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Abstract

We propose an extension with immediate multiactions of discrete time stochastic Petri box calculus (dtsPBC), pre-
sented by I.V. Tarasyuk. The resulting algebra dtsiPBC is a discrete time analogue of stochastic Petri box calculus
(sPBC) with immediate multiactions, proposed by H. Macià, V. Valero and others within a continuous time domain.
The step operational semantics is constructed via labeled probabilistic transition systems. The denotational semantics
is defined on the basis of a subclass of labeled discrete time stochastic Petri nets with immediate transitions. The
consistency of the both semantics is demonstrated. In order to evaluate performance, the corresponding semi-Markov
chains and (reduced) discrete time Markov chains are analyzed. We define step stochastic bisimulation equivalence
of expressions and prove that it can be applied to reduce their transition systems and underlying semi-Markov chains
while preserving the functionality and performance characteristics. We explain how this equivalence may help to sim-
plify performance analysis of the algebraic processes. In a case study, a method of modeling, performance evaluation
and behaviour preserving reduction of concurrent systems is outlined and applied to the shared memory system.

Keywords: stochastic process algebra, Petri box calculus, discrete time, immediate multiaction, performance
evaluation, stochastic equivalence
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1. Introduction

Algebraic process calculi like CSP [48], ACP [8] and CCS [70] are a well-known formal model for the specifi-
cation of computing systems and analysis of their behaviour. In such process algebras (PAs), systems and processes
are specified by formulas, and verification of their properties is accomplished at a syntactic level via equivalences,
axioms and inference rules. In the last decades, stochastic extensions of PAs were proposed, such as MTIPP [45],
PEPA [47] and EMPA [14, 13, 9]. Stochastic process algebras (SPAs) do not just specify actions which can occur as
usual process algebras (qualitative features), but they associate some quantitative parameters with actions (quantitative
characteristics).

1.1. Petri box calculus

PAs specify concurrent systems in a compositional way via an expressive formal syntax. On the other hand, Petri
nets (PNs) provide a graphical representation of such systems and capture explicit asynchrony in their behaviour. To
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combine advantages of both models, a semantics of algebraicformulas in terms of PNs has been defined. Petri box
calculus (PBC) [15, 17, 16] is a flexible and expressive process algebra developed as a tool for specification of the
PNs structure and their interrelations. Its goal was also topropose a compositional semantics for high level constructs
of concurrent programming languages in terms of elementaryPNs. Formulas of PBC are combined not from single
(visible or invisible) actions and variables, like in CCS, but from multisets of elementary actions and their conjugates,
called multiactions (basic formulas). The empty multiset of actions is interpreted as the silentmultiaction specifying
some invisible activity. In contrast to CCS, synchronization is separated from parallelism (concurrent constructs).
Synchronization is a unary multi-way stepwise operation based on communication of actions and their conjugates.
This extends the CCS approach with conjugate matching labels. Synchronization in PBC is asynchronous, unlike that
in Synchronous CCS (SCCS) [70]. Other operations are sequence and choice (sequential constructs). The calculus
includes also restriction and relabeling (abstraction constructs). To specify infinite processes, refinement, recursion
and iteration operations were added (hierarchical constructs). Thus, unlike CCS, PBC has an additional iteration
construction to specify infinite behaviour when the semantic interpretation in finite PNs is possible. PBC has a step
operational semantics in terms of labeled transition systems, based on the structural operational semantics (SOS) rules.
The operational semantics of PBC is of step type, since its SOS rules have transitions with (multi)sets of activities,
corresponding to simultaneous executions of activities (steps). A denotational semantics of PBC was proposed via a
subclass of PNs equipped with an interface and considered upto isomorphism, called Petri boxes. For more detailed
comparison of PBC with other process algebras see [15, 16]. In the last years, several extensions of PBC with a
deterministic, a nondeterministic or a stochastic model oftime were presented.

1.2. Time extensions of Petri box calculus

To specify systems with time constraints, such as real time systems, deterministic (fixed) or nondeterministic
(interval) time delays are used. A time extension of PBC witha nondeterministic time model, called time Petri box
calculus (tPBC), was proposed in [55]. In tPBC, timing information is added by associating time intervals (the earliest
and the latest firing time) with instantaneousactions. Its denotational semantics was defined in terms of a subclass
of labeled time Petri nets (LtPNs), based on tPNs [69] and called time Petri boxes (ct-boxes). tPBC has a step time
operational semantics in terms of labeled transition systems.

Another time enrichment of PBC, called Timed Petri box calculus (TPBC), was defined in [66], it accommo-
dates a deterministic model of time. In contrast to tPBC, multiactions of TPBC are not instantaneous, but have time
durations. Additionally, in TPBC there exist no “illegal” multiaction occurrences, unlike tPBC. The complexity of
“illegal” occurrences mechanism was one of the main intentions to construct TPBC though this calculus appeared to
be more complicated than tPBC. The denotational semantics of TPBC was defined in terms of a subclass of labeled
Timed Petri nets (LTPNs), based on TPNs [79] and called TimedPetri boxes (T-boxes). TPBC has a step timed oper-
ational semantics in terms of labeled transition systems. Note that tPBC and TPBC differ in ways they capture time
information, and they are not in competition but complementeach other.

The third time extension of PBC, called arc time Petri box calculus (atPBC), was constructed in [75], and it
implements a nondeterministic time. In atPBC, multiactions are associated with time delay intervals. Its denotational
semantics was defined on a subclass of labeled arc time Petri nets (atPNs), where time restrictions are associated with
the arcs, called arc time Petri boxes (at-boxes). atPBC possesses a step time operational semantics in terms of labeled
transition systems. Further, all the calculi tPBC, TPBC andatPBC apply the discrete time approach, but only tPBC
and atPBC have immediate (multi)actions.

1.3. Stochastic extensions of Petri box calculus

The set of states for the systems with deterministic or nondeterministic delays often differs drastically from that
for the timeless systems, hence, the analysis results for untimed systems may be not valid for the time ones. To
solve this problem, stochastic delays are considered, which are the random variables with a (discrete or continuous)
probability distribution. If the random variables governing delays have an infinite support then the corresponding SPA
can exhibit all the same behaviour as its underlying untimedPA. A stochastic extension of PBC, called stochastic
Petri box calculus (sPBC), was proposed in [62]. In sPBC, multiactions have stochastic delays that follow negative
exponential distribution. Each multiaction is equipped with a rate that is a parameter of the corresponding exponential
distribution. The instantaneous execution of a stochasticmultiaction is possible only after the corresponding stochastic
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time delay. Just a finite part of PBC was initially used for thestochastic enrichment, i.e. in its former version sPBC
has neither refinement nor recursion nor iteration operations. The calculus has an interleaving operational semantics
defined via transition systems labeled with multiactions and their rates. Its denotational semantics was defined in terms
of a subclass of labeled continuous time stochastic PNs (LCTSPNs), based on CTSPNs [67, 5] and called stochastic
Petri boxes (s-boxes). In [59], the iteration operator was added to sPBC. In sPBC with iteration, performance of the
processes is evaluated by analyzing their underlying continuous time Markov chains (CTMCs). In [60], a number of
new equivalence relations were proposed for regular terms of sPBC with iteration to choose later a suitable candidate
for a congruence. sPBC with iteration was enriched further with immediate multiactions having zero time delay in
[61]. We call such an sPBC extension generalized sPBC or gsPBC. An interleaving operational semantics of gsPBC
was constructed via transition systems labeled with stochastic or immediate multiactions together with their rates or
probabilities. A denotational semantics of gsPBC was defined via a subclass of labeled generalized stochastic PNs
(LGSPNs), based on GSPNs [67, 5, 6] and called generalized stochastic Petri boxes (gs-boxes). The performance
analysis in gsPBC is based on the underlying semi-Markov chains (SMCs).

PBC has a step operational semantics, whereas sPBC has an interleaving one. Remember that in step semantics,
parallel executions of activities (steps) are permitted while in interleaving semantics, we can execute only single ac-
tivities. Hence, a stochastic extension of PBC with a step semantics is needed to keep the concurrency degree of
behavioural analysis at the same level as in PBC. As mentioned in [72, 73], in contrast to continuous time approach
(used in sPBC), discrete time approach allows for constructing models of common clock systems and clocked devices.
In such models, multiple transition firings (or executions of multiple activities) at time moments (ticks of the central
clock) are possible, resulting in a step semantics. Moreover, employment of discrete stochastic time fills the gap be-
tween the models with deterministic (fixed) time delays and those with continuous stochastic time delays. As argued
in [1], arbitrary delay distributions are much easier to handle in a discrete time domain. In [64, 65], discrete stochas-
tic time was preferred to enable simultaneous expiration ofmultiple delays. In [82, 84], a discrete time stochastic
extension dtsPBC of finite PBC was presented. In dtsPBC, the residence time in the process states is geometrically
distributed. A step operational semantics of dtsPBC was constructed via labeled probabilistic transition systems. Its
denotational semantics was defined in terms of a subclass of labeled discrete time stochastic PNs (LDTSPNs), based
on DTSPNs [72, 73] and called discrete time stochastic Petriboxes (dts-boxes). A variety of stochastic equivalences
were proposed to identify stochastic processes with similar behaviour which are differentiated by the semantic equiv-
alence. The interrelations of all the introduced equivalences were studied. In [83, 85], we constructed an enrichment
of dtsPBC with the iteration operator used to specify infinite processes. The performance evaluation in dtsPBC with
iteration is accomplished via the underlying discrete timeMarkov chains (DTMCs) of the algebraic processes. Since
dtsPBC has a discrete time semantics and geometrically distributed sojourn time in the process states, unlike sPBC
with continuous time semantics and exponentially distributed delays, the calculi apply two different approaches to
the stochastic extension of PBC, in spite of some similarityof their syntax and semantics inherited from PBC. The
main advantage of dtsPBC is that concurrency is treated likein PBC having step semantics, whereas in sPBC paral-
lelism is simulated by interleaving, obliging one to collect the information on causal independence of activities before
constructing the semantics. In [86, 87], we presented the extension dtsiPBC of the latter calculus with immediate
multiactions. Immediate multiactions increase the specification capability: they can model logical conditions, prob-
abilistic branching, instantaneous probabilistic choices and activities whose durations are negligible in comparison
with those of others. They are also used to specify urgent activities and the ones not relevant for performance eval-
uation. Thus, immediate multiactions can be considered as akind of instantaneous dynamic state adjustment and, in
many cases, they result in a simpler and more clear system representation.

1.4. Equivalence relations
A notion of equivalence is important in theory of computing systems. Equivalences are applied both to compare

behaviour of systems and reduce their structure. There is a wide diversity of behavioural equivalences, and their
interrelations are well explored in the literature. The best-known and widely used one is bisimulation. Typically,
the mentioned equivalences take into account only functional (qualitative) but not performance (quantitative) aspects.
Additionally, the equivalences are usually interleaving ones, i.e. they interpret concurrency as sequential nondeter-
minism. Interleaving equivalences permit to imitate parallel execution of actions via all possible occurrence sequences
(interleavings) of them. Step equivalences require instead simulating such a parallel execution by simultaneous oc-
currence (step) of all the involved actions. To respect quantitative features of behaviour, probabilistic equivalences
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have additional requirement on execution probabilities. Two equivalent processes must be able to execute the same
sequences of actions, and for every such sequence, its execution probabilities within both processes should coincide.
In case of probabilistic bisimulation equivalence, the states from which similar future behaviours start are grouped into
equivalence classes that form elements of the aggregated state space. From every two bisimilar states, the same ac-
tions can be executed, and the subsequent states resulting from execution of an action belong to the same equivalence
class. In addition, for both states, the cumulative probabilities to move to the same equivalence class by executing
the same action coincide. A different kind of quantitative relations is called Markovian equivalences, which take rate
(the parameter of exponential distribution that governs time delays) instead of probability. Note that the probabilis-
tic equivalences can be seen as discrete time analogues of the Markovian ones, since the latter are defined as the
continuous time relations.

Interleaving probabilistic weak trace equivalence was introduced in [31] on labeled probabilistic transition sys-
tems. Interleaving probabilistic strong bisimulation equivalence was proposed in [58] on the same model. Interleaving
Markovian strong bisimulation equivalence was constructed in [45] for MTIPP, in [47] for PEPA and in [14, 13, 9]
for EMPA. Interleaving probabilistic equivalences were defined for probabilistic processes in [51, 39]. Some variants
of interleaving Markovian weak bisimulation equivalence were considered in [26] on Markovian process algebras, in
[27] on labeled CTSPNs and in [28] on labeled GSPNs. In [10, 11], a comparison of interleaving Markovian trace, test,
strong and weak bisimulation equivalences was carried out on sequential and concurrent Markovian process calculi.
Nevertheless, no appropriate equivalence notion was defined for concurrent SPAs. The non-interleaving bisimulation
equivalence in GSMPA [20, 19] uses ST-semantics for action particles while in Sπ [78] it is based on a sophisticated
labeling.

1.5. Our contributions
In this paper, we present dtsPBC with iteration extended with immediate multiactions, calleddiscrete time stochas-

tic and immediate Petri box calculus(dtsiPBC), which is a discrete time analog of sPBC. The latter calculus has iter-
ation and immediate multiactions within the context of a continuous time domain. The step operational semantics is
constructed with the use of labeled probabilistic transition systems. The denotational semantics is defined in terms of
a subclass of labeled discrete time stochastic and immediate PNs (LDTSPNs with immediate transitions, LDTSIPNs),
based on the extension of DTSPNs with transition labeling and immediate transitions, called dtsi-boxes. LDTSIPNs
possess some features of discrete time deterministic and stochastic PNs (DTDSPNs) [92] and discrete deterministic
and stochastic PNs (DDSPNs) [91], but in LDTSIPNs simultaneous transition firings are possible while in DTDSPNs
and DDSPNs only firings of single transitions are allowed. The consistency of both semantics is demonstrated. The
corresponding stochastic process, the underlying SMC, is constructed and investigated, with the purpose of perfor-
mance evaluation, which is the same for both semantics. In addition, the alternative solution methods are developed,
based on the underlying DTMC and its reduction (RDTMC) by eliminating vanishing states. Further, we propose step
stochastic bisimulation equivalence allowing one to identify algebraic processes with similar behaviour that are how-
ever differentiated by the semantics of the calculus. We examine the interrelations of the proposed relation with other
equivalences of the algebra. We describe how step stochastic bisimulation equivalence can be used to reduce transition
systems of expressions and their underlying SMCs while preserving the qualitative and the quantitative characteristics.
We prove that the mentioned equivalence guarantees identity of the stationary behaviour and the residence time prop-
erties in the equivalence classes. This implies coincidence of performance indices based on steady-state probabilities
of the modeled stochastic systems. The equivalences possessing the property can be used to reduce the state space
of a system and thus simplify its performance evaluation, what is usually a complex problem due to the state space
explosion. We present a case study of a system with two processors and a common shared memory explaining how
to model concurrent systems within the calculus and analyzetheir performance, as well as in which way to reduce
the systems while preserving their performance indices andmaking simpler the performance evaluation. Finally, we
consider differences and similarities between dtsiPBC and other SPAs to determine the advantages of our calculus.

The first results on this subject can be found in [86]. Concerning differences from our previous journal papers
about dtsiPBC [87, 88, 89], the present text is much more detailed and many new results have been added. In par-
ticular, all the used notions (such as numbering, functionscollecting executable activities, probability functions) are
formally defined and completely explained with examples; the operational and denotational semantics are given in full
detail (the inaction, action rules, LDTSPNs and dtsi-boxesare extensively described and discussed); compact illus-
trative examples (of standard and alternative solution methods) are presented; keeping properties of original Markov
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chains (irreducibility, positive recurrence and aperiodicity) in their embedded and state-aggregated versions is stud-
ied. The main new contribution of the paper, step stochasticbisimulation equivalence of the process expressions, is
introduced and checked for stationary behaviour preservation in the equivalence classes; quotienting the transition
systems, SMCs and DTMCs by it, as well as the resulting simplification of performance evaluation, are considered.
As an application example, the standard and generalized variants of the shared memory system, quotients of their be-
haviour (represented by the transition systems, SMCs and DTMCs) by the equivalence and reductions of the quotients
by removing vanishing states are constructed; the generalized probabilities of the reduced quotient DTMC are treated
as parameters to be adjusted for performance optimization.In the enhanced related work overview, strong points of
dtsiPBC with respect to other SPAs are detected; in the discussion, analytical solution, application area, concurrency
interpretation and general advantages of dtsiPBC are explained.

If we compare dtsiPBC with the classical SPAs MTIPP, PEPA andEMPA, the first main difference between them
comes from PBC, since dtsiPBC is based on this calculus: all algebraic operations and a notion of multiaction are
inherited from PBC. The second main difference is discrete probabilities of activities induced by the discrete time
approach, whereas action rates are used in the standard SPAswith continuous time. As a consequence, dtsiPBC
has a non-interleaving step operational semantics. This isin contrast to the classical SPAs, where concurrency is
modeled by interleaving because of the continuous probability distributions of action delays and the race condition
applied when several actions can be executed in a state. The third main difference is immediate multiactions. There
are no instantaneous activities in MTIPP and PEPA while the immediate actions in EMPA can have different priority
levels, unlike the immediate multiactions in dtsiPBC. The salient point of dtsiPBC is a combination of immediate
multiactions, discrete stochastic time and step semanticsin an SPA. Thus, the main contributions of the paper are the
following.

• Powerful and expressive discrete time SPA with immediate activities called dtsiPBC in its final form.

• Step operational semantics of dtsiPBC in terms of labeled probabilistic transition systems.

• Petri net denotational semantics of dtsiPBC based on discrete time stochastic and immediate Petri nets.

• Performance analysis via underlying semi-Markov chains and (reduced) discrete time Markov chains.

• Stochastic equivalence used for behaviour-preserving reduction that simplifies the performance evaluation.

• Extended case study illustrating how to apply the obtained theoretical results in practice.

1.6. Structure of the paper

The paper is organized as follows. In Section 2, the syntax ofthe extended calculus dtsiPBC is presented. In
Section 3, we construct the operational semantics of the algebra in terms of labeled probabilistic transition systems.In
Section 4, we propose the denotational semantics based on a subclass of LDTSIPNs. In Section 5, the corresponding
stochastic process is defined and analyzed. Step stochasticbisimulation equivalence is defined and investigated in
Section 6. In Section 7, we explain how to reduce transition systems and underlying SMCs of process expressions
modulo the equivalence. In Section 8, the introduced equivalence is applied to the stationary behaviour comparison to
verify the performance preservation. In Section 9, a sharedmemory system is presented as a case study. The difference
between dtsiPBC and other well-known or similar SPAs is considered in Section 10. The advantages of dtsiPBC are
explained in Section 11. Finally, Section 12 summarizes theresults obtained and outlines the research perspectives.

2. Syntax

In this section, we propose the syntax of dtsiPBC. First, we recall a definition of multiset that is an extension of
the set notion by allowing several identical elements.

Definition 2.1. Let X be a set. A finitemultiset (bag) MoverX is a mappingM : X→ IN such that|{x ∈ X | M(x) >
0}| < ∞, i.e. it can contain a finite number of elements only.
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We denote theset of all finite multisetsover a setX by INX
f in. Let M,M′ ∈ INX

f in. Thecardinality of M is defined
as|M| =

∑
x∈X M(x). We writex ∈ M if M(x) > 0 andM ⊆ M′ if ∀x ∈ X, M(x) ≤ M′(x). We define (M + M′)(x) =

M(x) + M′(x) and (M − M′)(x) = max{0,M(x) − M′(x)}. When∀x ∈ X, M(x) ≤ 1, M can be interpreted as a proper
set and denoted byM ⊆ X. Theset of all subsets (powerset)of X is denoted by 2X.

Let Act = {a, b, . . .} be the set ofelementary actions. Then Âct = {â, b̂, . . .} is the set ofconjugated actions
(conjugates)such that ˆa , a and ˆ̂a = a. LetA = Act∪ Âct be the set ofall actions, andL = INAf in be the set ofall
multiactions. Note that∅ ∈ L, this corresponds to an internal move, i.e. the execution ofa multiaction that contains
no visible action names. Thealphabetof α ∈ L is defined asA(α) = {x ∈ A | α(x) > 0}.

A stochastic multiactionis a pair (α, ρ), whereα ∈ L andρ ∈ (0; 1) is theprobability of the multiactionα.
This probability is interpreted as that of independent execution of the stochastic multiaction at the next discrete time
moment. Such probabilities are used to calculate those to execute (possibly empty) sets of stochastic multiactions after
one time unit delay. The probabilities of stochastic multiactions are required not to be equal to 1 to avoid extra model
complexity due to assigning with them weights needed to makea choice when several stochastic multiactions with
probability 1 can be executed from a state. In this case, someproblems appear with conflicts resolving. See [72, 73]
for the discussion on SPNs. This decision also allows us to avoid technical difficulties related to conditioning events
with probability 0. Another reason is that not allowing probability 1 for stochastic multiactions excludes a potential
source of periodicity (hence, non-ergodicity) in the underlying SMCs of the algebraic expressions. On the other hand,
there is no sense to allow zero probabilities of multiactions, since they would never be performed in this case. LetSL

be the set ofall stochastic multiactions.
An immediate multiactionis a pair (α, l), whereα ∈ L and l ∈ IN≥1 = {1, 2, . . .} is the non-zeroweightof the

multiactionα. This weight is interpreted as a measure of importance (urgency, interest) or a bonus reward associated
with execution of the immediate multiaction at the current discrete time moment. Such weights are used to calculate
the probabilities to execute sets of immediate multiactions instantly. Immediate multiactions have a priority over
stochastic ones. One can assume that all immediate multiactions have priority 1, whereas all stochastic ones have
priority 0. This means that in a state where both kinds of multiactions can occur, immediate multiactions always occur
before stochastic ones. Stochastic and immediate multiactions cannot participate together in some step (concurrent
execution), i.e. the steps consisting only of immediate multiactions or those including only stochastic multiactionsare
allowed. LetIL be the set ofall immediate multiactions.

