parameters to mehsiugeodness
of the implementation, as execution time, distance evaluation and needed stboage
ever, we can introduce a new parameter as energy efficiency oryszmrgumption. In
this case, we could assess that the better implementation spends less timdesgeeds
memory and consumes less energy.

Finally, we could extend the block-oriented implementation not only to GPUs but

also to main memory and secondary memory in order to improve the performance.

Acknowledgments

This work has been partially supported by the Ministerio de Ciencia e lmitova
project SATSIM (Ref: CGL2010-20787-C02-02), Spain and Videfcellory of Re-

search at the University of Magallanes, Chile.

References

[1] NVIDIA CUDA C Programming Guide, Version 4.0. NVIDIA, 2011.

http://developer.nvidia.com/object/ gpucomputing.html.

a7

[2] Adil Alpkocak, Taner Danisman, and Ulker Tuba. A parallel similaritaisd in
high dimensional metric space using m-tree. Ailvanced Environments, Tools,
and Applications for Cluster Computing, volume 2326 oL NCS, pages 247-252.
Springer Berlin / Heidelberg, 2002.

[3] Ricardo Baeza-Yates, Walter Cunto, Udi Manber, and Sun Wuxiiity match-
ing using fixed-queries trees. Bth Combinatorial Pattern Matching (CPM’ 94),
volume 807 ofLNCS, pages 198-212. Springer Berlin Heidelberg, 1994.

[4] Ricardo J. Barrientos, Jésl. Gbmez, Christian Tenllado, Manuel Prieto, and
Mauricio Marin. kNN query processing in metric spaces using GPUs17th
International European Conference on Parallel and Distributed Computing (Euro-

Par 2011), volume 6852 ofLNCS, pages 380-392, Berlin, Heidelberg, 2011.

Springer.

[5] Ricardo J. Barrientos, Jésl. Gbmez, Christian Tenllado, Manuel Prieto, and
Mauricio Marin. Range query processing in a multi-GPU environmentlOth
|EEE International Symposium on Parallel and Distributed Processing with Ap-

plications (ISPA 2012), pages 419426, Madrid, Spain, July 2012.

[6] Sergei Brin. Near neighbor search in large metric spacethel@lst VLDB Con-

ference, pages 574-584. Morgan Kaufmann Publishers, 1995.

[7] Edgar Ctavez, Jos L. Marrogun, and Gonzalo Navarro. Fixed queries array: A
fast and economical data structure for proximity searchivigitimedia Tools and

Applications, 14(2):113-135, June 2001.

[8] Edgar Clavez, Gonzalo Navarro, Ricardo Baeza-Yates, and las Marroqn.

Searching in metric spaceACM Computing Surveys, 33(3):273-321, 2001.

[9] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree : An efficGecess
method for similarity search in metric spacestha23st International Conference

on VLDB, pages 426-435, 1997.

48

[10] Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast krestaneighbor
search using GPUComputer Vision and Pattern Recognition Workshop, 0:1-6,
2008.

[11] Veronica Gil-Costa, Ricardo Barrientos, Mauricio Marin, and GasoBonacic.
Scheduling metric-space queries processing on multi-core proce&smosnicro
Conference on Parallel, Distributed, and Network-Based Processing, 0:187-194,
2010.

[12] Veronica Gil-Costa, Mauricio Marin, and Nora Reyes. Parallergpeocessing

on distributed clustering indexedournal of Discrete Algorithms, 7(1):3—-17, 2009.

[13] Ananth Grama, George Karypis, Vipin Kumar, and Anshul Guftoduction to
Parallel Computing (2nd Edition). Addison Wesley, 2 edition, 2003.

[14] Magnus Hetland. The basic principles of metric indexing. In CarlosliGp
Satchidananda Dehuri, and Susmita Ghosh, ediBarar,m Intelligence for Multi-
objective Problems in Data Mining, volume 242 ofStudies in Computational In-

telligence, pages 199-232. Springer Berlin / Heidelberg, 2009.

[15] Iraj Kalantari and Gerard McDonald. A data structure and anrdlguo for the
nearest point problemlEEE Transactions on Software Engineering, 9(5):631—

634, September 1983.

[16] Quansheng Kuang and Lei Zhao. A practical GPU based kNNi#igo. | nterna-
tional Symposiumon Computer Science and Computational Technology (ISCSCT),
pages 151-155, 2009.

[17] Luisa Mic, Jog Oncina, and Rafael C. Carrasco. A fast branch & bound nearest
neighbour classifier in metric spacé®ttern Recognition Letters, 17(7):731-739,
June 1996.

[18] Maria Luisa Mid, Jog Oncina, and Enrique Vidal. A new version of the nearest-
neighbour approximating and eliminating search algorithm (aesa) with linear pr
processing time and memory requiremerRattern Recognition Letters, 15(1):9—

17, January 1994.

49

[19] Gonzalo Navarro and Roberto Uribe-Paredes. Fully dynamic meitess meth-

ods based on hyperplane partitionihgfor mation Systems, 36(4):734 — 747, 2011.

[20] Oscar Pedreira and Nieves R. Brisaboa. Spatial selection afespaots for sim-
ilarity search in metric spaces. B8rd Conference on Current Trends in Theory
and Practice of Computer Science (SOFSEM 2007), volume 4362 o£.NCS, pages
434-445, Harrachov, Czech Republic, 2007. Springer.

[21] Jeffrey K. Uhlmann. Satisfying general proximity/similarity queries withtmse

trees. Innformation Processing Letters, volume 40, pages 175-179, 1991.

[22] Roberto Uribe-Paredes, Enrique Arias,&asSanchez, Diego Cazorla, and Pedro
Valero-Lara. Improving the performance for the range search on nsgiaices us-
ing a multi-GPU platform. IrDatabase and Expert Systems Applications (DEXA),
volume 7447 ofLecture Notes in Computer Science, pages 442—-449. Springer
Berlin Heidelberg, 2012.

[23] Roberto Uribe-Paredes, Diego Cazorla,&lbs Sanchez, and Enrique Arias. A
comparative study of different metric structures: Thinking on GPU implementa
tions. InLecture Notes in Engineering and Computer Science: Proceedings of
The World Congress on Engineering 2012 (WCE 2012), pages 312-317, London,
England, July 2012.

[24] Roberto Uribe-Paredes, Pedro Valero-Lara, Enrique Ar@®, Luis Sanchez, and
Diego Cazorla. Similarity search implementations for multi-core and many-core
processors. Iinternational Conference on High Performance Computing and

Smulation (HPCS), pages 656—663, 2011.
[25] URL. Green 500 list. http://www.green500.org/.
[26] URL. Top 500 list. http://www.top500.0rg/.

[27] Pavel Zezula, Pasquale Savino, Fausto Rabitti, Giuseppe Amat®,zanhal Ciac-
cia. Processing m-trees with parallel resourcesRIIDE '98: Proceedings of the
Workshop on Research Issues in Database Engineering, pages 147—, Washington,
DC, USA, 1998. IEEE CS.

50