Note that the same multiactionα ∈ L may have different probabilities and weights in the same specification. It is
easy to differentiate between probabilities and weights, hence, between stochastic and immediate multiactions, since
the probabilities of stochastic multiactions belong to theinterval (0; 1), and the weights of immediate multiactions
are non-zero (positive) natural numbers fromIN≥1. An activity is a stochastic or an immediate multiaction. Let
SIL = SL ∪ IL be the set ofall activities. The alphabetof a multiset of activitiesΥ ∈ INSILf in is defined as
A(Υ) = ∪(α,κ)∈ΥA(α). For an activity (α, κ) ∈ SIL, we define itsmultiaction partasL(α, κ) = α and itsprobability
orweight partasΩ(α, κ) = κ. Themultiaction partof a multiset of activitiesΥ ∈ INSILf in is defined asL(Υ) =

∑
(α,κ)∈Υ α.

Activities are combined into formulas (process expressions) by the following operations:sequential execution;,
choice[], parallelism‖, relabeling[ f ] of actions,restrictionrs over a single action,synchronizationsy on an action
and its conjugate, anditeration [ ∗ ∗ ] with three arguments: initialization, body and termination.

Sequential execution and choice have a standard interpretation, like in other process algebras, but parallelism does
not include synchronization, unlike the corresponding operation in CCS [70].

Relabeling functionsf : A → A are bijections preserving conjugates, i.e.∀x ∈ A, f (x̂) = f̂ (x). Relabeling
is extended to multiactions in the usual way: forα ∈ L, we definef (α) =

∑
x∈α f (x). Relabeling is extended to the

multisets of activities as follows: forΥ ∈ INSILf in , we definef (Υ) =
∑

(α,κ)∈Υ( f (α), κ).
Restriction over an elementary actiona ∈ Actmeans that, for a given expression, any process behaviour containing

a or its conjugate ˆa is not allowed.
Let α, β ∈ L be two multiactions such that for some elementary actiona ∈ Act we havea ∈ α andâ ∈ β, or â ∈ α

anda ∈ β. Then, synchronization ofα andβ by a is defined asα ⊕a β = γ, where

γ(x) =

{
α(x) + β(x) − 1, x = a or x = â;
α(x) + β(x), otherwise.

In other words, we require thatα ⊕a β = α + β − {a, â}, i.e. we remove one exemplar ofa and one exemplar of ˆa from
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the multiset sumα + β, since the synchronization ofa andâ produces∅. Activities are synchronized with the use of
their multiaction parts, i.e. the synchronization bya of two activities, whose multiaction partsα andβ possess the
properties mentioned above, results in the activity with the multiaction partα ⊕a β. We may synchronize activities of
the same type only: either both stochastic multiactions or both immediate ones, since immediate multiactions have a
priority over stochastic ones, hence, stochastic and immediate multiactions cannot be executed together (note also that
the execution of immediate multiactions takes no time, unlike that of stochastic ones). Synchronization bya means
that, for a given expression with a process behaviour containing two concurrent activities that can be synchronized by
a, there exists also the process behaviour that differs from the former only in that the two activities are replaced by the
result of their synchronization.

In the iteration, the initialization subprocess is executed first, then the body is performed zero or more times, and,
finally, the termination subprocess is executed.

Static expressions specify the structure of processes. As we shall see, the expressions correspond to unmarked
LDTSIPNs (note that LDTSIPNs are marked by definition).

Definition 2.2. Let (α, κ) ∈ SIL anda ∈ Act. A static expressionof dtsiPBC is defined as

E ::= (α, κ) | E; E | E[]E | E‖E | E[ f ] | E rs a | E sy a | [E ∗ E ∗ E].

Let S tatExprdenote the set ofall static expressionsof dtsiPBC.
To make the grammar above unambiguous, one can add parentheses in the productions with binary operations:

(E; E), (E[]E), (E‖E). However, we prefer the PBC approach and add them to resolveambiguities only.
To avoid technical difficulties with the iteration operator, we should not allow anyconcurrency at the highest

level of the second argument of iteration. This is not a severe restriction though, since we can always prefix parallel
expressions by an activity with the empty multiaction part.Later on, in Example 4.2, we shall demonstrate that
relaxing the restriction can result in nets which are not safe. Alternatively, we can use a different, safe, version of the
iteration operator, but its net translation has six arguments. See also [16] for discussion on this subject.

Definition 2.3. Let (α, κ) ∈ SIL anda ∈ Act. A regular static expressionof dtsiPBC is defined as

E ::= (α, κ) | E; E | E[]E | E‖E | E[ f ] | E rs a | E sy a | [E ∗ D ∗ E],
whereD ::= (α, κ) | D; E | D[]D | D[ f ] | D rs a | D sy a | [D ∗ D ∗ E].

Let RegS tatExprdenote the set ofall regular static expressionsof dtsiPBC.
Dynamic expressions specify the states of processes. As we shall see, the expressions correspond to LDTSIPNs

(which are marked by default). Dynamic expressions are obtained from static ones, by annotating them with upper or
lower bars which specify the active components of the systemat the current moment of time. The dynamic expression
with upper bar (the overlined one)E denotes theinitial , and that with lower bar (the underlined one)E denotes the
final state of the process specified by a static expressionE. The underlying static expressionof a dynamic one is
obtained by removing all upper and lower bars from it.

Definition 2.4. Let E ∈ S tatExpranda ∈ Act. A dynamic expressionof dtsiPBC is defined as

G ::= E | E | G; E | E; G | G[]E | E[]G | G‖G | G[ f ] | G rs a | G sy a | [G ∗ E ∗ E] | [E ∗G ∗ E] | [E ∗ E ∗G].

Let DynExprdenote the set ofall dynamic expressionsof dtsiPBC.
Note that if the underlying static expression of a dynamic one is not regular, the corresponding LDTSIPN can be

non-safe (though, it is 2-bounded in the worst case [16]).

Definition 2.5. A dynamic expression isregular if its underlying static expression is regular.

Let RegDynExprdenote the set ofall regular dynamic expressionsof dtsiPBC.
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3. Operational semantics

In this section, we define the step operational semantics in terms of labeled transition systems.

3.1. Inaction rules

The inaction rules for dynamic expressions describe their structural transformations in the form ofG⇒ G̃ which
do not change the states of the specified processes. The goal of these syntactic transformations is to obtain the well-
structured resulting expressions called operative ones towhich no inaction rules can be further applied. As we shall
see, the application of an inaction rule to a dynamic expression does not lead to any discrete time tact or any transition
firing in the corresponding LDTSIPN, hence, its current marking remains unchanged.

Thus, an application of every inaction rule does not requireany discrete time delay, i.e. the dynamic expression
transformation described by the rule is accomplished instantly.

First, in Table 1, we define inaction rules for regular dynamic expressions in the form of overlined and underlined
static ones. In this table,E, F,K ∈ RegS tatExpranda ∈ Act.

Table 1: Inaction rules for overlined and underlined regular static expressions.

E; F ⇒ E; F E; F ⇒ E; F E; F ⇒ E; F E[]F ⇒ E[]F

E[]F ⇒ E[]F E[]F ⇒ E[]F E[]F ⇒ E[]F E‖F ⇒ E‖F

E‖F ⇒ E‖F E[ f ] ⇒ E[ f ] E[ f ] ⇒ E[ f ] E rs a⇒ E rs a

E rs a⇒ E rs a E sy a⇒ E sy a E sy a⇒ E sy a [E ∗ F ∗ K] ⇒ [E ∗ F ∗ K]

[E ∗ F ∗ K] ⇒ [E ∗ F ∗ K] [E ∗ F ∗ K] ⇒ [E ∗ F ∗ K] [E ∗ F ∗ K] ⇒ [E ∗ F ∗ K] [E ∗ F ∗ K] ⇒ [E ∗ F ∗ K]

Second, in Table 2, we introduce inaction rules for regular dynamic expressions in the arbitrary form. In this table,
E, F ∈ RegS tatExpr, G,H, G̃, H̃ ∈ RegDynExpranda ∈ Act.

Table 2: Inaction rules for arbitrary regular dynamic expressions.

G⇒ G̃, ◦ ∈ {; , [] }

G ◦ E⇒ G̃ ◦ E

G⇒ G̃, ◦ ∈ {; , [] }

E ◦G⇒ E ◦ G̃

G⇒ G̃

G‖H ⇒ G̃‖H

H ⇒ H̃

G‖H ⇒ G‖H̃

G⇒ G̃

G[ f ] ⇒ G̃[ f ]

G⇒ G̃, ◦ ∈ {rs,sy}

G ◦ a⇒ G̃ ◦ a

G⇒ G̃

[G ∗ E ∗ F] ⇒ [G̃ ∗ E ∗ F]

G⇒ G̃

[E ∗G ∗ F] ⇒ [E ∗ G̃ ∗ F]

G⇒ G̃

[E ∗ F ∗G] ⇒ [E ∗ F ∗ G̃]

Definition 3.1. A regular dynamic expressionG is operativeif no inaction rule can be applied to it.

Let OpRegDynExprdenote the set ofall operative regular dynamic expressionsof dtsiPBC.
Note that any dynamic expression can be always transformed into a (not necessarily unique) operative one by

using the inaction rules. In the following, we consider regular expressions only and omit the word “regular”.

Definition 3.2. Let≈ = (⇒ ∪ ⇐)∗ be a structural equivalence of dynamic expressions in dtsiPBC. Thus, two dynamic
expressionsG andG′ arestructurally equivalent, denoted byG ≈ G′, if they can be reached from each other by
applying the inaction rules in a forward or backward direction.
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3.2. Action and empty loop rules

The action rules are applied when some activities are executed. With these rules we capture the prioritization of
immediate multiactions with respect to stochastic ones. Wealso have the empty loop rule which is used to capture
a delay of one discrete time unit in the same state when no immediate multiactions are executable. In this case, the
empty multiset of activities is executed. The action and empty loop rules will be used later to determine all multisets
of activities which can be executed from the structural equivalence class of every dynamic expression (i.e. from the
state of the corresponding process). This information together with that about probabilities or weights of the activities
to be executed from the current process state will be used to calculate the probabilities of such executions.

The action rules with stochastic (or immediate, otherwise)multiactions describe dynamic expression transforma-

tions in the form ofG
Γ
→ G̃ (or G

I
→ G̃) due to execution of non-empty multisetsΓ of stochastic (orI of immediate)

multiactions. The rules represent possible state changes of the specified processes when some non-empty multisets of
stochastic (or immediate) multiactions are executed. As weshall see, the application of an action rule with stochastic
(or immediate) multiactions to a dynamic expression leads in the corresponding LDTSIPN to a discrete time tact
at which some stochastic transitions fire (or to the instantaneous firing of some immediate transitions) and possible
change of the current marking. The current marking remains unchanged only if there is a self-loop produced by the
iterative execution of a non-empty multiset, which must be one-element, i.e. the single stochastic (or immediate)
multiaction. The reason is the regularity requirement thatallows no concurrency at the highest level of the second
argument of iteration.

The empty loop rule (applicable only when no immediate multiactions can be executed from the current state)

describes dynamic expression transformations in the form of G
∅
→ G due to execution of the empty multiset of

activities at a discrete time tick. The rule reflects a non-zero probability to stay in the current state at the next time
moment, which is an essential feature of discrete time stochastic processes. As we shall see, the application of the
empty loop rule to a dynamic expression leads to a discrete time tact in the corresponding LDTSIPN at which no
transitions fire and the current marking is not changed. Thisis a new rule that has no prototype among inaction rules

of PBC, since it represents a time delay, but no notion of timeexists in PBC. The PBC ruleG
∅
→ G from [17, 16]

in our setting would correspond to the ruleG ⇒ G that describes staying in the current state when no time elapses.
Since we do not need the latter rule to transform dynamic expressions into operative ones and it can even destroy the
definition of operative expressions, we do not introduce it in dtsiPBC.

Thus, an application of every action rule with stochastic multiactions or the empty loop rule requires one discrete
time unit delay, i.e. the execution of a (possibly empty) multiset of stochastic multiactions leading to the dynamic
expression transformation described by the rule is accomplished instantly after one time unit. An application of
every action rule with immediate multiactions does not takeany time, i.e. the execution of a (non-empty) multiset of
immediate multiactions is accomplished instantly at the current moment of time.

Note that expressions of dtsiPBC can contain identical activities. To avoid technical difficulties, such as the proper
calculation of the state change probabilities for multipletransitions, we can always enumerate coinciding activities
from left to right in the syntax of expressions. The new activities resulted from synchronization will be annotated
with concatenation of numberings of the activities they come from, hence, the numbering should have a tree structure
to reflect the effect of multiple synchronizations. Now we define the numbering which encodes a binary tree with the
leaves labeled by natural numbers.

Definition 3.3. Thenumberingof expressions is defined asι ::= n | (ι)(ι), wheren ∈ IN.

Let Numdenote the set ofall numberingsof expressions.

Example 3.1. The numbering1 encodes the binary tree depicted in Figure 1(a) with the rootlabeled by1. The
numbering(1)(2) corresponds to the binary tree depicted in Figure 1(b) without internal nodes and with two leaves
labeled by1 and2. The numbering(1)((2)(3)) represents the binary tree depicted in Figure 1(c) with one internal
node, which is the root for the subtree(2)(3), and three leaves labeled by1, 2 and3.

The new activities resulting from synchronizations in different orders should be considered up to permutation of
their numbering. In this way, we shall recognize different instances of the same activity. If we compare the contents
of different numberings, i.e. the sets of natural numbers in them, we shall be able to identify the mentioned instances.
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Figure 1: The binary trees encoded with the numberings 1, (1)(2) and (1)((2)(3)).

Thecontentof a numberingι ∈ Numis

Cont(ι) =

{
{ι}, ι ∈ IN;
Cont(ι1) ∪Cont(ι2), ι = (ι1)(ι2).

After the enumeration, the multisets of activities from theexpressions will become the proper sets. Suppose that
the identical activities are enumerated when needed to avoid ambiguity. This enumeration is considered to be implicit.

Let X be some set. We denote the Cartesian productX × X by X2. Let E ⊆ X2 be an equivalence relation onX.
Then theequivalence class(with respect toE) of an elementx ∈ X is defined by [x]E = {y ∈ X | (x, y) ∈ E}. The
equivalenceE partitionsX into theset of equivalence classes X/E = {[x]E | x ∈ X}.

Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is the equivalence class ofG with respect to the
structural equivalence.G is aninitial dynamic expression, denoted byinit(G), if ∃E ∈ RegS tatExpr, G ∈ [E]≈. G is
afinal dynamic expression, denoted byf inal(G), if ∃E ∈ RegS tatExpr, G ∈ [E]≈.

Definition 3.4. LetG ∈ OpRegDynExpr. We define theset of all non-empty sets of activities which can be potentially
executed from G, denoted byCan(G). Let (α, κ) ∈ SIL, E, F ∈ RegS tatExpr, H ∈ OpRegDynExpranda ∈ Act.

1. If f inal(G) thenCan(G) = ∅.
2. If G = (α, κ) thenCan(G) = {{(α, κ)}}.
3. If Υ ∈ Can(G) thenΥ ∈ Can(G ◦ E), Υ ∈ Can(E ◦G) (◦ ∈ {; , [] }), Υ ∈ Can(G‖H), Υ ∈ Can(H‖G),

f (Υ) ∈ Can(G[ f ]), Υ ∈ Can(G rs a) (whena, â < A(Υ)), Υ ∈ Can(G sy a), Υ ∈ Can([G ∗ E ∗ F]),
Υ ∈ Can([E ∗G ∗ F]), Υ ∈ Can([E ∗ F ∗G]).

4. If Υ ∈ Can(G) andΞ ∈ Can(H) thenΥ + Ξ ∈ Can(G‖H).
5. If Υ ∈ Can(G sy a) and (α, κ), (β, λ) ∈ Υ are different activities such thata ∈ α, â ∈ β then

(a) (Υ + {(α ⊕a β, κ · λ)}) \ {(α, κ), (β, λ)} ∈ Can(G sy a), if κ, λ ∈ (0; 1);
(b) (Υ + {(α ⊕a β, κ + λ)}) \ {(α, κ), (β, λ)} ∈ Can(G sy a), if κ, λ ∈ IN≥1.

When we synchronize the same set of activities in different orders, we obtain several activities with the
same multiaction and probability or weight parts, but with different numberings having the same content.
Then we only consider a single one of the resulting activities to avoid introducing redundant ones.
For example, the synchronization of stochastic multiactions (α, ρ)1 and (β, χ)2 in different orders generates
the activities (α ⊕a β, ρ · χ)(1)(2) and (β ⊕a α, χ · ρ)(2)(1). Similarly, the synchronization of immediate
multiactions (α, l)1 and (β,m)2 in different orders generates the activities (α ⊕a β, l +m)(1)(2) and
(β ⊕a α,m+ l)(2)(1). SinceCont((1)(2)) = {1, 2} = Cont((2)(1)), in both cases, only the first activity (or,
symmetrically, the second one) resulting from synchronization will appear in a set fromCan(G sy a).

Note that ifΥ ∈ Can(G) then by definition ofCan(G), ∀Ξ ⊆ Υ, Ξ , ∅, we haveΞ ∈ Can(G).
LetG ∈ OpRegDynExpr. Obviously, if there are only stochastic (or only immediate) multiactions in the sets from

Can(G) then these stochastic (or immediate) multiactions can be executed fromG. Otherwise, besides stochastic ones,
there are also immediate multiactions in the sets fromCan(G). By the note above, there are non-empty sets of imme-
diate multiactions inCan(G) as well, i.e.∃Υ ∈ Can(G), Υ ∈ INILf in \ {∅}. In this case, no stochastic multiactions can
be executed fromG, even ifCan(G) contains non-empty sets of stochastic multiactions, since immediate multiactions
have a priority over stochastic ones, and should be executedfirst.
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Definition 3.5. Let G ∈ OpRegDynExpr. Theset of all non-empty sets of activities which can be executedfrom G is

Now(G) =


Can(G), (Can(G) ⊆ INSLf in \ {∅}) ∨ (Can(G) ⊆ INILf in \ {∅});

Can(G) ∩ INILf in , otherwise.

An expressionG ∈ OpRegDynExpris tangible, denoted bytang(G), if Now(G) ⊆ INSLf in \ {∅}. Otherwise, the

expressionG is vanishing, denoted byvanish(G), and in this caseNow(G) ⊆ INILf in \ {∅}.

Example 3.2. Let G = (({a}, 1)[]({b}, 2))‖({c}, 1
2) and G′ = (({a}, 1)[]({b}, 2))‖({c}, 1

2). Then G≈ G′, but Can(G) =
{{({a}, 1)}, {({c}, 1

2)}, {({a}, 1), ({c}, 1
2)}}, Can(G′) = {{({b}, 2)}, {({c}, 1

2)}, {({b}, 2), ({c}, 1
2)}} and Now(G) = {{({a}, 1)}},

Now(G′) = {{({b}, 2)}}. Clearly, we have vanish(G) and vanish(G′). The executions like that of{({c}, 1
2)} (and all sets

including it) from G and G′ must be disabled using preconditions in the action rules, since immediate multiactions
have a priority over stochastic ones, hence, the former are always executed first.

Let H = ({a}, 1)[]({b}, 1
2) and H′ = ({a}, 1)[]({b}, 1

2). Then H≈ H′, but Can(H) = Now(H) = {{({a}, 1)}} and
Can(H′) = Now(H′) = {{({b}, 1

2)}}. We have vanish(H), but tang(H′). To make the action rules correct under
structural equivalence, the executions like that of{({b}, 1

2)} from H′ must be disabled using preconditions in the action
rules, since immediate multiactions have a priority over stochastic ones, hence, the choices between them are always
resolved in favour of the former.

Now, in Table 3, we define the action and empty loop rules. In this table, (α, ρ), (β, χ) ∈ SL, (α, l), (β,m) ∈ IL
and (α, κ) ∈ SIL. Further,E, F ∈ RegS tatExpr, G,H ∈ OpRegDynExpr, G̃, H̃ ∈ RegDynExpranda ∈ Act.
Moreover,Γ,∆ ∈ INSLf in \ {∅}, Γ

′ ∈ INSLf in , I , J ∈ INILf in \ {∅}, I ′ ∈ INILf in andΥ ∈ INSILf in \ {∅}. The first rule in the table
is the empty loop ruleEl. The other rules are the action rules, describing transformations of dynamic expressions,
which are built using particular algebraic operations. If we cannot merge a rule with stochastic multiactions and a rule
with immediate multiactions for some operation then we get the coupled action rules. In such cases, the names of the
action rules with immediate multiactions have a suffix ‘ i’. To make presentation more compact, the action rules with
double conclusion are combined from two distinct action rules with the same premises.

Almost all the rules in Table 3 (exceptingEl, P2, P2i, Sy2andSy2i) resemble those of gsPBC [61], but the former
correspond to execution of sets of activities, not of singleactivities, as in the latter, and our rules have simpler pre-
conditions (if any), since all immediate multiactions in dtsiPBC have the same priority level, unlike those of gsPBC.
The preconditions in rulesEl, C, P1, I2 andI3 are needed to ensure that (possibly empty) sets of stochastic multi-
actions are executed only fromtangibleoperative dynamic expressions, such that all operative dynamic expressions
structurally equivalent to them are tangible as well. For example, if init(G) in rule C thenG = F for some static
expressionF andG[]E = F[]E ≈ F[]E. Hence, it should be guaranteed thattang(F[]E), which holds iff tang(E). The
caseE[]G is treated similarly. Further, in ruleP1, assuming thattang(G), it should be guaranteed thattang(G‖H) and
tang(H‖G), which holds iff tang(H). The preconditions in rulesI2 andI3 are analogous to that in ruleC.

RuleEl corresponds to one discrete time unit delay while executingno activities and therefore it has no analogues
among the rules of gsPBC that adopts the continuous time model.

RulesP2 andP2i have no similar rules in gsPBC, since interleaving semantics of the algebra allows no simul-
taneous execution of activities. On the other hand,P2 andP2i have in PBC the analogous rulePAR that is used to
construct step semantics of the calculus, but the former tworules correspond to execution of sets of activities, unlike
that of multisets of multiactions in the latter rule.

RulesSy2 andSy2i differ from the corresponding synchronization rules in gsPBC, since the probability or the
weight of synchronization in the former rules and the rate orthe weight of synchronization in the latter rules are
calculated in two distinct ways.

RuleSy2establishes that the synchronization of two stochastic multiactions is made by taking the product of their
probabilities, since we are considering that both must occur for the synchronization to happen, so this corresponds,
in some sense, to the probability of the independent event intersection, but the real situation is more complex, since
these stochastic multiactions can be also executed in parallel. Nevertheless, when scoping (the combined operation
consisting of synchronization followed by restriction over the same action [16]) is applied over a parallel execution,we
get as final result just the simple product of the probabilities, since no normalization is needed there. Multiplicationis
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Table 3: Action and empty loop rules.

El
tang(G)

G
∅
→ G

B (α, κ)
{(α,κ)}
−→ (α, κ) S

G
Υ
→ G̃

G; E
Υ
→ G̃; E, E; G

Υ
→ E; G̃

C
G
Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ tang(E))

G[]E
Γ
→ G̃[]E, E[]G

Γ
→ E[]G̃

Ci
G

I
→ G̃

G[]E
I
→ G̃[]E, E[]G

I
→ E[]G̃

P1
G
Γ
→ G̃, tang(H)

G‖H
Γ
→ G̃‖H, H‖G

Γ
→ H‖G̃

P1i
G

I
→ G̃

G‖H
I
→ G̃‖H, H‖G

I
→ H‖G̃

P2
G
Γ
→ G̃, H

∆
→ H̃

G‖H
Γ+∆
−→ G̃‖H̃

P2i
G

I
→ G̃, H

J
→ H̃

G‖H
I+J
−→ G̃‖H̃

L
G
Υ
→ G̃

G[ f ]
f (Υ)
−→ G̃[ f ]

Rs
G
Υ
→ G̃, a, â < A(Υ)

G rs a
Υ
→ G̃ rs a

I1
G
Υ
→ G̃

[G ∗ E ∗ F]
Υ
→ [G̃ ∗ E ∗ F]

I2
G
Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ tang(F))

[E ∗G ∗ F]
Γ
→ [E ∗ G̃ ∗ F]

I2i
G

I
→ G̃

[E ∗G ∗ F]
I
→ [E ∗ G̃ ∗ F]

I3
G
Γ
→ G̃, ¬init(G) ∨ (init(G) ∧ tang(F))

[E ∗ F ∗G]
Γ
→ [E ∗ F ∗ G̃]

I3i
G

I
→ G̃

[E ∗ F ∗G]
I
→ [E ∗ F ∗ G̃]

Sy1
G
Υ
→ G̃

G sy a
Υ
→ G̃ sy a

Sy2
G sy a

Γ′+{(α,ρ)}+{(β,χ)}
−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
Γ′+{(α⊕aβ,ρ·χ)}
−−−−−−−−−−−→ G̃ sy a

Sy2i
G sy a

I ′+{(α,l)}+{(β,m)}
−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
I ′+{(α⊕aβ,l+m)}
−−−−−−−−−−−→ G̃ sy a

an associative and commutative binary operation that is distributive over addition, i.e. it fulfills all practical conditions
imposed on the synchronization operator in [46]. Further, if both arguments of multiplication are from (0; 1) then
the result belongs to the same interval, hence, multiplication naturally maintains probabilistic compositionality in our
model. Our approach is similar to the multiplication of rates of the synchronized actions in MTIPP [45] in the case
when the rates are less than 1. Moreover, for the probabilitiesρ andχ of two stochastic multiactions to be synchronized
we haveρ · χ < min{ρ, χ}, i.e. multiplication meets the performance requirement stating that the probability of the
resulting synchronized stochastic multiaction should be less than the probabilities of the two ones to be synchronized.
While performance evaluation, it is usually supposed that the execution of two components together require more
system resources and time than the execution of each single one. This resembles thebounded capacityassumption
from [46]. Thus, multiplication is easy to handle with and itsatisfies the algebraic, probabilistic, time and performance
requirements. Therefore, we have chosen the product of the probabilities for the synchronization. See also [23, 22]
for a discussion about binary operations producing the rates of synchronization in the continuous time setting.

In ruleSy2i, we sum the weights of two synchronized immediate multiactions, since the weights can be interpreted
as the rewards [81], thus, we collect the rewards. Next, we express that the synchronized execution of immediate
multiactions has more importance than that of every single one. The weights of immediate multiactions can be also
seen as bonus rewards associated with transitions [12]. Therewards are summed during synchronized execution of
immediate multiactions, since in this case all the synchronized activities can be seen as “operated”. We prefer to collect
more rewards, thus, the transitions providing greater rewards will have a preference and they will be executed with a
greater probability. Since execution of immediate multiactions takes no time, we prefer to execute in a step as many
synchronized immediate multiactions as possible to get more significant progress in behaviour. Under behavioural
progress we understand an advance in executing activities,which does not always imply a progress in time, as in
the case when the activities are immediate multiactions. This aspect will be used later, while evaluating performance
via analysis of the embedded discrete time Markov chains (EDTMCs) of expressions. Since every state change in
EDTMC takes one unit of (local) time, greater advance in operation of the EDTMC allows one to calculate quicker
performance indices.
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Table 4: Comparison of inaction, action and empty loop rules.

Rules State change Time progress Activities execution

Inaction rules − − −

Action rules ± + +

(stochastic multiactions)
Action rules ± − +

(immediate multiactions)
Empty loop rule − + −

Example 3.3. In the following cases, the weights of immediate multiactions are interpreted as bonus rewards to be
summed while synchronous or parallel execution of the immediate multiactions specifying instantaneous probabilistic
choice.

• A customer in a shop considers which products to purchase. Hewill get a bonus (pay points) k when he decides
({a}, k) to buy the product A and, for the deciding({â}, l) to buy the product B, he will have the bonus l. Thus,
on every decision to buy both products A and B (first A, and nexttime B; or first B, then A; or on the decision
{({a}, k), {â}, l)} to buy A and B together, in one visit to the shop, i.e. in parallel; or on the decision(∅, k+ l) to
buy a kit with A and B, which corresponds to their synchronized composition), the customer will get a bonus
k+ l, this is a standard and well-accepted practice.

• A cook in a fast-food restaurant plans his everyday work (cooking a two-component dinner dish of vegetables
and meat), that consists in the decision({a}, k) to perform work A (boil vegetables), for which he will get a
payment k, and the decision({â}, l) to perform work B (fry meat), with the payment l. The works A and B
are independent, and they can be even done together, since there are several (at least, two) free rings on the
electric cooker in the kitchen. Then, on every decision to perform both works A and B (first A, then B; or first
B, then A; or on the decision{({a}, k), {â}, l)} to perform A and B in parallel; or on the decision(∅, k+ l) to do
a work including both A and B, for example, to warm up a frozen combined (two-in-one) product (consisting of
vegetables and meat), prepared by the cook ahead of time, which corresponds to the synchronized composition
of works A and B), the cook will get a payment k+ l, this is logical and fair.

In the both situations above, more successful customer or cook spends less resources (power, electricity, water, etc.)to
get his bonus or payment k+l. Thus, the preferred and encouraged way of doing (the idealbehaviour or work) consists
in the parallel or the synchronized executing of actions. Since we prefer to collect more bonus rewards, clearly, the
decisions providing more rewards must have a preference andshould be executed with a greater probability.

The standard approach while system modeling within dtsiPBCis to split the system operations into the probabilis-
tic decision, specified by an immediate multiaction, and thetime-consuming work followed, that is specified by one
or more stochastic multiactions. It is more natural to interpret weights of immediate multiactions as bonus rewards,
subsequently used to determine the decision probabilities, since probabilities of stochastic multiactions are intended
to calculate the duration of work.

Observe also that we do not have self-synchronization, i.e.synchronization of an activity with itself, since all the
(enumerated) activities executed together are consideredto be different. This allows us to avoid rather cumbersome
and unexpected behaviour, as well as many technical difficulties [16].

In Table 4, inaction rules, action rules (with stochastic orimmediate multiactions) and empty loop rule are com-
pared according to the three questions about their application: whether it changes the current state, whether it leads to
a time progress, and whether it results in execution of some activities. Positive answers to the questions are denoted
by the plus sign while negative ones are specified by the minussign. If both positive and negative answers can be
given to some of the questions in different cases then the plus-minus sign is written. The processstates are considered
up to structural equivalence of the corresponding expressions, and time progress is not regarded as a state change.
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3.3. Transition systems

Now we construct labeled probabilistic transition systemsassociated with dynamic expressions. The transition
systems are used to define the operational semantics of dynamic expressions.

Definition 3.6. Thederivation setof a dynamic expressionG, denoted byDR(G), is the minimal set such that

• [G]≈ ∈ DR(G);

• if [ H]≈ ∈ DR(G) and∃Υ, H
Υ
→ H̃ then [H̃]≈ ∈ DR(G).

Let G be a dynamic expression ands, s̃ ∈ DR(G).

The set ofall sets of activities executable in sis defined asExec(s) = {Υ | ∃H ∈ s, ∃H̃, H
Υ
→ H̃}.

It can be proved by induction on the structure of expressionsthatΥ ∈ Exec(s) \ {∅} implies∃H ∈ s, Υ ∈ Now(H).
The reverse statement does not hold in general, as the next example shows.

Example 3.4. Let H, H′ be from Example 3.2 and s= [H]≈ = [H′]≈. We have Now(H) = {{({a}, 1)}} and Now(H′) =
{{({b}, 1

2)}}. Since only rulesCi andB can be applied to H while no action rule can be applied to H′, we get Exec(s) =
{{({a}, 1)}}. Then for H′ ∈ s andΥ = {({b}, 1

2)} ∈ Now(H′) we obtainΥ < Exec(s).

The states is tangible, if Exec(s) ⊆ INSLf in . For tangible states we may haveExec(s) = {∅}. Otherwise, the states is

vanishing, and in this caseExec(s) ⊆ INILf in \ {∅}. The set ofall tangible states from DR(G) is denoted byDRT(G), and
the set ofall vanishing states from DR(G) is denoted byDRV(G). Clearly,DR(G) = DRT(G) ⊎ DRV(G) (⊎ denotes
disjoint union).

Note that ifΥ ∈ Exec(s) then by rulesP2, P2i, Sy2, Sy2i and definition ofExec(s), ∀Ξ ⊆ Υ, Ξ , ∅, we have
Ξ ∈ Exec(s).

Since the inaction rules only distribute and move upper and lower bars along the syntax of dynamic expressions,
all H ∈ s have the same underlying static expressionF. Process expressions always have a finite length, hence, the
number of all (enumerated) activities and the number of all operations in the syntax ofF are finite as well. The action
rulesSy2andSy2iare the only ones that generate new activities. They result from the handshake synchronization of
actions and their conjugates belonging to the multiaction parts of the first and second constituent activity, respectively.
Since we have a finite number of operatorssy in F and all the multiaction parts of the activities are finite multisets,
the number of the new synchronized activities is also finite.The action rules contribute toExec(s) (in addition to the
empty set, if ruleEl is applicable) only the sets consisting both of activities fromF and the new activities, produced by
Sy2andSy2i. Since we have a finite numbern of all such activities, we get|Exec(s)| ≤ 2n < ∞. Thus, summation and
multiplication by elements from the finite setExec(s) are well-defined. Similar reasoning can be used to demonstrate
that for all dynamic expressionsH (not just for those froms), Now(H) is a finite set.

Let Υ ∈ Exec(s) \ {∅}. Theprobability that the set of stochastic multiactionsΥ is ready for execution in sor the
weight of the set of immediate multiactionsΥ which is ready for execution in sis

PF(Υ, s) =



∏

(α,ρ)∈Υ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ)<Υ}

(1− χ), s ∈ DRT(G);

∑

(α,l)∈Υ

l, s ∈ DRV(G).

In the caseΥ = ∅ ands ∈ DRT(G) we define

PF(∅, s) =



∏

{(β,χ)}∈Exec(s)

(1− χ), Exec(s) , {∅};

1, Exec(s) = {∅}.

If s ∈ DRT(G) andExec(s) , {∅} thenPF(Υ, s) can be interpreted as ajoint probability of independent events (in
a probability sense, i.e. the probability of intersection of these events is equal to the product of their probabilities).
Each such an event consists in the positive or negative decision to be executed of a particular stochastic multiaction.
Every executable stochastic multiaction decides probabilistically (using its probabilistic part) and independently (from
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others), if it wants to be executed ins. If Υ is a set of all executable stochastic multiactions which have decided to
be executed ins andΥ ∈ Exec(s) thenΥ is ready for execution ins. The multiplication in the definition is used
because it reflects the probability of the independent eventintersection. Alternatively, whenΥ , ∅, PF(Υ, s) can be
interpreted as the probability to executeexclusivelythe set of stochastic multiactionsΥ in s, i.e. the probability of
intersectionof two events calculated using the conditional probabilityformula in the formP(X ∩ Y) = P(X|Y)P(Y).
The eventX consists in the execution ofΥ in s. The eventY consists in the non-execution ins of all the executable
stochastic multiactions not belonging toΥ. Since the mentioned non-executions are obviously independent events,
the probability ofY is a product of the probabilities of the non-executions:P(Y) =

∏
{{(β,χ)}∈Exec(s)|(β,χ)<Υ}(1− χ). The

conditioning ofX by Y makes the executions of the stochastic multiactions fromΥ independent, since all of them
can be executed in parallel ins by definition ofExec(s). Hence, the probability to executeΥ under conditionthat no
executable stochastic multiactions not belonging toΥ are executed ins is a product of probabilities of these stochastic
multiactions:P(X|Y) =

∏
(α,ρ)∈Υ ρ. Thus, the probability thatΥ is executedandno executable stochastic multiactions

not belonging toΥ are executed ins is the probability ofX conditioned byY multiplied by the probability ofY:
P(X ∩ Y) = P(X|Y)P(Y) =

∏
(α,ρ)∈Υ ρ ·

∏
{{(β,χ)}∈Exec(s)|(β,χ)<Υ}(1− χ). WhenΥ = ∅, PF(Υ, s) can be interpreted as the

probability not to execute ins any executable stochastic multiactions, thus,PF(∅, s) =
∏
{(β,χ)}∈Exec(s)(1− χ). When

only the empty set of activities can be executed ins, i.e. Exec(s) = {∅}, we takePF(∅, s) = 1, since we stay ins in
this case. Note that fors ∈ DRT(G) we havePF(∅, s) ∈ (0; 1], hence, we can stay insat the next time moment with a
certain positive probability.

If s ∈ DRV(G) thenPF(Υ, s) can be interpreted as theoverall (cumulative)weight of the immediate multiactions
from Υ, i.e. the sum of all their weights. The summation here is usedsince the weights can be seen as the rewards
which are collected [81]. In addition, this means that concurrent execution of the immediate multiactions has more
importance than that of every single one. The weights of immediate multiactions can be also interpreted as bonus
rewards of transitions [12]. The rewards are summed when immediate multiactions are executed in parallel, because
all of them “operated”, as a result. Since execution of immediate multiactions takes no time, we prefer to execute
in a step as many parallel immediate multiactions as possible to get more progress in behaviour. This aspect will be
used later, while evaluating performance on the basis of theEDTMCs of expressions. Note that this reasoning is the
same as that used to define the probability of synchronized immediate multiactions in the ruleSy2i. Another reason is
that our approach is analogous to the definition of the probability of conflicting immediate transitions in GSPNs [6].
The only difference is that we have a step semantics and, for every set of immediate multiactions executed in parallel,
we use its cumulative weight. To get the analogy with GSPNs possessing interleaving semantics, we interpret the
weights of immediate transitions of GSPNs as the cumulativeweights of the sets of immediate multiactions of dtsiPBC
(we assume that for each set of activities executable in a state of a process specified by a dynamic expression of
dtsiPBC there exists a particular transition enabled in therespective marking of the corresponding GSPN). Since taking
positive real numbers as the weights of immediate multiactions (like in GSPNs) does not increase expressiveness of
the calculus, we use positive natural numbers for that purpose.

Note that the definition ofPF(Υ, s) (as well as the definitions of other probability functions which we shall present)
is based on the enumeration of activities which is considered implicit.

Let Υ ∈ Exec(s). BesidesΥ, some other sets of activities may be ready for execution ins, hence, a kind of
conditioning or normalization is needed to calculate the execution probability. Theprobability to execute the set of
activitiesΥ in s is

PT(Υ, s) =
PF(Υ, s)∑

Ξ∈Exec(s)

PF(Ξ, s)
.

If s ∈ DRT(G) thenPT(Υ, s) can be interpreted as theconditionalprobability to executeΥ in s calculated using
the conditional probability formula in the formP(Z|W) = P(Z∩W)

P(W) . The eventZ consists in the exclusive execution
of Υ in s, hence,P(Z) = PF(Υ, s). The eventW consists in the exclusive execution of any set (including the empty
one)Ξ ∈ Exec(s) in s. Thus,W = ∪ jZ j , where∀ j, Z j are mutually exclusive events (in a probability sense, i.e.
intersection of these events is the empty event) and∃i, Z = Zi . We haveP(W) =

∑
j P(Z j) =

∑
Ξ∈Exec(s) PF(Ξ, s),

because summation reflects the probability of the mutually exclusive event union. SinceZ∩W = Zi∩(∪ jZ j) = Zi = Z,
we haveP(Z|W) = P(Z)

P(W) =
PF(Υ,s)∑

Ξ∈Exec(s) PF(Ξ,s) . PF(Υ, s) can be also seen as thepotentialprobability to executeΥ in s, since
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we havePF(Υ, s) = PT(Υ, s) only whenall sets (including the empty one) consisting of the executablestochastic
multiactions can be executed ins. In this case, all the mentioned stochastic multiactions can be executed in parallel
in s and we have

∑
Ξ∈Exec(s) PF(Ξ, s) = 1, since this sum collects the products ofall combinations of the probability

parts of the stochastic multiactions and the negations of these parts. But in general, for example, for two stochastic
multiactions (α, ρ) and (β, χ) executable ins, it may happen that they cannot be executed ins together, in parallel, i.e.
∅, {(α, ρ)}, {(β, χ)} ∈ Exec(s), but{(α, ρ), (β, χ)} < Exec(s). Note that fors ∈ DRT(G) we havePT(∅, s) ∈ (0; 1], hence,
there is a non-zero probability to stay in the states at the next time moment, and the residence time ins is at least 1
discrete time unit.

If s ∈ DRV(G) thenPT(Υ, s) can be interpreted as the weight of the set of immediate multiactionsΥ which is
ready for execution ins normalizedby the weights ofall the sets executable ins.

The advantage of our two-stage approach to definition of the probability to execute a set of activities is that the
resulting probability formulaPT(Υ, s) is valid both for (sets of) stochastic and immediate multiactions. It allows one
to unify the notation used later while constructing the operational semantics and analyzing performance.

Note that the sum of outgoing probabilities for the expressions belonging to the derivations ofG is equal to 1.
More formally,∀s ∈ DR(G),

∑
Υ∈Exec(s) PT(Υ, s) = 1. This, obviously, follows from the definition ofPT(Υ, s), and

guarantees that it always defines a probability distribution.
Theprobability to move from s tõs by executing any set of activitiesis

PM(s, s̃) =
∑

{Υ|∃H∈s, ∃H̃∈s̃, H
Υ
→H̃}

PT(Υ, s).

The summation in the definition above reflects the probability of the mutually exclusive event union, since∑
{Υ|∃H∈s, ∃H̃∈s̃, H

Υ
→H̃}

PT(Υ, s) = 1∑
Ξ∈Exec(s) PF(Ξ,s) ·

∑
{Υ|∃H∈s, ∃H̃∈s̃, H

Υ
→H̃}

PF(Υ, s), where for eachΥ, PF(Υ, s) is the prob-

ability of the exclusive execution ofΥ in s. Note that∀s ∈ DR(G),
∑
{s̃|∃H∈s, ∃H̃∈s̃, ∃Υ, H

Υ
→H̃}

PM(s, s̃) =∑
{s̃|∃H∈s, ∃H̃∈s̃, ∃Υ, H

Υ
→H̃}

∑
{Υ|∃H∈s, ∃H̃∈s̃, H

Υ
→H̃}

PT(Υ, s) =
∑
Υ∈Exec(s) PT(Υ, s) = 1.

Example 3.5. Let E = ({a}, ρ)[]( {a}, χ), whereρ, χ ∈ (0; 1). DR(E) consists of the equivalence classes s1 = [E]≈
and s2 = [E]≈. We have DRT (E) = {s1, s2}. The execution probabilities are calculated as follows. Since Exec(s1) =
{∅, {({a}, ρ)}, {({a}, χ)}}, we get PF({({a}, ρ)}, s1) = ρ(1 − χ), PF({({a}, χ)}, s1) = χ(1 − ρ) and PF(∅, s1) = (1 −
ρ)(1 − χ). Then

∑
Ξ∈Exec(s1) PF(Ξ, s1) = ρ(1 − χ) + χ(1 − ρ) + (1 − ρ)(1 − χ) = 1 − ρχ. Thus, PT({({a}, ρ)}, s1) =

ρ(1−χ)
1−ρχ , PT({({a}, χ)}, s1) =

χ(1−ρ)
1−ρχ and PT(∅, s1) = PM(s1, s1) = (1−ρ)(1−χ)

1−ρχ . Further, Exec(s2) = {∅}, hence,
∑
Ξ∈Exec(s2) PF(Ξ, s2) = PF(∅, s2) = 1 and PT(∅, s2) = PM(s2, s2) = 1

1 = 1. Finally, PM(s1, s2) = PT({({a}, ρ)}, s1) +

PT({({a}, χ)}, s1) =
ρ(1−χ)
1−ρχ +

χ(1−ρ)
1−ρχ =

ρ+χ−2ρχ
1−ρχ .

Let E′ = ({a}, l)[]( {a},m), where l,m ∈ IN≥1. DR(E′) consists of the equivalence classes s′
1 = [E′]≈ and s′2 = [E′]≈.

We have DRT(E′) = {s′2} and DRV(E′) = {s′1}. The execution probabilities are calculated as follows. Since Exec(s′1) =
{{({a}, l)}, {({a},m)}}, we get PF({({a}, l)}, s′1) = l and PF({({a},m)}, s′1) = m. Then

∑
Ξ∈Exec(s′1) PF(Ξ, s′1) = l + m.

Thus, PT({({a}, l)}, s′1) =
l

l+m and PT({({a},m)}, s′1) =
m

l+m. Further, Exec(s′2) = {∅}, hence,
∑
Ξ∈Exec(s′2) PF(Ξ, s′2) =

PF(∅, s′2) = 1 and PT(∅, s′2) = PM(s′2, s
′
2) = 1

1 = 1. Finally, PM(s′1, s
′
2) = PT({({a}, l)}, s′1) + PT({({a},m)}, s′1) =

l
l+m +

m
l+m = 1.

Definition 3.7. Let G be a dynamic expression. The(labeled probabilistic) transition systemof G is a quadruple
TS(G) = (SG, LG,TG, sG), where

• the set ofstatesis SG = DR(G);

• the set oflabelsis LG = 2SIL × (0; 1];

• the set oftransitionsisTG = {(s, (Υ,PT(Υ, s)), s̃) | s, s̃ ∈ DR(G), ∃H ∈ s, ∃H̃ ∈ s̃, H
Υ
→ H̃};

• the initial state is sG = [G]≈.
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The definition ofTS(G) is correct, i.e. for every state, the sum of the probabilities of all the transitions starting
from it is 1. This is guaranteed by the note after the definition of PT(Υ, s). Thus, we have defined agenerativemodel
of probabilistic processes [39]. The reason is that the sum of the probabilities of the transitions with all possible labels
should be equal to 1, not only of those with the same labels (upto enumeration of activities they include) as in the
reactivemodels, and we do not have a nested probabilistic choice as inthestratifiedmodels.

The transition systemTS(G) associated with a dynamic expressionG describes all the steps (concurrent execu-
tions) that occur at discrete time moments with some (one-step) probability and consist of sets of activities. Every step
consisting of stochastic multiactions or the empty step (i.e. that consisting of the empty set of activities) occurs in-
stantly after one discrete time unit delay. Each step consisting of immediate multiactions occurs instantly without any
delay. The step can change the current state. The states are the structural equivalence classes of dynamic expressions
obtained by application of action rules starting from the expressions belonging to [G]≈. A transition (s, (Υ,P), s̃) ∈ TG

will be written ass
Υ
→P s̃. It is interpreted as follows: the probability to changes to s̃as a result of executingΥ isP.

Note that for tangible states,Υ can be the empty set, and its execution does not change the current state (i.e. the

equivalence class), since we have a loop transitions
∅
→P s from a tangible states to itself. This corresponds to the

application of the empty loop rule to expressions from the equivalence class. We have to keep track of such executions,
calledempty loops, because they have non-zero probabilities. This follows from the definition ofPF(∅, s) and the fact
that multiaction probabilities cannot be equal to 1 as they belong to the interval (0; 1). For vanishing statesΥ cannot
be the empty set, since we must execute some immediate multiactions from them at the current moment.

The step probabilities belong to the interval (0; 1], being 1in the case when we cannot leave a tangible statesand

the only transition leaving it is the empty loop ones
∅
→1 s, or if there is just a single transition from a vanishing state

to any other one.

We writes
Υ
→ s̃ if ∃P, s

Υ
→P s̃ands→ s̃ if ∃Υ, s

Υ
→ s̃.

The first equivalence we are going to introduce is isomorphism which is a coincidence of systems up to renaming
of their components or states.

Definition 3.8. Let TS(G) = (SG, LG,TG, sG) andTS(G′) = (SG′ , LG′ ,TG′ , sG′ ) be the transition systems of dynamic
expressionsG andG′, respectively. A mappingβ : SG → SG′ is anisomorphismbetweenTS(G) andTS(G′), denoted
by β : TS(G) ≃ TS(G′), if

1. β is a bijection such thatβ(sG) = sG′ ;

2. ∀s, s̃ ∈ SG, ∀Υ, s
Υ
→P s̃ ⇔ β(s)

Υ
→P β(s̃).

Two transition systemsTS(G) andTS(G′) areisomorphic, denoted byTS(G) ≃ TS(G′), if ∃β : TS(G) ≃ TS(G′).

Transition systems of static expressions can be defined as well. For E ∈ RegS tatExpr, let TS(E) = TS(E).

Definition 3.9. Two dynamic expressionsG andG′ areequivalent with respect to transition systems, denoted by
G =ts G′, if TS(G) ≃ TS(G′).

Example 3.6. Consider the expressionStop = ({g}, 1
2) rs g specifying the special process that is only able to perform

empty loops with probability1 and never terminates. We could actually use any arbitrary action fromA and any
probability belonging to the interval(0; 1) in the definition ofStop. Note thatStop is analogous to the one used in the
examples of [60]. Then, forρ, χ, θ, φ ∈ (0; 1)and l,m ∈ IN≥1, let

E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](( {e},m); ({ f }, φ)))) ∗ Stop].

DR(E) consists of the equivalence classes

s1 = [[ ({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](( {e},m); ({ f }, φ)))) ∗ Stop]]≈,

s2 = [[( {a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](( {e},m); ({ f }, φ)))) ∗ Stop]]≈,

s3 = [[( {a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](( {e},m); ({ f }, φ)))) ∗ Stop]]≈,

s4 = [[( {a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](( {e},m); ({ f }, φ)))) ∗ Stop]]≈,

s5 = [[( {a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](( {e},m); ({ f }, φ)))) ∗ Stop]]≈.

17



TS(E)

☛✡ ✟✠
☛✡ ✟✠☛✡ ✟✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛✡ ✟✠
❄

s1

({a},ρ),ρ

({b},χ),χ

({c},l),
l

l+m

({e},m),
m

l+m

({d},θ),
θ

({f},φ),
φ

s3

✞✝ ✲

✂ ✁✂ ✁✻ ✻

✂ ✁✻
∅,1−ρ

∅,1−χ

∅,1−θ ∅,1−φ

Figure 2: The transition system ofE for E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](( {e},m); ({ f }, φ)))) ∗ Stop].

We have DRT(E) = {s1, s2, s4, s5} and DRV(E) = {s3}.
In Figure 2, the transition system TS(E) is presented. The tangible states are depicted in ovals and the vanishing

ones are depicted in boxes. For simplicity of the graphical representation, the singleton sets of activities are written
without outer braces.

4. Denotational semantics

In this section, we construct the denotational semantics interms of a subclass of labeled discrete time stochastic
and immediate PNs (LDTSIPNs), called discrete time stochastic and immediate Petri boxes (dtsi-boxes).

4.1. Labeled DTSIPNs

Let us introduce a class of labeled discrete time stochasticand immediate Petri nets (LDTSIPNs), a subclass of
DTSPNs [72, 73] (we do not allow the transition probabilities to be equal to 1) extended with transition labeling and
immediate transitions. LDTSIPNs resemble in part discretetime deterministic and stochastic PNs (DTDSPNs) [92],
as well as discrete deterministic and stochastic PNs (DDSPNs) [91]. DTDSPNs and DDSPNs are the extensions of
DTSPNs with deterministic transitions (having fixed delay that can be zero), inhibitor arcs, priorities and guards.
In addition, while stochastic transitions of DTDSPNs, likethose of DTSPNs, have geometrically distributed delays,
stochastic transitions of DDSPNs have discrete time phase distributed delays. At the same time, LDTSIPNs are not
subsumed by DTDSPNs or DDSPNs, since LDTSIPNs have a step semantics while DTDSPNs and DDSPNs have
interleaving one. LDTSIPNs are somewhat similar to labeledweighted DTSPNs (LWDTSPNs) from [29], but in
LWDTSPNs there are no immediate transitions, all (stochastic) transitions have weights, the transition probabilities
may be equal to 1 and only maximal fireable subsets of the enabled transitions are fired.

Stochastic preemptive time Petri nets (spTPNs) [24] is a discrete time model with a maximal step semantics, where
both time ticks and instantaneous parallel firings of maximal transition sets are possible, but the transition steps in
LDTSIPNs are not obliged to be maximal. The transition delays in spTPNs are governed by static general discrete
distributions, associated with the transitions, while thetransitions of LDTSIPNs are only associated with probabilities,
used later to calculate the step probabilities after one unit (from tangible markings) or zero (from vanishing markings)
delay. Further, LDTSIPNs have just geometrically distributed or deterministic zero delays in the markings. Moreover,
the discrete time tick and concurrent transition firing are treated in spTPNs as different events while firing every
(possibly empty) set of stochastic transitions in LDTSIPNsrequires one unit time delay. SpTPNs are essentially
a modification and extension of unlabeled LWDTSPNs with additional facilities, such as inhibitor arcs, priorities,
resources, preemptions, schedulers etc. However, the price of such an expressiveness of spTPNs is that the model is
rather intricate and difficult to analyze.

Note also that guards in DTDSPNs and DDSPNs, inhibitor arcs and priorities in DTDSPNs, DDSPNs and spTPNs,
as well as the maximal step semantics of LWDTSPNs and spTPNs make all these models Turing powerful, resulting
in undecidability of many important behavioural properties.
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First, we present a formal definition of LDTSIPNs.

Definition 4.1. A labeled discrete time stochastic and immediate Petri net (LDTSIPN)is a tuple
N = (PN,TN,WN,ΩN,LN,MN), where

• PN andTN = TsN⊎TiN are finite sets ofplacesandstochastic and immediate transitions, respectively, such that
PN ∪ TN , ∅ andPN ∩ TN = ∅;

• WN : (PN × TN) ∪ (TN × PN)→ IN is a function providing theweights of arcsbetween places and transitions;

• ΩN : TN → (0; 1)∪ IN≥1 is thetransition probability and weightfunction associating stochastic transitions with
probabilities and immediate ones with weights;

• LN : TN → L is thetransition labelingfunction assigning multiactions to transitions;

• MN ∈ INPN

f in is theinitial marking.

The graphical representation of LDTSIPNs is like that for standard labeled PNs, but with probabilities or weights
written near the corresponding transitions. Square boxes of normal thickness depict stochastic transitions, and those
with thick borders represent immediate transitions. In thecase the probabilities or the weights are not given in the
picture, they are considered to be of no importance in the corresponding examples, such as those used to describe the
stationary behaviour. The weights of arcs are depicted withthem. The names of places and transitions are depicted
near them when needed.

Now we consider the semantics of LDTSIPNs.
Let N be an LDTSIPN andt ∈ TN, U ∈ INTN

f in. Theprecondition•t and thepostcondition t• of t are the multisets of
places defined as (•t)(p) = WN(p, t) and (t•)(p) = WN(t, p). Theprecondition•U and thepostcondition U• of U are
the multisets of places defined as•U =

∑
t∈U
•t andU• =

∑
t∈U t•. Note that forU = ∅ we have•∅ = ∅ = ∅•.

Let N be an LDTSIPN andM, M̃ ∈ INPN

f in.
Immediate transitions have a priority over stochastic ones, thus, immediate transitions always fire first, if they can.

Suppose that all stochastic transitions have priority 0 andall immediate ones have priority 1. A transitiont ∈ TN is
enabledin M if •t ⊆ M and one of the following holds:

1. t ∈ TiN or
2. ∀u ∈ TN,

•u ⊆ M ⇒ u ∈ TsN.

In other words, a transition is enabled in a marking if it has enough tokens in its input places (i.e. in the places from
its precondition) and it is immediate one, otherwise, when it is stochastic one, there exists no immediate transition
with enough tokens in its input places. LetEna(M) be the set ofall transitions enabled in M. By definition, it
follows that Ena(M) ⊆ TiN or Ena(M) ⊆ TsN. A set of transitionsU ⊆ Ena(M) is enabledin a markingM if
•U ⊆ M. Firings of transitions are atomic operations, and transitions may fire concurrently in steps. We assume that
all transitions participating in a step should differ, hence, only the sets (not multisets) of transitions may fire. Thus,
we do not allow self-concurrency, i.e. firing of transitionsin parallel to themselves. This restriction is introduced to
avoid some technical difficulties while calculating probabilities for multisets of transitions as we shall see after the
following formal definitions. Moreover, we do not need to consider self-concurrency, since denotational semantics of
expressions will be defined via dtsi-boxes which are safe LDTSIPNs (hence, no self-concurrency is possible).

The markingM is tangible, denoted bytang(M), if Ena(M) ⊆ TsN, in particular, ifEna(M) = ∅. Otherwise, the
markingM is vanishing, denoted byvanish(M), and in this caseEna(M) ⊆ TiN andEna(M) , ∅. If tang(M) then a
stochastic transitiont ∈ Ena(M) fires with probabilityΩN(t) when no other stochastic transitions conflicting with it
are enabled.

Let U ⊆ Ena(M), U , ∅ and•U ⊆ M. Theprobability that the set of stochastic transitions U is ready for firing
in M or theweight of the set of immediate transitions U which is ready for firing in M is

PF(U,M) =



∏

t∈U

ΩN(t) ·
∏

u∈Ena(M)\U

(1−ΩN(u)), tang(M);
∑

t∈U

ΩN(t), vanish(M).
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In the caseU = ∅ andtang(M) we define

PF(∅,M) =



∏

u∈Ena(M)

(1−ΩN(u)), Ena(M) , ∅;

1, Ena(M) = ∅.

Let U ⊆ Ena(M), U , ∅ and•U ⊆ M or U = ∅ andtang(M). BesidesU, some other sets of transitions may be
ready for firing inM, hence, a kind of conditioning or normalization is needed tocalculate the firing probability. The

concurrent firing of the transitions fromU changes the markingM to M̃ = M − •U +U•, denoted byM
U
→P M̃, where

P = PT(U,M) is theprobability that the set of transitions U fires in Mdefined as

PT(U,M) =
PF(U,M)∑

{V|•V⊆M}

PF(V,M)
.

Note that in the caseU = ∅ andtang(M) we haveM = M̃.
The advantage of our two-stage approach to definition of the probability that a set of transitions fires is that the

resulting probability formulaPT(U,M) is valid both for (sets of) stochastic and immediate transitions. It allows one
to unify the notation used later while constructing the denotational semantics and analyzing performance.

Note that for all markings of an LDTSIPNN, the sum of outgoing probabilities is equal to 1. More formally,
∀M ∈ INPN

f in,
∑
{U|•U⊆M} PT(U,M) = 1. This obviously follows from the definition ofPT(U,M) and guarantees that it

defines a probability distribution.

We writeM
U
→ M̃ if ∃P, M

U
→P M̃ andM → M̃ if ∃U, M

U
→ M̃.

Theprobability to move from M tõM by firing any set of transitionsis

PM(M, M̃) =
∑

{U|M
U
→M̃}

PT(U,M).

SincePM(M, M̃) is the probability forany (including the empty one) transition set to change markingM to M̃,
we use summation in the definition. Note that∀M ∈ INPN

f in,
∑
{M̃|M→M̃} PM(M, M̃) =

∑
{M̃|M→M̃}

∑
{U|M

U
→M̃}

PT(U,M) =∑
{U|•U⊆M} PT(U,M) = 1.

Definition 4.2. Let N be an LDTSIPN. Thereachability setof N, denoted byRS(N), is the minimal set of markings
such that

• MN ∈ RS(N);

• if M ∈ RS(N) andM → M̃ thenM̃ ∈ RS(N).

Definition 4.3. Let N be an LDTSIPN. Thereachability graphof N is a (labeled probabilistic) transition system
RG(N) = (SN, LN,TN, sN), where

• the set ofstatesis SN = RS(N);

• the set oflabelsis LN = 2TN × (0; 1];

• the set oftransitionsisTN = {(M, (U,P), M̃) | M, M̃ ∈ RS(N), M
U
→P M̃};

• the initial state is sN = MN.

The set ofall tangible markings from RS(N) is denoted byRST(N), and the set ofall vanishing markings from
RS(N) is denoted byRSV(N). Obviously,RS(N) = RST(N) ⊎ RSV(N).
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4.2. Algebra of dtsi-boxes

Now we introduce discrete time stochastic and immediate Petri boxes and the algebraic operations to define a net
representation of dtsiPBC expressions.

Definition 4.4. A discrete time stochastic and immediate Petri box (dtsi-box) is a tupleN = (PN,TN,WN,ΛN), where

• PN andTN are finite sets ofplacesandtransitions, respectively, such thatPN ∪ TN , ∅ andPN ∩ TN = ∅;

• WN : (PN × TN) ∪ (TN × PN)→ IN is a function providing theweights of arcsbetween places and transitions;

• ΛN is theplace and transition labelingfunction such that

– ΛN |PN : PN → {e, i, x} (it specifiesentry, internalandexit places, respectively);

– ΛN |TN : TN → {̺ | ̺ ⊆ 2SIL × SIL} (it associates transitions with therelabeling relationson activities).

Moreover,∀t ∈ TN,
•t , ∅ , t•. In addition, for the set ofentryplaces ofN, defined as◦N = {p ∈ PN | ΛN(p) = e},

and for the set ofexit places ofN, defined asN◦ = {p ∈ PN | ΛN(p) = x}, the following condition holds:◦N , ∅ ,
N◦, •(◦N) = ∅ = (N◦)•.

A dtsi-box isplain if ∀t ∈ TN, ΛN(t) ∈ SIL, i.e. ΛN(t) is a constant relabeling that will be defined later so
that it can be identified with an activity. In case of the constant relabeling, the shorthand notation (by the activity)
for ΛN(t) will be used. Amarked plain dtsi-boxis a pair (N,MN), whereN is a plain dtsi-box andMN ∈ INPN

f in is

its marking. We shall use the following notation:N = (N, ◦N) andN = (N,N◦). Note that a marked plain dtsi-box
(PN,TN,WN,ΛN,MN) could be interpreted as the LDTSIPN (PN,TN,WN,ΩN,LN,MN), where functionsΩN andLN

are defined as follows:∀t ∈ TN, ΩN(t) = Ω(ΛN(t)) andLN(t) = L(ΛN(t)) (remember thatΩ denotes the probability or
weight part of an activity whileL denotes its multiaction part). Behaviour of the marked dtsi-boxes follows from the
firing rule of LDTSIPNs. A plain dtsi-boxN is n-bounded(n ∈ IN) if N is so, i.e.∀M ∈ RS(N), ∀p ∈ PN, M(p) ≤ n,
and it issafeif it is 1-bounded. A plain dtsi-boxN is cleanif ∀M ∈ RS(N), ◦N ⊆ M ⇒ M = ◦N andN◦ ⊆ M ⇒

M = N◦, i.e. if there are tokens in all its entry (exit) places then no other places have tokens.
The structure of the plain dtsi-box corresponding to a static expression is constructed like in PBC [17, 16], i.e.

we use simultaneous refinement and relabeling meta-operator (net refinement) in addition to theoperator dtsi-boxes
corresponding to the algebraic operations of dtsiPBC and featuring transformational transition relabelings. Operator
dtsi-boxes specifyn-ary functions from plain dtsi-boxes to plain dtsi-boxes (we have 1≤ n ≤ 3 in dtsiPBC). Thus,
as we shall see in Theorem 4.1, the resulting plain dtsi-boxes are safe and clean. In the definition of the denotational
semantics, we shall apply standard constructions used for PBC. LetΘ denoteoperator boxandu denotetransition
namefrom PBC setting.

The relabeling relations̺⊆ 2SIL × SIL are defined as follows:

• ̺id = {({(α, κ)}, (α, κ)) | (α, κ) ∈ SIL} is theidentity relabelingkeeping the interface as it is;

• ̺(α,κ) = {(∅, (α, κ))} is theconstant relabelingthat can be identified with (α, κ) ∈ SIL itself;

• ̺[ f ] = {({(α, κ)}, ( f (α), κ)) | (α, κ) ∈ SIL};

• ̺rs a = {({(α, κ)}, (α, κ)) | (α, κ) ∈ SIL, a, â < α};

• ̺sy a is the least relabeling relation containing̺id such that if (Υ, (α, κ)), (Ξ, (β, λ)) ∈ ̺sy a, a ∈ α, â ∈ β then

– (Υ + Ξ, (α ⊕a β, κ · λ)) ∈ ̺sy a, if κ, λ ∈ (0; 1);

– (Υ + Ξ, (α ⊕a β, κ + λ)) ∈ ̺sy a, if κ, λ ∈ IN≥1.

The plain dtsi-boxesN(α,ρ)ι , N(α,l)ι , whereρ ∈ (0; 1) andl ∈ IN≥1, and operator dtsi-boxes are presented in Figure
3. The labeli of internal places is usually omitted.

In the case of the iteration, a decision that we must take is the selection of the operator box that we shall use for it,
since we have two proposals in plain PBC for that purpose [16]. One of them provides us with a safe version with six
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Figure 3: The plain and operator dtsi-boxes.

transitions in the operator box, but there is also a simpler version, which has only three transitions. In general, in PBC,
with the latter version we may generate 2-bounded nets, which only occurs when a parallel behavior appears at the
highest level of the body of the iteration. Nevertheless, inour case, and due to the syntactical restriction introduced
for regular terms, this particular situation cannot occur,so that the net obtained will be always safe.

To construct the semantic function that associates a plain dtsi-box with every static expression of dtsiPBC, we
introduce theenumerationfunctionEnu : TN → Num, which associates the numberings with transitions of a plain
dtsi-boxN in accordance with those of activities. In the case of synchronization, the function associates with the
resulting new transition the concatenation of the parenthesized numberings of the transitions it comes from.

Now we define the enumeration functionEnu for every operator of dtsiPBC. LetBoxdtsi(E) = (PE,TE,WE,ΛE)
be the plain dtsi-box corresponding to a static expressionE, andEnuE : TE → Numbe the enumeration function for
Boxdtsi(E). We shall use the analogous notation for static expressionsF andK.

• Boxdtsi(E ◦ F) = Θ◦(Boxdtsi(E), Boxdtsi(F)), ◦ ∈ {; , [] , ‖}. Since we do not introduce new transitions, we
preserve the initial numbering:

Enu(t) =

{
EnuE(t), t ∈ TE;
EnuF(t), t ∈ TF .

• Boxdtsi(E[ f ]) = Θ[ f ] (Boxdtsi(E)). Since we only replace the labels of some multiactions by abijection, we
preserve the initial numbering:

Enu(t) = EnuE(t), t ∈ TE.

• Boxdtsi(E rs a) = Θrs a(Boxdtsi(E)). Since we remove all transitions labeled with multiactions containinga or
â, this does not change the numbering of the remaining transitions:

Enu(t) = EnuE(t), t ∈ TE, a, â < L(ΛE(t)).

• Boxdtsi(E sy a) = Θsy a(Boxdtsi(E)). Note that∀v,w ∈ TE, such thatΛE(v) = (α, κ), ΛE(w) = (β, λ) and
a ∈ α, â ∈ β, the new transitiont resulting from synchronization ofv andw has the labelΛ(t) = (α ⊕a β, κ · λ),
if t is a stochastic transition, orΛ(t) = (α ⊕a β, κ + λ), if t is an immediate one, and the numbering
Enu(t) = (EnuE(v))(EnuE(w)). Thus, the enumeration function is defined as
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Enu(t) =

{
EnuE(t), t ∈ TE;
(EnuE(v))(EnuE(w)), t results from synchronization ofv andw.

According to the definition of̺ sy a, the synchronization is only possible when all the transitions in the set are
stochastic or when all of them are immediate. If we synchronize the same set of transitions in different orders,
we obtain several resulting transitions with the same labeland probability or weight, but with the different
numberings having the same content. Then, we only consider asingle transition from the resulting ones in the
plain dtsi-box to avoid introducing redundant transitions.

For example, if the transitionst andu are generated by synchronizingv andw in different orders, we have
Λ(t) = (α ⊕a β, κ · λ) = Λ(u) for stochastic transitions orΛ(t) = (α ⊕a β, κ + λ) = Λ(u) for immediate ones,
but Enu(t) = (EnuE(v))(EnuE(w)) , (EnuE(w))(EnuE(v)) = Enu(u), whereasCont(Enu(t)) = Cont(Enu(v)) ∪
Cont(Enu(w)) = Cont(Enu(u)). Then only one transitiont (or, symmetrically,u) will appear inBoxdtsi(E sy a).

• Boxdtsi([E ∗ F ∗ K]) = Θ[ ∗ ∗ ](Boxdtsi(E), Boxdtsi(F), Boxdtsi(K)). Since we do not introduce new transitions, we
preserve the initial numbering:

Enu(t) =



EnuE(t), t ∈ TE;
EnuF(t), t ∈ TF ;
EnuK(t), t ∈ TK .

Now we can formally define the denotational semantics as a homomorphism.

Definition 4.5. Let (α, κ) ∈ SIL, a ∈ Act andE, F,K ∈ RegS tatExpr. Thedenotational semanticsof dtsiPBC is a
mappingBoxdtsi from RegS tatExprinto the domain of plain dtsi-boxes defined as follows:

1. Boxdtsi((α, κ)ι) = N(α,κ)ι ;
2. Boxdtsi(E ◦ F) = Θ◦(Boxdtsi(E), Boxdtsi(F)), ◦ ∈ {; , [] , ‖};
3. Boxdtsi(E[ f ]) = Θ[ f ](Boxdtsi(E));
4. Boxdtsi(E ◦ a) = Θ◦a(Boxdtsi(E)), ◦ ∈ {rs,sy};
5. Boxdtsi([E ∗ F ∗ K]) = Θ[ ∗ ∗ ](Boxdtsi(E), Boxdtsi(F), Boxdtsi(K)).

The dtsi-boxes of dynamic expressions can be defined as well.For E ∈ RegS tatExpr, let Boxdtsi(E) = Boxdtsi(E)
andBoxdtsi(E) = Boxdtsi(E).

Note that this definition is compositional in the sense that,for any arbitrary dynamic expression, we may de-
compose it in some inner dynamic and static expressions, forwhich we may apply the definition, thus obtaining the
corresponding plain dtsi-boxes, which can be joined according to the term structure (by definition ofBoxdtsi), the
resulting plain box being marked in the places that were marked in the argument nets.

Theorem 4.1. For any static expression E, Boxdtsi(E) is safe and clean.

Proof. The structure of the net is obtained as in PBC [17, 16], combining both refinement and relabeling. Conse-
quently, the dtsi-boxes thus obtained will be safe and clean. �

Let ≃ denote isomorphism between transition systems and reachability graphs that binds their initial states. Note
that the names of transitions of the dtsi-box correspondingto a static expression could be identified with the enumer-
ated activities of the latter.

Theorem 4.2. For any static expression E,

TS(E) ≃ RG(Boxdtsi(E)).
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Figure 4: The marked dtsi-boxN = Boxdtsi(E) for E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](( {e},m); ({ f }, φ)))) ∗ Stop] and its reachability graph.

Proof. As for the qualitative (functional) behaviour, we have thesame isomorphism as in PBC [17, 16].
The quantitative behaviour is the same by the following reasons. First, the activities of an expression have the

probability or weight parts coinciding with the probabilities or weights of the transitions belonging to the correspond-
ing dtsi-box. Second, we use analogous probability or weight functions to construct the corresponding transition
systems and reachability graphs. �

Example 4.1. Let E be from Example 3.6. In Figure 4, the marked dtsi-box N= Boxdtsi(E) and its reachability graph
RG(N) are presented. It is easy to see that TS(E) and RG(N) are isomorphic.

The following example demonstrates that without the syntactic restriction on regularity of expressions the corre-
sponding marked dtsi-boxes may be not safe.

Example 4.2. Let E = [(({a}, 1
2) ∗ (({b}, 1

2)‖({c}, 1
2)) ∗ ({d}, 1

2)]. In Figure 5, the marked dtsi-box N= Boxdtsi(E)
and its reachability graph RG(N) are presented. In the marking(0, 1, 1, 2, 0, 0) there are2 tokens in the place p4.
Symmetrically, in the marking(0, 1, 1, 0, 2, 0) there are2 tokens in the place p5. Thus, allowing concurrency in the
second argument of iteration in the expressionE can lead to non-safeness of the corresponding marked dtsi-box
N, though, it is2-bounded in the worst case [16]. The origin of the problem is that N has a self-loop with two
subnets which can function independently. Therefore, we have decided to consider regular expressions only, since the
alternative, which is a safe version of the iteration operator with six arguments in the corresponding dtsi-box, like
that from [16], is rather cumbersome and has too intricate Petri net interpretation. Our motivation was to keep the
algebraic and Petri net specifications as simple as possible.

5. Performance evaluation

In this section we demonstrate how Markov chains corresponding to the expressions and dtsi-boxes can be con-
structed and then used for performance evaluation.
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5.1. Analysis of the underlying SMC

For a dynamic expressionG, a discrete random variable is associated with every tangible states ∈ DRT(G). The
variable captures a residence time in the state. One can interpret staying in a state at the next discrete time moment as
a failure and leaving it as a success of some trial series. It is easy to see that the random variables are geometrically
distributed with the parameter 1−PM(s, s), since the probability to stay ins for k−1 time moments and leave it at the
momentk ≥ 1 isPM(s, s)k−1(1−PM(s, s)) (the residence time isk in this case, and this formula defines the probability
mass function (PMF) of residence time ins). Hence, the probability distribution function (PDF) of residence time in
s is 1−PM(s, s)k−1 (k ≥ 1) (the probability that the residence time ins is less thank). The mean value formula for the
geometrical distribution allows us to calculate the average sojourn time ins as 1

1−PM(s,s) . Clearly, the average sojourn
time in a vanishing state is zero. Lets ∈ DR(G).

Theaverage sojourn time in the state sis

SJ(s) =

{ 1
1−PM(s,s) , s ∈ DRT(G);
0, s ∈ DRV(G).

Theaverage sojourn time vectorof G, denoted bySJ, has the elementsSJ(s), s ∈ DR(G).
Thesojourn time variance in the state sis

VAR(s) =

{ PM(s,s)
(1−PM(s,s))2 , s ∈ DRT(G);
0, s ∈ DRV(G).

Thesojourn time variance vectorof G, denoted byVAR, has the elementsVAR(s), s ∈ DR(G).
To evaluate performance of the system specified by a dynamic expressionG, we should investigate the stochastic

process associated with it. The process is the underlying SMC [81, 56], denoted bySMC(G), which can be analyzed
by extracting from it the embedded (absorbing) discrete time Markov chain (EDTMC) corresponding toG, denoted
by EDTMC(G). The construction of the latter is analogous to that applied in the context of generalized stochastic
PNs (GSPNs) in [67, 5, 6], and also in the framework of discrete time deterministic and stochastic PNs (DTDSPNs)
in [92], as well as within discrete deterministic and stochastic PNs (DDSPNs) [91].EDTMC(G) only describes the
state changes ofSMC(G) while ignoring its time characteristics. Thus, to construct the EDTMC, we should abstract
from all time aspects of behaviour of the SMC, i.e. from the sojourn time in its states. The (local) sojourn time in
every state of the EDTMC is equal to one discrete time unit. Itis well-known that every SMC is fully described by the
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EDTMC and the state sojourn time distributions (the latter can be specified by the vector of PDFs of residence time
in the states) [43].

Let G be a dynamic expression ands, s̃ ∈ DR(G). The transition systemTS(G) can have self-loops going from a
state to itself which have a non-zero probability. Obviously, the current state remains unchanged in this case.
Let s→ s. Theprobability to stay in s due to k(k ≥ 1) self-loopsis

PM(s, s)k.

Let s→ s̃ands, s̃. Theprobability to move from s tõs by executing any set of activities after possible self-loops is

PM∗(s, s̃) =

{
PM(s, s̃)

∑∞
k=0 PM(s, s)k =

PM(s,s̃)
1−PM(s,s) , s→ s;

PM(s, s̃), otherwise;

}
= SL(s)PM(s, s̃), where

SL(s) =

{ 1
1−PM(s,s) , s→ s;
1, otherwise;

HereSL(s) is theself-loops abstraction factor in the state s. Theself-loops abstraction vectorof G, denoted bySL,
has the elementsSL(s), s ∈ DR(G). The valuek = 0 in the summation above corresponds to the case when no self-
loops occur. Note that∀s ∈ DRT(G), SL(s) = 1

1−PM(s,s) = SJ(s), hence,∀s ∈ DRT(G), PM∗(s, s̃) = SJ(s)PM(s, s̃),

since we always have the empty loop (which is a self-loop)s
∅
→ s from every tangible states. Empty loops are not

possible from vanishing states, hence,∀s ∈ DRV(G), PM∗(s, s̃) = PM(s,s̃)
1−PM(s,s) , when there are non-empty self-loops

(produced by iteration) froms, or PM∗(s, s̃) = PM(s, s̃), when there are no self-loops froms.
Note that after abstraction from the probabilities of transitions which do not change the states, the remaining

transition probabilities are normalized. In order to calculate transition probabilitiesPT(Υ, s), we had to normalize
PF(Υ, s). Then, to obtain transition probabilities of the state-changing stepsPM∗(s, s̃), we now have to normalize
PM(s, s̃). Thus, we have a two-stage normalization as a result.

Notice thatPM∗(s, s̃) defines a probability distribution, since∀s ∈ DR(G), such thats is not a terminal state, i.e.
there are transitions to different states after possible self-loops from it, we have∑
{s̃|s→s̃, s,s̃} PM∗(s, s̃) = 1

1−PM(s,s)

∑
{s̃|s→s̃, s,s̃} PM(s, s̃) = 1

1−PM(s,s) (1− PM(s, s)) = 1.

We decided to consider self-loops followed only by a state-changing step just for convenience. Alternatively,
we could take a state-changing step followed by self-loops or a state-changing step preceded and followed by self-
loops. In all these three cases our sequence begins or/and ends with the loops which do not change states. At the
same time, the overall probabilities of the evolutions can differ, since self-loops have positive probabilities. To avoid
inconsistency of definitions and too complex description, we consider sequences ending with a state-changing step. It
resembles in some sense a construction of branching bisimulation [38] taking self-loops instead of silent transitions.

Definition 5.1. Let G be a dynamic expression. Theembedded (absorbing) discrete time Markov chain (EDTMC)of
G, denoted byEDTMC(G), has the state spaceDR(G), the initial state [G]≈ and the transitionss→→P s̃, if s→ s̃ and
s, s̃, whereP = PM∗(s, s̃).

The underlying SMCof G, denoted bySMC(G), has the EDTMCEDTMC(G) and the sojourn time in every
s ∈ DRT(G) is geometrically distributed with the parameter 1− PM(s, s) while the sojourn time in everys ∈ DRV(G)
is equal to zero.

EDTMCs and underlying SMCs of static expressions can be defined as well. ForE ∈ RegS tatExpr, let
EDTMC(E) = EDTMC(E) andSMC(E) = SMC(E).

Let G be a dynamic expression. The elementsP∗i j (1 ≤ i, j ≤ n = |DR(G)|) of the (one-step) transition probability
matrix (TPM)P∗ for EDTMC(G) are defined as

P∗i j =

{
PM∗(si , sj), si → sj , si , sj ;
0, otherwise.

The transient (k-step,k ∈ IN) PMFψ∗[k] = (ψ∗[k](s1), . . . , ψ∗[k](sn)) for EDTMC(G) is calculated as

ψ∗[k] = ψ∗[0](P∗)k,
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whereψ∗[0] = (ψ∗[0](s1), . . . , ψ∗[0](sn)) is the initial PMF defined as

ψ∗[0](si) =

{
1, si = [G]≈;
0, otherwise.

Note also thatψ∗[k+ 1] = ψ∗[k]P∗ (k ∈ IN).
The steady-state PMFψ∗ = (ψ∗(s1), . . . , ψ∗(sn)) for EDTMC(G) is a solution of the equation system

{
ψ∗(P∗ − I ) = 0
ψ∗1T = 1

,

whereI is the identity matrix of ordern and0 is a row vector ofn values 0, 1 is that ofn values 1.
Note that the vectorψ∗ exists and is unique, ifEDTMC(G) is ergodic. ThenEDTMC(G) has a single steady state,

and we haveψ∗ = limk→∞ ψ
∗[k].

The steady-state PMF for the underlying semi-Markov chainSMC(G) is calculated via multiplication of every
ψ∗(si) (1 ≤ i ≤ n) by the average sojourn timeSJ(si) in the statesi , after which we normalize the resulting values.
Remember that for a vanishing states ∈ DRV(G) we haveSJ(s) = 0.

Thus, the steady-state PMFϕ = (ϕ(s1), . . . , ϕ(sn)) for SMC(G) is

ϕ(si) =



ψ∗(si)SJ(si)
n∑

j=1

ψ∗(sj)SJ(sj)

, si ∈ DRT(G);

0, si ∈ DRV(G).

Thus, to calculateϕ, we apply abstracting from self-loops to getP∗ and thenψ∗, followed by weighting bySJand
normalization.EDTMC(G) has no self-loops, unlikeSMC(G), hence, the behaviour ofEDTMC(G) stabilizes quicker
than that ofSMC(G) (if each of them has a single steady state), sinceP∗ has only zero elements at the main diagonal.

Example 5.1. Let E be from Example 3.6. In Figure 6, the underlying SMC SMC(E) is presented. The average
sojourn times in the states of the underlying SMC are writtennext to them in bold font.

The average sojourn time vector ofE is

SJ=

(
1
ρ
,

1
χ
, 0,

1
θ
,

1
φ

)
.

The sojourn time variance vector ofE is

VAR=

(
1− ρ
ρ2

,
1− χ
χ2

, 0,
1− θ
θ2

,
1− φ
φ2

)
.

The TPM for EDTMC(E) is

P∗ =



0 1 0 0 0
0 0 1 0 0
0 0 0 l

l+m
m

l+m
0 1 0 0 0
0 1 0 0 0


.

The steady-state PMF for EDTMC(E) is

ψ∗ =

(
0,

1
3
,
1
3
,

l
3(l +m)

,
m

3(l +m)

)
.

The steady-state PMFψ∗ weighted by SJ is
(
0,

1
3χ
, 0,

l
3θ(l +m)

,
m

3φ(l +m)

)
.
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Figure 6: The underlying SMC ofE for E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](( {e},m); ({ f }, φ)))) ∗ Stop].

It remains to normalize the steady-state weighted PMF by dividing it by the sum of its components

ψ∗SJT =
θφ(l +m) + χ(φl + θm)

3χθφ(l +m)
.

Thus, the steady-state PMF for SMC(E) is

ϕ =
1

θφ(l +m) + χ(φl + θm)
(0, θφ(l +m), 0, χφl, χθm).

In the case l= m andθ = φ we have

ϕ =
1

2(χ + θ)
(0, 2θ, 0, χ, χ).

Let G be a dynamic expression ands, s̃ ∈ DR(G), S, S̃ ⊆ DR(G). The following standardperformance indices
(measures)can be calculated based on the steady-state PMFϕ for SMC(G) and the average sojourn time vectorSJof
G [74, 32, 52].

• Theaverage recurrence (return) time in the state s(the number of discrete time units required for this) is1
ϕ(s) .

• Thefraction of residence time in the state sis ϕ(s).

• The fraction of residence time in the set of states Sor theprobability of the event determined by a condition
that is true for all states from Sis

∑
s∈S ϕ(s).

• Therelative fraction of residence time in the set of states S with respect to that iñS is
∑

s∈S ϕ(s)∑
s̃∈S̃ ϕ(s̃) .

• Therate of leaving the state sis ϕ(s)
SJ(s) .

• Thesteady-state probability to perform a step with an activity(α, κ) is
∑

s∈DR(G) ϕ(s)
∑
{Υ|(α,κ)∈Υ} PT(Υ, s).

• Theprobability of the event determined by a reward function r onthe statesis
∑

s∈DR(G) ϕ(s)r(s), where∀s ∈
DR(G), 0 ≤ r(s) ≤ 1.

Let N = (PN,TN,WN,ΩN,LN,MN) be a LDTSIPN andM, M̃ ∈ INPN

f in. Then the average sojourn timeSJ(M),

the sojourn time varianceVAR(M), the probabilitiesPM∗(M, M̃), the transition relationM →→P M̃, the EDTMC
EDTMC(N), the underlying SMCSMC(N) and the steady-state PMF for it are defined like the corresponding notions
for dynamic expressions.

As we have mentioned earlier, every marked plain dtsi-box could be interpreted as the LDTSIPN. Therefore, we
can evaluate performance with the LDTSIPNs corresponding to dtsi-boxes and then transfer the results to the latter.

Let ≃ denote isomorphism between SMCs that binds their initial states, where two SMCs are isomorphic if their
EDTMCs are so and the sojourn times in the isomorphic states of the EDTMCs are identically distributed.
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Figure 7: The underlying SMC ofN = Boxdtsi(E) for E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](( {e},m); ({ f }, φ)))) ∗ Stop].

Proposition 5.1. For any static expression E,

SMC(E) ≃ SMC(Boxdtsi(E)).

Proof. By Theorem 4.2 and definitions of underlying SMCs for dynamic expressions and LDTSIPNs taking into
account the following. First, for the associated SMCs, the average sojourn time in the states is the same, since it is
defined via the analogous probability functions. Second, the transition probabilities of the associated SMCs are the
sums of those belonging to transition systems or reachability graphs. �

Example 5.2. Let E be from Example 3.6. In Figure 7, the underlying SMC SMC(N) is presented. Clearly, SMC(E)
and SMC(N) are isomorphic. Thus, both the transient and steady-state PMFs for SMC(N) and SMC(E) coincide.

5.2. Analysis of the DTMC

Let us consider an alternative solution method, studying the DTMCs of expressions based on the state change
probabilitiesPM(s, s̃).

Definition 5.2. LetG be a dynamic expression. Thediscrete time Markov chain (DTMC)of G, denoted byDTMC(G),
has the state spaceDR(G), the initial state [G]≈ and the transitionss→P s̃, whereP = PM(s, s̃).

DTMCs of static expressions can be defined as well. ForE ∈ RegS tatExpr, let DTMC(E) = DTMC(E).
One can see thatEDTMC(G) is constructed fromDTMC(G) as follows. For each state ofDTMC(G), we remove

a possible self-loop associated with it and then normalize the probabilities of the remaining transitions from the
state. Thus,EDTMC(G) andDTMC(G) differ only by existence of self-loops and magnitudes of the probabilities
of the remaining transitions. Hence,EDTMC(G) andDTMC(G) have the same communication classes of states and
EDTMC(G) is irreducible iff DTMC(G) is so. Since bothEDTMC(G) andDTMC(G) are finite, they are positive
recurrent. Thus, in case of irreducibility, each of them hasa single stationary PMF. Note thatEDTMC(G) and/or
DTMC(G) may be periodic, thus having a unique stationary distribution, but no steady-state (limiting) one. For
example, it may happen thatEDTMC(G) is periodic whileDTMC(G) is aperiodic due to self-loops associated with
some states of the latter. The states ofSMC(G) are classified usingEDTMC(G), hence,SMC(G) is irreducible (positive
recurrent, aperiodic) iff EDTMC(G) is so.

Let G be a dynamic expression. The elementsPi j (1 ≤ i, j ≤ n = |DR(G)|) of (one-step) transition probability
matrix (TPM)P for DTMC(G) are defined as

Pi j =

{
PM(si , sj), si → sj ;
0, otherwise.

The steady-state PMFψ for DTMC(G) is defined like the corresponding notion forEDTMC(G).
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Let us determine a relationship between steady-state PMFs for DTMC(G) andEDTMC(G). The following theorem
proposes the equation that relates the mentioned steady-state PMFs.

First, we introduce some helpful notation. For a vectorv = (v1, . . . , vn), let Diag(v) be a diagonal matrix of order
n with the elementsDiagi j (v) (1 ≤ i, j ≤ n) defined as

Diagi j (v) =

{
vi , i = j;
0, otherwise.

(1 ≤ i, j ≤ n).

Theorem 5.1. Let G be a dynamic expression and SL be its self-loops abstraction vector. Then the steady-state PMFs
ψ for DTMC(G) andψ∗ for EDTMC(G) are related as follows:∀s ∈ DR(G),

ψ(s) =
ψ∗(s)SL(s)∑

s̃∈DR(G)

ψ∗(s̃)SL(s̃)
.

Proof. Let PSLbe a vector with the elements

PSL(s) =

{
PM(s, s), s→ s;
0, otherwise.

By definition ofPM∗(s, s̃), we haveP∗ = Diag(SL)(P− Diag(PSL)). Further,

ψ∗(P∗ − I ) = 0 andψ∗P∗ = ψ∗.

After replacement ofP∗ by Diag(SL)(P− Diag(PSL)) we obtain

ψ∗Diag(SL)(P− Diag(PSL)) = ψ∗ andψ∗Diag(SL)P = ψ∗(Diag(SL)Diag(PSL) + I ).

Note that∀s ∈ DR(G), we have

SL(s)PSL(s) + 1 =

{
SL(s)PM(s, s) + 1 = PM(s,s)

1−PM(s,s) + 1 = 1
1−PM(s,s) , s→ s;

SL(s) · 0+ 1 = 1, otherwise;

}
= SL(s).

Hence,Diag(SL)Diag(PSL) + I = Diag(SL). Thus,

ψ∗Diag(SL)P = ψ∗Diag(SL).

Then forv = ψ∗Diag(SL) we have

vP = v andv(P− I ) = 0.

In order to calculateψ on the basis ofv, we must normalize it by dividing its elements by their sum, since we
should haveψ1T = 1 as a result:

ψ =
1

v1T
v =

1
ψ∗Diag(SL)1T

ψ∗Diag(SL).

Thus, the elements ofψ are calculated as follows:∀s ∈ DR(G),

ψ(s) =
ψ∗(s)SL(s)∑

s̃∈DR(G) ψ
∗(s̃)SL(s̃)

.

It is easy to check thatψ is a solution of the equation system
{
ψ(P− I ) = 0
ψ1T = 1

,

hence, it is indeed the steady-state PMF forDTMC(G). �
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The following proposition relates the steady-state PMFs for SMC(G) andDTMC(G).

Proposition 5.2. Let G be a dynamic expression,ϕ be the steady-state PMF for SMC(G) andψ be the steady-state
PMF for DTMC(G). Then∀s ∈ DR(G),

ϕ(s) =



ψ(s)∑

s̃∈DRT (G)

ψ(s̃)
, s ∈ DRT(G);

0, s ∈ DRV(G).

Proof. Let s ∈ DRT (G). Remember that∀s ∈ DRT(G), SL(s) = SJ(s) and∀s ∈ DRV(G), SJ(s) = 0. Then, by
Theorem 5.1, we have

ψ(s)∑
s̃∈DRT (G) ψ(s̃)

=

ψ∗(s)SL(s)∑
s̃∈DR(G) ψ

∗(s̃)SL(s̃)

∑
s̃∈DRT (G)

(
ψ∗(s̃)SL(s̃)∑

s̆∈DR(G) ψ
∗(s̆)SL(s̆)

) = ψ∗(s)SL(s)∑
s̃∈DR(G) ψ

∗(s̃)SL(s̃)
·

∑
s̆∈DR(G) ψ

∗(s̆)SL(s̆)
∑

s̃∈DRT (G) ψ
∗(s̃)SL(s̃)

=

ψ∗(s)SL(s)∑
s̃∈DRT (G) ψ

∗(s̃)SL(s̃)
=

ψ∗(s)SJ(s)∑
s̃∈DRT (G) ψ

∗(s̃)SJ(s̃)
=

ψ∗(s)SJ(s)∑
s̃∈DR(G) ψ

∗(s̃)SJ(s̃)
= ϕ(s).

�

Thus, to calculateϕ, one can only apply normalization to some elements ofψ (corresponding to the tangible states),
instead of abstracting from self-loops to getP∗ and thenψ∗, followed by weighting bySJand normalization. Hence,
usingDTMC(G) instead ofEDTMC(G) allows one to avoid multistage analysis, but the payment for it is more time-
consuming numerical and more complex analytical calculation ofψ with respect toψ∗. The reason is thatDTMC(G)
has self-loops, unlikeEDTMC(G), hence, the behaviour ofDTMC(G) stabilizes slower than that ofEDTMC(G) (if
each of them has a single steady state) andP is more dense matrix thanP∗, sinceP may additionally have non-zero
elements at the main diagonal. Nevertheless, Proposition 5.2 is very important, since the relationship betweenϕ and
ψ it discovers will be used in Proposition 5.3 to relate the steady-state PMFs forSMC(G) and the reducedDTMC(G),
as well as in Section 8 to prove preservation of the stationary behaviour by a stochastic equivalence.

Example 5.3. Let E be from Example 3.6. In Figure 8, the DTMC DTMC(E) is presented.
The TPM for DTMC(E) is

P =



1− ρ ρ 0 0 0
0 1− χ χ 0 0
0 0 0 l

l+m
m

l+m
0 θ 0 1− θ 0
0 φ 0 0 1− φ


.

The steady-state PMF for DTMC(E) is

ψ =
1

θφ(1+ χ)(l +m) + χ(φl + θm)
(0, θφ(l +m), χθφ(l +m), χφl, χθm).

Remember that DRT(E) = {s1, s2, s4, s5} and DRV(E) = {s3}. Hence,

∑

s̃∈DRT (E)

ψ(s̃) = ψ(s1) + ψ(s2) + ψ(s4) + ψ(s5) =
θφ(l +m) + χ(φl + θm)

θφ(1+ χ)(l +m) + χ(φl + θm)
.

By Proposition 5.2, we have
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Figure 8: The DTMC ofE for E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](( {e},m); ({ f }, φ)))) ∗ Stop]

ϕ(s1) = 0 · θφ(1+χ)(l+m)+χ(φl+θm)
θφ(l+m)+χ(φl+θm) = 0,

ϕ(s2) = θφ(l+m)
θφ(1+χ)(l+m)+χ(φl+θm) ·

θφ(1+χ)(l+m)+χ(φl+θm)
θφ(l+m)+χ(φl+θm) =

θφ(l+m)
θφ(l+m)+χ(φl+θm) ,

ϕ(s3) = 0,

ϕ(s4) = χφl
θφ(1+χ)(l+m)+χ(φl+θm) ·

θφ(1+χ)(l+m)+χ(φl+θm)
θφ(l+m)+χ(φl+θm) =

χφl
θφ(l+m)+χ(φl+θm) ,

ϕ(s5) = χθm
θφ(1+χ)(l+m)+χ(φl+θm) ·

θφ(1+χ)(l+m)+χ(φl+θm)
θφ(l+m)+χ(φl+θm) =

χθm
θφ(l+m)+χ(φl+θm) .

Thus, the steady-state PMF for SMC(E) is

ϕ =
1

θφ(l +m) + χ(φl + θm)
(0, θφ(l +m), 0, χφl, χθm).

This coincides with the result obtained in Example 5.1 with the use ofψ∗ and SJ.

5.3. Analysis of the reduced DTMC

Let us now consider the method from [32, 68, 5, 7, 6] that eliminates vanishing states from the EMC (EDTMC,
in our terminology) corresponding to the underlying SMC of every GSPNN. The TPM for the resultingreduced
EDTMC (REDTMC) has smaller size than that for the EDTMC. The method demonstrates that there exists a transfor-
mation of the underlying SMC ofN into a CTMC, whose states are the tangible markings ofN. This CTMC, which is
essentially thereducedunderlying SMC (RSMC) ofN, is constructed on the basis of the REDTMC. The CTMC can
then be directly solved to get both the transient and the steady-state PMFs over the tangible markings ofN. In [32], the
program and computational complexities of such aneliminationmethod, based on the REDTMC, were evaluated and
compared with those of thepreservationmethod that does not eliminate vanishing states and based onthe EDTMC.
The preservation method for GSPNs corresponds in dtsiPBC tothe analysis of the underlying SMCs of expressions.

The elimination method for GSPNs can be easily transferred to dtsiPBC, hence, for every dynamic expression
G, we can find a DTMC (since the sojourn time in the tangible states fromDR(G) is discrete and geometrically
distributed) with the states fromDRT(G), which can be directly solved to find the transient and the steady-state PMFs
over the tangible states. We shall demonstrate that such areducedDTMC (RDTMC) of G, denoted byRDTMC(G),
can be constructed fromDTMC(G), using the method analogous to that designed in [68, 5, 7, 6]in the framework of
GSPNs to transform EDTMC into REDTMC. Since the sojourn timein the vanishing states is zero, the state changes
of RDTMC(G) occur in the moments of the global discrete time associatedwith SMC(G), unlike those ofEDTMC(G),
which happen only when the current state changes to somedifferentone, irrespective of the global time. Therefore, in
our case, we can skip the stages of constructing the REDTMC ofG, denoted byREDTMC(G), from EDTMC(G), and
recovering RSMC ofG, denoted byRSMC(G), (which is the sought-for DTMC) fromREDTMC(G), since we have
RSMC(G) = RDTMC(G).
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Let G be a dynamic expression andP be the TPM forDTMC(G). We reorder the states fromDR(G) such that the
first rows and columns ofP will correspond to the states fromDRV(G) and the last ones will correspond to the states
from DRT(G). Let |DR(G)| = n and|DRT(G)| = m. The resulting matrix can be decomposed as follows:

P =
(

C D
E F

)
.

The elements of the (n−m)× (n−m) submatrixC are the probabilities to move from vanishing to vanishing states,
and those of the (n−m)×msubmatrixD are the probabilities to move from vanishing to tangible states. The elements
of them× (n−m) submatrixE are the probabilities to move from tangible to vanishing states, and those of them×m
submatrixF are the probabilities to move from tangible to tangible states.

The TPMP⋄ for RDTMC(G) is them×mmatrix, calculated as

P⋄ = F + EGD,

where the elements of the matrixG are the probabilities to move from vanishing to vanishing states in any number of
state changes, without traversal of the tangible states.

If there are no loops among vanishing states then for any vanishing state there exists a valuel ∈ IN such that every
sequence of state changes that starts in a vanishing state and is longer thanl should reach a tangible state. Thus,
∃l ∈ IN ∀k > l Ck = 0 and

∑∞
k=0 Ck =

∑l
k=0 Ck. If there are loops among vanishing states then all such loops are

supposed to be of “transient” rather than “absorbing” type,since the latter is treated as a specification error to be
corrected, like in [68, 6]. We have earlier required thatSMC(G) has a single closed communication (which is also
ergodic) class of states. Remember that a communication class of states is their equivalence class w.r.t. communication
relation, i.e. a maximal subset of communicating states. A communication class of states is closed if only the states
belonging to it are accessible from every its state. The ergodic class cannot consist of vanishing states only to avoid
“absorbing” loops among them, hence, it contains tangible states as well. Thus, any sequence of vanishing state
changes that starts in the ergodic class will reach a tangible state at some time moment. All the states that do not
belong to the ergodic class should be transient. Hence, any sequence of vanishing state changes that starts in a
transient vanishing state will some time reach either a transient tangible state or a state from the ergodic class [56].
In the latter case, a tangible state will be reached as well, as argued above. Thus, every sequence of vanishing state
changes inSMC(G) that starts in a vanishing state will exit the set of all vanishing states in the future. This implies
that the probabilities to move from vanishing to vanishing states ink ∈ IN state changes, without traversal of tangible
states, will lead to 0 whenk tends to∞. Then we have limk→∞Ck = limk→∞(I − (I − C))k = 0, hence,I − C is a
non-singular matrix, i.e. its determinant is not equal to zero. Thus, the inverse matrix ofI − C exists and may be
expressed by a Neumann series as

∑∞
k=0(I − (I − C))k =

∑∞
k=0 Ck = (I − C)−1. Therefore,

G =
∞∑

k=0

Ck =

{ ∑l
k=0 Ck, ∃l ∈ IN, ∀k > l, Ck = 0, no loops among vanishing states;

(I − C)−1, limk→∞Ck = 0, loops among vanishing states;

where0 is the square matrix consisting only of zeros andI is the identity matrix, both of ordern−m.
For 1≤ i, j ≤ m and 1≤ k, l ≤ n−m, letFi j be the elements of the matrixF, Eik be those ofE, Gkl be those ofG

andDl j be those ofD. By definition, the elementsP⋄i j of the matrixP⋄ are calculated as

P⋄i j = Fi j +

n−m∑

k=1

n−m∑

l=1

EikGklDl j = Fi j +

n−m∑

k=1

Eik

n−m∑

l=1

GklDl j = Fi j +

n−m∑

l=1

Dl j

n−m∑

k=1

EikGkl,

i.e. P⋄i j (1 ≤ i, j ≤ m) is the total probability to move from the tangible statesi to the tangible statesj in any number
of steps, without traversal of tangible states, but possibly going through vanishing states.

Let s, s̃ ∈ DRT(G) such thats = si , s̃ = sj . Theprobability to move from s tõs in any number of steps, without
traversal of tangible statesis

PM⋄(s, s̃) = P⋄i j .
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Definition 5.3. Let G be a dynamic expression and [G]≈ ∈ DRT(G). The reduced discrete time Markov chain
(RDTMC)of G, denoted byRDTMC(G), has the state spaceDRT(G), the initial state [G]≈ and the transitionss →֒P s̃,
whereP = PM⋄(s, s̃).

RDTMCs of static expressions can be defined as well. ForE ∈ RegS tatExpr, let RDTMC(E) = RDTMC(E).
Let us now try to defineRSMC(G) as a “restriction” ofSMC(G) to its tangible states. Since the sojourn time in

the tangible states ofSMC(G) is discrete and geometrically distributed, we can see thatRSMC(G) is a DTMC with
the state spaceDRT(G), the initial state [G]≈ and the transitions whose probabilities collect all those in SMC(G) to
move from the tangible to the tangible states, directly or indirectly, namely, by going through its vanishing states only.
Thus,RSMC(G) has the transitionss →֒P s̃, whereP = PM⋄(s, s̃), hence, we getRSMC(G) = RDTMC(G).

One can see thatRDTMC(G) is constructed fromDTMC(G) as follows. All vanishing states and all transitions
to, from and between them are removed. All transitions between tangible states are preserved. The probabilities of
transitions between tangible states may become greater andnew transitions between tangible states may be added,
both iff there exist moves between these tangible states in any number of steps, going through vanishing states only.
Thus, for each sequence of transitions between two tangiblestates inDTMC(G) there exists a (possibly shorter,
since the eventual passed through vanishing states are removed) sequence between the same states inRDTMC(G)
and vice versa. IfDTMC(G) is irreducible then all its states (including tangible ones) communicate, hence, all states
of RDTMC(G) communicate as well and it is irreducible. Since bothDTMC(G) and RDTMC(G) are finite, they
are positive recurrent. Thus, in case of irreducibility ofDTMC(G), each of them has a single stationary PMF. Note
thatDTMC(G) and/or RDTMC(G) may be periodic, thus having a unique stationary distribution, but no steady-state
(limiting) one. For example, it may happen thatDTMC(G) is aperiodic whileRDTMC(G) is periodic due to removing
vanishing states from the former.

Let DRT(G) = {s1, . . . , sm} and [G]≈ ∈ DRT(G). Then the transient (k-step,k ∈ IN) PMF
ψ⋄[k] = (ψ⋄[k](s1), . . . , ψ⋄[k](sm)) for RDTMC(G) is calculated as

ψ⋄[k] = ψ⋄[0](P⋄)k,

whereψ⋄[0] = (ψ⋄[0](s1), . . . , ψ⋄[0](sm)) is the initial PMF defined as

ψ⋄[0](si) =

{
1, si = [G]≈;
0, otherwise.

Note also thatψ⋄[k+ 1] = ψ⋄[k]P⋄ (k ∈ IN).
The steady-state PMFψ⋄ = (ψ⋄(s1), . . . , ψ⋄(sm)) for RDTMC(G) is a solution of the equation system

{
ψ⋄(P⋄ − I ) = 0
ψ⋄1T = 1

,

whereI is the identity matrix of orderm and0 is a row vector ofm values 0, 1 is that ofm values 1.
Note that the vectorψ⋄ exists and is unique, ifRDTMC(G) is ergodic. ThenRDTMC(G) has a single steady state,

and we haveψ⋄ = limk→∞ ψ
⋄[k].

The zero sojourn time in the vanishing states guarantees that the state changes ofRDTMC(G) occur in the moments
of the global discrete time associated withSMC(G), i.e. every such state change occurs after one time unit delay.
Hence, the sojourn time in the tangible states is the same forRDTMC(G) andSMC(G). The state change probabilities
of RDTMC(G) are those to move from tangible to tangible states in any number of steps, without traversal of the
tangible states. Therefore,RDTMC(G) andSMC(G) have the same transient behaviour over the tangible states, thus,
the transient analysis ofSMC(G) is possible to accomplish usingRDTMC(G).

The following proposition relates the steady-state PMFs for SMC(G) andRDTMC(G). It proves that the steady-
state probabilities of the tangible states coincide for them.

Proposition 5.3. Let G be a dynamic expression,ϕ be the steady-state PMF for SMC(G) andψ⋄ be the steady-state
PMF for RDTMC(G). Then∀s ∈ DR(G),

ϕ(s) =

{
ψ⋄(s), s ∈ DRT(G);
0, s ∈ DRV(G).
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Proof. To make the proof more clear, we use the following unified notation. I denotes the identity matrices of any
size.0 denotes square matrices and row vectors of any size and length of values 0.1 denotes square matrices and row
vectors of any size and length of values 1.

Let P be the reordered TPM forDTMC(G) andψ be the steady-state PMF forDTMC(G), i.e.ψ is a solution of the
equation system

{
ψ(P− I ) = 0
ψ1T = 1

.

Let |DR(G)| = n and|DRT(G)| = m. The decomposedP, P− I andψ are

P =
(

C D
E F

)
, P− I =

(
C − I D

E F − I

)
andψ = (ψV, ψT),

whereψV = (ψ1, . . . , ψn−m) is the subvector ofψ with the steady-state probabilities of vanishing states and ψT =

(ψn−m+1, . . . , ψn) is that with the steady-state probabilities of tangible states.
Then the equation system forψ is decomposed as follows:



ψV(C − I ) + ψTE = 0
ψVD + ψT(F − I ) = 0
ψV1T + ψT1T = 1

.

Further, letP⋄ be the TPM forRDTMC(G). Thenψ⋄ is a solution of the equation system
{
ψ⋄(P⋄ − I ) = 0
ψ⋄1T = 1

.

We have

P⋄ = F + EGD,

where the matrixG can have two different forms, depending on whether the loops among vanishingstates exist, hence,
we consider the two following cases.

1. There existno loops among vanishing states. We have∃l ∈ IN, ∀k > l, Ck = 0 andG =
∑l

k=0 Ck.
Let us right-multiply the first equation of the decomposed equation system forψ by G:

ψV(CG −G) + ψTEG = 0.

Taking into account thatG =
∑l

k=0 Ck, we get

ψV


l∑

k=1

Ck + Cl+1 − C0 −

l∑

k=1

Ck

 + ψTEG = 0.

SinceCl+1 = 0 andC0 = I , we obtain

−ψV + ψTEG = 0 andψV = ψTEG.

Let us substituteψV with ψTEG in the second equation of the decomposed equation system forψ:

ψTEGD + ψT (F − I ) = 0 andψT(F + EGD − I ) = 0.

SinceF + EGD = P⋄, we have

ψT (P⋄ − I ) = 0.
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2. There existloops among vanishing states. We have limk→∞ Ck = 0 andG = (I − C)−1.
Let us right-multiply the first equation of the decomposed equation system forψ by G:

−ψV(I − C)G + ψTEG = 0.

Taking into account thatG = (I − C)−1, we get

−ψV + ψTEG = 0 andψV = ψTEG.

Let us substituteψV with ψTEG in the second equation of the decomposed equation system forψ:

ψTEGD + ψT (F − I ) = 0 andψT(F + EGD − I ) = 0.

SinceF + EGD = P⋄, we have

ψT (P⋄ − I ) = 0.

The third equationψV1T + ψT1T = 1 of the decomposed equation system forψ implies that ifψV has nonzero
elements then the sum of the elements ofψT is less than one. We normalizeψT by dividing its elements by their sum:

v =
1

ψT1T
ψT .

It is easy to check thatv is a solution of the equation system
{

v(P⋄ − I ) = 0
v1T = 1

,

hence, it is the steady-state PMF forRDTMC(G) and we have

ψ⋄ = v =
1

ψT1T
ψT .

Note that∀s ∈ DRT(G), ψT (s) = ψ(s). Then the elements ofψ⋄ are calculated as follows:∀s ∈ DRT(G),

ψ⋄(s) =
ψT (s)∑

s̃∈DRT (G) ψT(s̃)
=

ψ(s)∑
s̃∈DRT (G) ψ(s̃)

.

By Proposition 5.2,∀s ∈ DRT(G), ϕ(s) = ψ(s)∑
s̃∈DRT (G) ψ(s̃) .

Therefore,∀s ∈ DRT(G),

ϕ(s) =
ψ(s)∑

s̃∈DRT (G) ψ(s̃)
= ψ⋄(s).

�

Thus, to calculateϕ, one can just take all the elements ofψ⋄ as the steady-state probabilities of the tangible states,
instead of abstracting from self-loops to getP∗ and thenψ∗, followed by weighting bySJand normalization. Hence,
usingRDTMC(G) instead ofEDTMC(G) allows one to avoid such a multistage analysis, but constructing P⋄ also
requires some efforts, including calculating matrix powers or inverse matrices. Note thatRDTMC(G) has self-loops,
unlike EDTMC(G), hence, the behaviour ofRDTMC(G) may stabilize slower than that ofEDTMC(G) (if each of
them has a single steady state). On the other hand,P⋄ is smaller and denser matrix thanP∗, sinceP⋄ has additional
non-zero elements not only at the main diagonal, but also many of them outside it. Therefore, mostly, we have less
time-consuming numerical calculation ofψ⋄ with respect toψ∗. At the same time, the complexity of the analytical
calculation ofψ⋄ with respect toψ∗ depends on the model structure, such as the number of vanishing states and loops
among them, but usually it is lower, since the matrix size reduction plays an important role in many cases. Hence, for
the system models with many immediate activities we normally have a significant simplification of the solution. At
the abstraction level of SMCs, the elimination of vanishingstates decreases their impact to the solution complexity
while allowing immediate activities to specify a comprehensible logical structure of systems at the higher level of
transition systems.
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Example 5.4. Let E be from Example 3.6. Remember that DRT(E) = {s1, s2, s4, s5} and DRV(E) = {s3}. We reorder
the states from DR(E), by moving the vanishing states to the first positions, as follows: s3, s1, s2, s4, s5.

The reordered TPM for DTMC(E) is

Pr =



0 0 0 l
l+m

m
l+m

0 1− ρ ρ 0 0
χ 0 1− χ 0 0
0 0 θ 1− θ 0
0 0 φ 0 1− φ


.

The result of the decomposingPr are the matrices

C = 0, D =
(
0, 0,

l
l +m

,
m

l +m

)
, E =



0
χ

0
0


, F =



1− ρ ρ 0 0
0 1− χ 0 0
0 θ 1− θ 0
0 φ 0 1− φ


.

SinceC1 = 0, we have∀k > 0, Ck = 0, hence, l= 0 and there are no loops among vanishing states. Then

G =
l∑

k=0

Ck = C0 = I .

Further, the TPM for RDTMC(E) is

P⋄ = F + EGD = F + EID = F + ED =



1− ρ ρ 0 0
0 1− χ χl

l+m
χm
l+m

0 θ 1− θ 0
0 φ 0 1− φ


.

In Figure 9, the reduced DTMC RDTMC(E) is presented. The steady-state PMF for RDTMC(E) is

ψ⋄ =
1

θφ(l +m) + χ(φl + θm)
(0, θφ(l +m), χφl, χθm).

Note thatψ⋄ = (ψ⋄(s1), ψ⋄(s2), ψ⋄(s4), ψ⋄(s5)). By Proposition 5.3, we have

ϕ(s1) = 0,

ϕ(s2) = θφ(l+m)
θφ(l+m)+χ(φl+θm) ,

ϕ(s3) = 0,

ϕ(s4) = χφl
θφ(l+m)+χ(φl+θm) ,

ϕ(s5) = χθm
θφ(l+m)+χ(φl+θm) .

Thus, the steady-state PMF for SMC(E) is

ϕ =
1

θφ(l +m) + χ(φl + θm)
(0, θφ(l +m), 0, χφl, χθm).

This coincides with the result obtained in Example 5.1 with the use ofψ∗ and SJ.

Example 5.5. In Figure 10, the reduced underlying SMC RSMC(E) is depicted. The average sojourn times in the
states of the reduced underlying SMC are written next to themin bold font. In spite of the equality RSMC(E) =
RDTMC(E), the graphical representation of RSMC(E) differs from that of RDTMC(E), since the former is based on
the REDTMC(E), where each state is decorated with thepositiveaverage sojourn time of RSMC(E) in it. REDTMC(E)
is constructed from EDTMC(E) in the similar way as RDTMC(E) is obtained from DTMC(E). By construction, the
residence time in each state of RSMC(E) is geometrically distributed. Hence, the associated parameter of geometrical
distribution is uniquely recovered from the average sojourn time in the state.
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RDTMC (E)☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠
❄

✚
✚❂ ❅❅❘

✏
✑

✓
✒

✲ ✛

✑ ✒

s1

s2

s4 s5

ρ

θ φ

χl
l+m

χm
l+m

✞✝ ✲

✂ ✁✂ ✁✻ ✻

✄✂✲1−χ

1−ρ

1−θ 1−φ

Figure 9: The reduced DTMC ofE for E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](( {e},m); ({ f }, φ)))) ∗ Stop].

RSMC (E)☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠
❄

✚
✚❂ ❅❅❘

✏
✑

✓
✒

✲ ✛

✑ ✒

s1

s2

s4 s5

1

1 1

l
l+m

m
l+m

1
ρ

1
χ

1
θ

1
φ

Figure 10: The reduced SMC ofE for E = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](( {e},m); ({ f }, φ)))) ∗ Stop]

Note that our reduction of the underlying SMC by eliminatingits vanishing states, resulting in the reduced DTMC,
resembles the reduction from [63] by removing instantaneous states of stochastically discontinuous Markov reward
chains. The latter are “limits” of continuous time Markov chains with state rewards and fast transitions when the rates
(speeds) of these transitions tend to infinity, making them immediate. By analogy with that work, we would consider
DTMCs extended with instantaneous states instead of SMCs with geometrically distributed or zero sojourn time in
the states. However, within dtsiPBC, we have decided to takeSMCs as the underlying stochastic process to be able in
the perspective to consider not only geometrically distributed and zero residence time in the states, but arbitrary fixed
time delays as well.

6. Stochastic equivalences

Consider the expressionsE = ({a}, 1
2) andE′ = ({a}, 1

3)1[]( {a}, 1
3)2, for which E ,ts E′, sinceTS(E) has only one

transition from the initial to the final state (with probability 1
2) while TS(E′) has two such ones (with probabilities1

4).
On the other hand, all the mentioned transitions are labeledby activities with the same multiaction part{a}. Moreover,
the overall probabilities of the mentioned transitions ofTS(E) andTS(E′) coincide: 1

2 =
1
4 +

1
4. Further,TS(E) (as

well asTS(E′)) has one empty loop transition from the initial state to itself with probability 1
2 and one empty loop

transition from the final state to itself with probability 1.The empty loop transitions are labeled by the empty set of
activities. For calculating the transition probabilitiesof TS(E′), takeρ = χ = 1

3 in Example 3.5. Then you will see that
the probability parts13 and 1

3 of the activities ({a}, 1
3)1 and ({a}, 1

3)2 are “splitted” among probabilities14 and 1
4 of the

corresponding transitions and the probability1
2 of the empty loop transition. Unlike=ts, most of the probabilistic and

stochastic equivalences proposed in the literature do not differentiate between the processes such as those specified by
E andE′. In Figure 11(a), the marked dtsi-boxes corresponding to the dynamic expressionsE andE′ are presented,
i.e. N = Boxdtsi(E) andN′ = Boxdtsi(E′).

Since the semantic equivalence=ts is too discriminating in many cases, we need weaker equivalence notions.
These equivalences should possess the following necessaryproperties. First, any two equivalent processes must have
the same sequences of multisets of multiactions, which are the multiaction parts of the activities executed in steps
starting from the initial states of the processes. Second, for every such sequence, its execution probabilities within
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both processes must coincide. Third, the desired equivalence should preserve the branching structure of computations,
i.e. the points of choice of an external observer between several extensions of a particular computation should be taken
into account. In this section, we define one such notion: stepstochastic bisimulation equivalence.

6.1. Step stochastic bisimulation equivalence

Bisimulation equivalences respect the particular points of choice in the behavior of a system. To define stochastic
bisimulation equivalences, we have to consider a bisimulation as anequivalencerelation that partitions the states of
theunionof the transition systemsTS(G) andTS(G′) of two dynamic expressionsG andG′ to be compared. For
G andG′ to be bisimulation equivalent, the initial states [G]≈ and [G′]≈ of their transition systems should be related
by a bisimulation having the following transfer property: if two states are related then in each of them the same
multisets of multiactions can occur, leading with the identical overall probability from each of the two states tothe
same equivalence classfor every such multiset.

Thus, we follow the approaches of [51, 58, 45, 47, 14, 10, 11],but we implement step semantics instead of
interleaving one considered in these papers. Recall also that we use the generative probabilistic transition systems,like
in [51], in contrast to the reactive model, treated in [58], and we take transition probabilities instead of transition rates
from [45, 47, 14, 10, 11]. Thus, step stochastic bisimulation equivalence that we define further is (in the probabilistic
sense) comparable only with interleaving probabilistic bisimulation one from [51], and our equivalence is obviously
stronger.

In the definition below, we considerL(Υ) ∈ INLf in for Υ ∈ INSILf in , i.e. (possibly empty) multisets of multiactions.
The multiactions can be empty as well. In this case,L(Υ) contains the elements∅, but it is not empty itself.

Let G be a dynamic expression andH ⊆ DR(G). Then, for anys ∈ DR(G) andA ∈ INLf in, we write s
A
→P H ,

whereP = PMA(s,H) is theoverall probability to move from s into the set of statesH via steps with the multiaction
part Adefined as

PMA(s,H) =
∑

{Υ|∃s̃∈H , s
Υ
→s̃, L(Υ)=A}

PT(Υ, s).

We writes
A
→ H if ∃P, s

A
→P H . Further, we writes→P H if ∃A, s

A
→ H , whereP = PM(s,H) is theoverall

probability to move from s into the set of statesH via any stepsdefined as

PM(s,H) =
∑

{Υ|∃s̃∈H , s
Υ
→s̃}

PT(Υ, s).

To introduce a stochastic bisimulation between dynamic expressionsG andG′, we should consider the “compos-
ite” set of statesDR(G) ∪ DR(G′), since we have to identify the probabilities to come from any two equivalent states
into the same “composite” equivalence class (with respect to the stochastic bisimulation). Note that, forG , G′, transi-
tions starting from the states ofDR(G) (or DR(G′)) always lead to those from the same set, sinceDR(G)∩DR(G′) = ∅,
and this allows us to “mix” the sets of states in the definitionof stochastic bisimulation.

Definition 6.1. Let G andG′ be dynamic expressions. AnequivalencerelationR ⊆ (DR(G) ∪ DR(G′))2 is a step
stochastic bisimulationbetweenG andG′, denoted byR : G↔ssG

′, if:

1. ([G]≈, [G′]≈) ∈ R.
2. (s1, s2) ∈ R ⇒ ∀H ∈ (DR(G) ∪ DR(G′))/R, ∀A ∈ INLf in,

s1
A
→P H ⇔ s2

A
→P H .

Two dynamic expressionsG andG′ arestep stochastic bisimulation equivalent, denoted byG↔ssG
′, if ∃R : G↔ssG

′.

The following proposition states that every step stochastic bisimulation binds tangible states only with tangible
ones and the same is valid for vanishing states.
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Proposition 6.1. Let G and G′ be dynamic expressions andR : G↔ssG
′. Then

R ⊆ (DRT(G) ∪ DRT(G′))2 ⊎ (DRV(G) ∪ DRV(G′))2.

Proof. By definition of transition systems of expressions, for every tangible state, there is an empty loop from it, and
no empty loop transitions are possible from vanishing states.

Further,R preserves empty loops. To verify this fact, first takeA = ∅ in its definition to get∀(s1, s2) ∈ R,

∀H ∈ (DR(G) ∪ DR(G′))/R, s1
∅
→P H ⇔ s2

∅
→P H , and then observe that the empty loop transition from a state

leads only to the same state. �

Let Rss(G,G′) =
⋃
{R | R : G↔ssG

′} be theunion of all step stochastic bisimulationsbetweenG andG′. The
following proposition proves thatRss(G,G′) is also anequivalenceandRss(G,G′) : G↔ssG

′.

Proposition 6.2. Let G and G′ be dynamic expressions and G↔ssG
′. ThenRss(G,G′) is the largest step stochastic

bisimulation between G and G′.

Proof. See Appendix A.1. �

In [3], an algorithm for strong probabilistic bisimulationon probabilistic labeled transition systems (a reformula-
tion of probabilistic automata) was proposed with time complexity O(n2m), wheren is the number od states andm is
the number of transitions. In [4], a decision algorithm for strong probabilistic bisimulation on generative probabilistic
labeled transition systems was constructed with time complexity O(mlogn) and space complexityO(m+ n). In [30],
a polynomial algorithm for strong probabilistic bisimulation on probabilistic automata was presented. The mentioned
algorithms for interleaving probabilistic bisimulation equivalence can be adapted for↔ssusing the method from [50],
applied to get the decidability results for step bisimulation equivalence. The method takes into account that transition
systems in interleaving and step semantics differ only by that in the latter (which is our case) they may have additional
transitions corresponding to parallel execution of activities.

6.2. Interrelations of the stochastic equivalences

Now we compare the discrimination power of the stochastic equivalences.

Theorem 6.1. For dynamic expressions G and G′ the followingstrict implications hold:

G ≈ G′ ⇒ G =ts G′ ⇒ G↔ssG
′.

Proof. Let us check the validity of the implications.

• The implication=ts⇒↔ss is proved as follows. Letβ : G =ts G′. Then it is easy to see thatR : G↔ssG
′, where

R = {(s, β(s)) | s ∈ DR(G)}.

• The implication≈⇒=ts is valid, since the transition system of a dynamic formula isdefined based on its struc-
tural equivalence class.

Let us see that that the implications are strict, i.e. the reverse ones do not work, by the following counterexamples.

(a) LetE = ({a}, 1
2) andE′ = ({a}, 1

3)1[]( {a}, 1
3)2. ThenE↔ssE

′, butE ,ts E′, sinceTS(E) has only one transition

from the initial to the final state whileTS(E′) has two such ones.

(b) Let E = ({a}, 1
2); ({â}, 1

2) andE′ = (({a}, 1
2); ({â}, 1

2)) sy a. ThenE =ts E′, butE 0 E′, sinceE andE′ cannot be
reached from each other by applying inaction rules. �

Example 6.1. In Figure 11, the marked dtsi-boxes corresponding to the dynamic expressions from equivalence exam-
ples of Theorem 6.1 are presented, i.e. N= Boxdtsi(E) and N′ = Boxdtsi(E′) for each picture (a)–(b).
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Figure 11: Dtsi-boxes of the dynamic expressions from equivalence examples of Theorem 6.1.

7. Reduction modulo equivalences

The equivalences which we proposed can be used to reduce transition systems and SMCs of expressions (reacha-
bility graphs and SMCs of dtsi-boxes). Reductions of graph-based models, like transition systems, reachability graphs
and SMCs, result in those with less states (the graph nodes).The goal of the reduction is to decrease the number of
states in the semantic representation of the modeled systemwhile preserving its important qualitative and quantitative
properties. Thus, the reduction allows one to simplify the behavioural and performance analysis of systems.

An autobisimulationis a bisimulation between an expression and itself. For a dynamic expressionG and a step
stochastic autobisimulation on itR : G↔ssG, letK ∈ DR(G)/R ands1, s2 ∈ K . We have∀K̃ ∈ DR(G)/R, ∀A ∈ INLf in,

s1
A
→P K̃ ⇔ s2

A
→P K̃ . The previous equality is valid for alls1, s2 ∈ K , hence, we can rewrite it asK

A
→P K̃ , where

P = PMA(K , K̃) = PMA(s1, K̃) = PMA(s2, K̃).

We writeK
A
→ K̃ if ∃P, K

A
→P K̃ andK → K̃ if ∃A, K

A
→ K̃ . The similar arguments allow us to write

K →P K̃ , whereP = PM(K , K̃) = PM(s1, K̃) = PM(s2, K̃).
By Proposition 6.1,R ⊆ (DRT(G))2 ⊎ (DRV(G))2. Hence,∀K ∈ DR(G)/R, all states fromK are tangible, when

K ∈ DRT(G)/R, or all of them are vanishing, whenK ∈ DRV(G)/R.
Theaverage sojourn time in the equivalence class (with respecttoR) of statesK is

SJR(K) =

{ 1
1−PM(K ,K) , K ∈ DRT(G)/R;
0, K ∈ DRV(G)/R.

Theaverage sojourn time vector for the equivalence classes (with respect toR) of statesof G, denoted bySJR,
has the elementsSJR(K), K ∈ DR(G)/R.

Thesojourn time variance in the equivalence class (with respect toR) of statesK is

VARR(K) =

{ PM(K ,K)
(1−PM(K ,K))2 , K ∈ DRT(G)/R;
0, K ∈ DRV(G)/R.

Thesojourn time variance vector for the equivalence classes (with respect toR) of statesof G, denoted byVARR,
has the elementsVARR(K), K ∈ DR(G)/R.

Let Rss(G) =
⋃
{R | R : G↔ssG} be theunion of all step stochastic autobisimulationsonG. By Proposition 6.2,

Rss(G) is the largest step stochastic autobisimulation onG. Based on the equivalence classes with respect toRss(G),
the quotient (by↔ss) transition systems and the quotient (by↔ss) underlying SMCs of expressions can be defined.
The mentioned equivalence classes become the quotient states. The average sojourn time in a quotient state is that in
the corresponding equivalence class. Every quotient transition between two such composite states represents all steps
(having the same multiaction part in case of the transition system quotient) from the first state to the second one.
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Figure 12: The quotient transition system ofF for F = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](( {c},m); ({d}, θ)))) ∗ Stop]

Definition 7.1. Let G be a dynamic expression. Thequotient (by↔ss) (labeled probabilistic) transition systemof G
is a quadrupleTS↔ss

(G) = (S↔ss
, L↔ss

,T↔ss
, s↔ss

), where

• S↔ss
= DR(G)/Rss(G);

• L↔ss
= INLf in × (0; 1];

• T↔ss
= {(K , (A,PMA(K , K̃)), K̃) | K , K̃ ∈ DR(G)/Rss(G), K

A
→ K̃};

• s↔ss
= [[G]≈]Rss(G).

The transition (K , (A,P), K̃) ∈ T↔ss
will be written asK

A
→P K̃ .

The quotient (by↔ss) transition systems of static expressions can be defined as well. For E ∈ RegS tatExpr, let
TS↔ss

(E) = TS↔ss
(E).

Example 7.1. Consider an abstraction F of the static expression E from Example 3.6, with c= e, d = f , θ = φ, i.e.

F = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](( {c},m); ({d}, θ)))) ∗ Stop].

Then DR(F) = {s1, s2, s3, s4, s5} is obtained from DR(E) via substitution of the symbols e, f , φ by c, d, θ,
respectively, in the specifications of the corresponding states from the latter set. We have DRT(F) = {s1, s2, s4, s5} and
DRV(F) = {s3}. Further, DR(F)/Rss(F) = {K1,K2,K3,K4}, whereK1 = {s1}, K2 = {s2}, K3 = {s3}, K4 = {s4, s5}. We

also have DRT(F)/Rss(F) = {K1,K2,K4} and DRV(F)/Rss(F) = {K3}.

In Figure 12, the quotient transition system TS↔ss
(F) is presented.

Thequotient (by↔ss) average sojourn time vectorof G is defined asSJ↔ss
= SJRss(G).

Thequotient (by↔ss) sojourn time variance vectorof G is defined asVAR↔ss
= VARRss(G).

LetK → K̃ andK , K̃ . Theprobability to move fromK to K̃ by executing any set of activities after possible
self-loopsis

PM∗(K , K̃) =


PM(K , K̃)

∑∞
k=0 PM(K ,K)k =

PM(K ,K̃)
1−PM(K ,K) , K → K ;

PM(K , K̃), otherwise.

The valuek = 0 in the summation above corresponds to the case when no self-loops occur. Note that∀K ∈
DRT(G)/Rss(G), PM∗(K , K̃) = SJ↔ss

(K)PM(K , K̃), since we always have the empty loop (which is a self-loop)

K
∅
→ K from every equivalence class of tangible statesK . Empty loops are not possible from equivalence classes

of vanishing states, hence,∀K ∈ DRV(G)/Rss(G), PM∗(K , K̃) = PM(K ,K̃ )
1−PM(K ,K) , when there are non-empty self-loops

(produced by iteration) fromK , or PM∗(K , K̃) = PM(K , K̃), when there are no self-loops fromK .
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Figure 13: The quotient underlying SMC ofF for F = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](( {c},m); ({d}, θ)))) ∗ Stop]

Definition 7.2. Let G be a dynamic expression. Thequotient (by↔ss) EDTMCof G, denoted byEDTMC↔ss
(G), has

the state spaceDR(G)/Rss(G), the initial state [[G]≈]Rss(G) and the transitionsK →→P K̃ , if K → K̃ andK , K̃ , where
P = PM∗(K , K̃).

The quotient (by↔ss) underlying SMCof G, denoted bySMC↔ss
(G), has the EDTMCEDTMC↔ss

(G) and the
sojourn time in everyK ∈ DRT(G)/Rss(G) is geometrically distributed with the parameter 1− PM(K ,K) while the
sojourn time in everyK ∈ DRV(G)/Rss(G) is equal to zero.

The quotient (by↔ss) underlying SMCs of static expressions can be defined as well. For E ∈ RegS tatExpr, let
SMC↔ss

(E) = SMC↔ss
(E).

The steady-state PMFsψ∗↔ss
for EDTMC↔ss

(G) andϕ↔ss
for SMC↔ss

(G) are defined like the corresponding notions
ψ∗ for EDTMC(G) andϕ for SMC(G), respectively.

Example 7.2. Let F be from Example 7.1. In Figure 13, the quotient underlying SMC SMC↔ss
(F) is presented.

The quotients of both transition systems and underlying SMCs are the minimal reductions of these objects modulo
step stochastic bisimulations. The quotients can be used tosimplify analysis of system properties which are preserved
by↔ss, since less states should be examined for it. Such reductionmethod resembles that from [2] based on place
bisimulation equivalence for PNs, excepting that the former method merges states, while the latter one merges places.

Moreover, the algorithms exist to construct the quotients of transition systems by an equivalence (like bisimulation
one) [76] and those of (discrete or continuous time) Markov chains by ordinary lumping [34]. The algorithms have
time complexityO(mlogn) and space complexityO(m+ n), wheren is the number of states andm is the number
of transitions. As mentioned in [90], the algorithm from [34] can be easily adjusted to produce quotients of labeled
probabilistic transition systems by the probabilistic bisimulation equivalence. In [90], the symbolic partition refine-
ment algorithm on state space of CTMCs was proposed. The algorithm can be straightforwardly accommodated to
DTMCs, interactive MCs, Markov reward models, Markov decision processes, Kripke structures and labeled prob-
abilistic transition systems. Such a symbolic lumping usesmemory efficiently due to compact representation of the
state space partition. The symbolic lumping is time efficient, since fast algorithm of the partition representation and
refinement is applied. In [35], a polynomial-time algorithmfor minimizing behaviour of probabilistic automata by
probabilistic bisimulation equivalence was outlined thatresults in the canonical quotient structures. One could adapt
the above algorithms for our framework of transition systems, (reduced) DTMCs and SMCs.

Let us also consider quotient (by↔ss) DTMCs of expressions based on the state change probabilitiesPM(K , K̃).

Definition 7.3. Let G be a dynamic expression. Thequotient (by↔ss) DTMC of G, denoted byDTMC↔ss
(G), has

the state spaceDR(G)/Rss(G), the initial state [[G]≈]Rss(G) and the transitionsK →P K̃ , whereP = PM(K , K̃).

The quotient (by↔ss) DTMCs of static expressions can be defined as well. ForE ∈ RegS tatExpr, let
DTMC↔ss

(E) = DTMC↔ss
(E).

The steady-state PMFψ↔ss
for DTMC↔ss

(G) is defined like the corresponding notionψ for DTMC(G).
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Figure 14: The quotient DTMC ofF for F = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](( {c},m); ({d}, θ)))) ∗ Stop]
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Figure 15: The reduced quotient DTMC ofF for F = [({a}, ρ) ∗ (({b}, χ); ((({c}, l); ({d}, θ))[](( {c},m); ({d}, θ)))) ∗ Stop]

Example 7.3. Let F be from Example 7.1. In Figure 14, the quotient DTMC DTMC↔ss
(F) is presented.

Eliminating equivalence classes (with respect toRss(G)) of vanishing states from the quotient (by↔ss) DTMCs
of expressions results in the reductions of such DTMCs.

Definition 7.4. Thereduced quotient (by↔ss) DTMCof G, RDTMC↔ss
(G), is defined likeRDTMC(G) in Section 5,

but it is constructed fromDTMC↔ss
(G) instead ofDTMC(G).

The reduced quotient (by↔ss) DTMCs of static expressions can be defined as well. ForE ∈ RegS tatExpr, let
RDTMC↔ss

(E) = RDTMC↔ss
(E).

The steady-state PMFψ⋄↔ss
for RDTMC↔ss

(G) is defined like the corresponding notionψ⋄ for RDTMC(G).

Example 7.4. Let F be from Example 7.1. In Figure 15, the reduced quotient DTMC of RDTMC↔ss
(F) is presented.

Obviously, the relationships between the steady-state PMFs ψ↔ss
andψ∗↔ss

, ϕ↔ss
andψ↔ss

, as well asϕ↔ss
and

ψ⋄↔ss
, are the same as those determined between their “non-quotient” versions in Theorem 5.1, Proposition 5.2 and

Proposition 5.3, respectively.
In Figure 16, the cube of interrelations w.r.t. the relation“constructed from” is depicted for both standard and

quotient transition systems and Markov chains (SMCs, DTMCsand RDTMCs) of expressions. Note that the relations
betweenSMC andSMC↔ss

, betweenDTMC andDTMC↔ss
, as well as betweenRDTMC andRDTMC↔ss

, can be
obtained using the following corresponding transition functions, defined by analogy with those already introduced:
PM∗(K , K̃), based onPM∗(s, s̃), thenPM(K , K̃), based onPM(s, s̃), as well asPM⋄(K , K̃), based onPM⋄(s, s̃). In
a similar way, the relations betweenSMCandRDTMC, as well as betweenSMC↔ss

andRDTMC↔ss
, can be obtained

using the following corresponding transition functions:PM⋄(s, s̃), based onPM∗(s, s̃), through (PM∗)⋄(s, s̃), as well
asPM⋄(K , K̃), based onPM∗(K , K̃), through (PM∗)⋄(K , K̃).

The comprehensive quotient and reduction example will be presented in Section 9.
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Figure 16: The cube of interrelations for standard and quotient transition systems and Markov chains of expressions

In [25], the ordinary, exact and strict lumpability relations on finite DTMCs are explored. It is investigated which
properties of transient and stationary behaviour of DTMCs are preserved by aggregation w.r.t. the three mentioned
kinds of lumping and their approximate “nearly” versions. It is proven that irreducibility is preserved by aggregation
w.r.t. any partition (or equivalence relation) on the states of DTMCs. Since only finite DTMCs are considered (with a
finite number of states), these all are positive recurrent. Aggregation can only decrease the number of states, hence,
the aggregated DTMCs are also finite and positive recurrenceis preserved by every aggregation. It is known [81, 56]
that irreducible and positive recurrent DTMCs have a singlestationary PMF. Note that the original and aggregated
DTMCs may be periodic, thus having a unique stationary distribution, but no steady-state (limiting) one. For example,
it may happen that the original DTMC is aperiodic while the aggregated DTMC is periodic due to merging some states
of the former. Thus, both finite irreducible DTMCs and their arbitrary aggregates have a single stationary PMF. Then
the relationship between stationary probabilities of DTMCs and their aggregates w.r.t. ordinary, exact and strict
lumpability is established in [25]. In particular, it is shown that for every DTMC aggregated by ordinary lumpability,
the stationary probability of each aggregate state is a sum of the stationary probabilities of all its constituent states
from the original DTMC. The information about individual stationary probabilities of the original DTMC is lost after
such a summation, but in many cases, the stationary probabilities of the aggregated DTMC are enough to calculate
performance measures of the high-level model, from which the original DTMC is extracted. As mentioned in [25],
in some practical applications, the aggregated DTMC can be extracted directly from the high-level model. Thus, the
aggregation techniques based on lumping are of practical importance, since they allow one to reduce the state space
of the modeled systems, hence, the computational costs for evaluating their performance.

Let G be a dynamic expression. By definition of↔ss, the relationRss(G) on TS(G) induces ordinary lumping
on SMC(G), i.e. if the states ofTS(G) are related byRss(G) then the same states inSMC(G) are related by ordinary
lumping. The quotient (maximal aggregate) ofSMC(G) by such an induced ordinary lumping isSMC↔ss

(G). Since we
consider only finite SMCs, all of them are positive recurrent, and irreducibility ofSMC(G) will imply irreducibility of
SMC↔ss

(G). Then a unique quotient stationary PMF ofSMC↔ss
(G) can be calculated from a unique original stationary

PMF of SMC(G) by summing some elements of the latter, as described in [25]. Similar arguments demonstrate that
the same results hold forDTMC(G) andDTMC↔ss

(G), as well as forRDTMC(G) andRDTMC↔ss
(G).

8. Stationary behaviour

Let us examine how the proposed equivalences can be used to compare the behaviour of stochastic processes
in their steady states. We shall consider only formulas specifying stochastic processes with infinite behavior, i.e.
expressions with the iteration operator. Note that the iteration operator does not guarantee infiniteness of behaviour,
since there can exist a deadlock (blocking) within the body (the second argument) of iteration when the corresponding
subprocess does not reach its final state by some reasons. In particular, if the body of iteration contains theStop
expression, then the iteration will be “broken”. On the other hand, the iteration body can be left after a finite number
of its repeated executions and then the iteration termination is started. To avoid executing any activities after the
iteration body, we takeStop as the termination argument of iteration.

Like in the framework of SMCs, in LDTSIPNs the most common systems for performance analysis areergodic
(irreducible, positive recurrent and aperiodic) ones. Forergodic LDTSIPNs, the steady-state marking probabilities
exist and can be determined. In [72, 73], the following sufficient (but not necessary) conditions for ergodicity of
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DTSPNs are stated:liveness(for each transition and any reachable marking there exist asequence of markings from
it leading to the marking enabling that transition),boundedness(for any reachable marking the number of tokens in
every place is not greater than some fixed number) andnondeterminism(the transition probabilities are strictly less
than 1).

Consider dtsi-box of a dynamic expressionG = [E ∗ F ∗ Stop] specifying a process for which we assume that it
has no deadlocks while (repetitive) running the bodyF of the iteration operator. If, starting in [[E ∗ F ∗ Stop]]≈ and
ending in [[E ∗ F ∗ Stop]]≈, only tangible states are passed through then the three ergodicity conditions are satisfied:
the subnet corresponding to the looping of the iteration body F is live, safe (1-bounded) and nondeterministic (since
all markings of the subnet are tangible and non-terminal, the probabilities of transitions from them are strictly less than
1). Hence, according to [72, 73], for the dtsi-box, its underlying SMC, restricted to the markings of the mentioned
subnet, is ergodic. The isomorphism between SMCs of expressions and those of the corresponding dtsi-boxes, which
is stated by Proposition 5.1, guarantees thatS MC(G) is ergodic, if restricted to the states between [[E ∗ F ∗ Stop]]≈
and [[E ∗ F ∗ Stop]]≈.

The ergodicity conditions above are not necessary, i.e. there exist dynamic expressions with vanishing states
traversed while executing their iteration bodies, such that the properly restricted underlying SMCs are nevertheless
ergodic, as Example 5.1 demonstrated. However, it has been shown in [7] that even live, safe and nondeterministic
DTSPNs (as well as live and safe CTSPNs and GSPNs) may be non-ergodic.

In this section, we consider only the process expressions such that their underlying SMCs contain exactly one
closed communication class of states, and this class shouldalso be ergodic to ensure uniqueness of the stationary
distribution, which is also the limiting one. The states notbelonging to that class do not disturb the uniqueness, since
the closed communication class is single, hence, they all are transient. Then for each transient state, the steady-state
probability to be in it is zero while the steady-state probability to enter into the ergodic class starting from that state is
equal to one.

8.1. Steady state, residence time and equivalences

The following proposition demonstrates that, for two dynamic expressions related by↔ss, the steady-state prob-
abilities to enter into an equivalence class coincide. One can also interpret the result stating that the mean recurrence
time for an equivalence class is the same for both expressions.

Proposition 8.1. Let G,G′ be dynamic expressions withR : G↔ssG
′ andϕ be the steady-state PMF for SMC(G), ϕ′

be the steady-state PMF for SMC(G′). Then∀H ∈ (DR(G) ∪ DR(G′))/R,
∑

s∈H∩DR(G)

ϕ(s) =
∑

s′∈H∩DR(G′)

ϕ′(s′).

Proof. See Appendix A.2. �

Let G be a dynamic expression andϕ be the steady-state PMF forSMC(G), ϕ↔ss
be the steady-state PMF for

SMC↔ss
(G). By Proposition 8.1, we have∀H ∈ DR(G)/Rss(G), ϕ↔ss

(H) =
∑

s∈H ϕ(s). Thus, for every equivalence
classH ∈ DR(G)/Rss(G), the value ofϕ↔ss

corresponding toH is the sum of all values ofϕ corresponding to the states
fromH . Hence, usingSMC↔ss

(G) instead ofSMC(G) simplifies the analytical solution, since we have less states, but
constructing the TPM forEDTMC↔ss

(G), denoted byP∗↔ss
, also requires some efforts, including determiningRss(G)

and calculating the probabilities to move from one equivalence class to other. The behaviour ofEDTMC↔ss
(G)

stabilizes quicker than that ofEDTMC(G) (if each of them has a single steady state), sinceP∗↔ss
is denser matrix

thanP∗ (the TPM forEDTMC(G)) due to the fact that the former matrix is smaller and the transitions between the
equivalence classes “include” all the transitions betweenthe states belonging to these equivalence classes.

By Proposition 8.1,↔sspreserves the quantitative properties of the stationary behaviour (the level of SMCs). Now
we intend to demonstrate that the qualitative properties ofthe stationary behaviour based on the multiaction labels are
preserved as well (the level of transition systems).

Definition 8.1. A derived step traceof a dynamic expressionG is a chainΣ = A1 · · ·An ∈ (INLf in)∗, where∃s ∈

DR(G), s
Υ1
→ s1

Υ2
→ · · ·

Υn
→ sn, L(Υi) = Ai (1 ≤ i ≤ n). Then theprobability to execute the derived step traceΣ in s is
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PT(Σ, s) =
∑

{Υ1,...,Υn|s=s0
Υ1
→s1

Υ2
→···

Υn
→sn, L(Υi )=Ai (1≤i≤n)}

n∏

i=1

PT(Υi , si−1).

The following theorem demonstrates that, for two dynamic expressions related by↔ss, the steady-state probabil-
ities to enter into an equivalence class and start a derived step trace from it coincide.

Theorem 8.1. Let G,G′ be dynamic expressions withR : G↔ssG
′ andϕ be the steady-state PMF for SMC(G), ϕ′ be

the steady-state PMF for SMC(G′) andΣ be a derived step trace of G and G′. Then∀H ∈ (DR(G) ∪ DR(G′))/R,
∑

s∈H∩DR(G)

ϕ(s)PT(Σ, s) =
∑

s′∈H∩DR(G′ )

ϕ′(s′)PT(Σ, s′).

Proof. See Appendix A.3. �

We now present a result not concerning the steady-state probabilities, but revealing very important properties of
residence time in the equivalence classes. The following proposition demonstrates that, for two dynamic expressions
related by↔ss, the sojourn time averages in an equivalence class coincide, as well as the sojourn time variances in it.

Proposition 8.2. Let G,G′ be dynamic expressions withR : G↔ssG
′. Then∀H ∈ (DR(G) ∪ DR(G′))/R,

SJR∩(DR(G))2(H ∩ DR(G)) = SJR∩(DR(G′))2(H ∩ DR(G′)),

VARR∩(DR(G))2(H ∩ DR(G)) = VARR∩(DR(G′))2(H ∩ DR(G′)).

Proof. See Appendix A.4. �

Example 8.1. Let

E = [({a}, 1
2) ∗ (({b}, 1

2); (({c}, 1
3)1[]( {c}, 1

3)2)) ∗ Stop],

E′ = [({a}, 1
2) ∗ ((({b}, 1

3)1; ({c}, 1
2)1)[](( {b}, 1

3)2; ({c}, 1
2)2)) ∗ Stop].

We haveE↔ssE
′.

DR(E) consists of the equivalence classes

s1 = [[ ({a}, 1
2) ∗ (({b}, 1

2); (({c}, 1
3)1[]( {c}, 1

3)2)) ∗ Stop]]≈,

s2 = [[( {a}, 1
2) ∗ (({b}, 1

2); (({c}, 1
3)1[]( {c}, 1

3)2)) ∗ Stop]]≈,

s3 = [[( {a}, 1
2) ∗ (({b}, 1

2); (({c}, 1
3)1[]( {c}, 1

3)2)) ∗ Stop]]≈.

DR(E′) consists of the equivalence classes

s′1 = [[ ({a}, 1
2) ∗ ((({b}, 1

3)1; ({c}, 1
2)1)[](( {b}, 1

3)2; ({c}, 1
2)2)) ∗ Stop]]≈,

s′2 = [[( {a}, 1
2) ∗ ((({b}, 1

3)1; ({c}, 1
2)1)[](( {b}, 1

3)2; ({c}, 1
2)2)) ∗ Stop]]≈,

s′3 = [[( {a}, 1
2) ∗ ((({b}, 1

3)1; ({c}, 1
2)1)[](( {b}, 1

3)2; ({c}, 1
2)2)) ∗ Stop]]≈,

s′4 = [[( {a}, 1
2) ∗ ((({b}, 1

3)1; ({c}, 1
2)1)[](( {b}, 1

3)2; ({c}, 1
2)2)) ∗ Stop]]≈.

The steady-state PMFsϕ for SMC(E) andϕ′ for SMC(E′) are

ϕ =

(
0,

1
2
,
1
2

)
, ϕ′ =

(
0,

1
2
,
1
4
,
1
4

)
.
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Figure 17:↔ss preserves steady-state behaviour and sojourn time properties in the equivalence classes.

Consider the equivalence class (with respect toRss(E,E′)) H = {s3, s′3, s
′
4}. One can see that the steady-state

probabilities forH coincide:
∑

s∈H∩DR(E) ϕ(s) = ϕ(s3) = 1
2 =

1
4 +

1
4 = ϕ′(s′3) + ϕ′(s′4) =

∑
s′∈H∩DR(E′ ) ϕ

′(s′).
Let Σ = {{c}}. The steady-state probabilities to enter into the equivalence classH and start the derived step
traceΣ from it coincide as well:ϕ(s3)(PT({({c}, 1

3)1}, s3) + PT({({c}, 1
3)2}, s3)) = 1

2

(
1
4 +

1
4

)
= 1

4 =
1
4 ·

1
2 +

1
4 ·

1
2 =

ϕ′(s′3)PT({({c}, 1
2)1}, s′3) + ϕ′(s′4)PT({({c}, 1

2)2}, s′4).
Further, the sojourn time averages in the equivalence classH coincide: SJRss(E,E′)∩(DR(E))2(H ∩ DR(G)) =

SJRss(E,E′)∩(DR(E))2({s3}) = 1
1−PM({s3},{s3})

= 1
1−PM(s3,s3) =

1
1− 1

2
= 2 = 1

1− 1
2
= 1

1−PM(s′3,s
′
3) =

1
1−PM(s′4,s

′
4) =

1
1−PM({s′3,s

′
4},{s

′
3,s
′
4})
=

SJRss(E,E′)∩(DR(E′ ))2({s′3, s
′
4}) = SJRss(E,E′)∩(DR(E′ ))2(H ∩ DR(G′)).

Finally, the sojourn time variances in the equivalence classH coincide: VARRss(E,E′)∩(DR(E))2(H ∩ DR(G)) =

VARRss(E,E′)∩(DR(E))2({s3}) =
PM({s3},{s3})

(1−PM({s3},{s3}))2 =
PM(s3,s3)

(1−PM(s3,s3))2 =
1
2

(1− 1
2)

2 = 2 =
1
2

(1− 1
2)

2 =
PM(s′3,s

′
3)

(1−PM(s′3,s
′
3))2 =

PM(s′4,s
′
4)

(1−PM(s′4,s
′
4))2 =

PM({s′3,s
′
4},{s

′
3,s
′
4})

(1−PM({s′3,s
′
4},{s

′
3,s
′
4}))

2 = VARRss(E,E′)∩(DR(E′ ))2({s′3, s
′
4}) = VARRss(E,E′)∩(DR(E′ ))2(H ∩ DR(G′)).

In Figure 17, the marked dtsi-boxes corresponding to the dynamic expressions above are presented, i.e.
N = Boxdtsi(E) and N′ = Boxdtsi(E′).

8.2. Preservation of performance and simplification of its analysis

Many performance indices are based on the steady-state probabilities to enter into a set of similar states or, after
coming in it, to start a derived step trace from this set. The similarity of states is usually captured by an equivalence
relation, hence, the sets are often the equivalence classes. Proposition 8.1, Theorem 8.1 and Proposition 8.2 guar-
antee coincidence of the mentioned indices for the expressions related by↔ss. Thus,↔ss (hence, all the stronger
equivalences we have considered) preserves performance ofstochastic systems modeled by expressions of dtsiPBC.

In addition, it is easier to evaluate performance using an SMC with less states, since in this case the size of the
transition probability matrix will be smaller, and we shallsolve systems of less equations to calculate steady-state
probabilities. The reasoning above validates the following method of performance analysis simplification.

1. The investigated system is specified by a static expression of dtsiPBC.
2. The transition system of the expression is constructed.
3. After treating the transition system for self-similarity, a step stochastic autobisimulation equivalence for the

expression is determined.
4. The quotient underlying SMC is constructed from the quotient transition system.
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Figure 18: Equivalence-based simplification of performance evaluation.

5. Stationary probabilities and performance indices are calculated using the SMC.

The limitation of the method above is its applicability onlyto the expressions such that their underlying SMCs
contain exactly one closed communication class of states, and this class should also be ergodic to ensure uniqueness
of the stationary distribution. If an SMC contains several closed communication classes of states that are all ergodic
then several stationary distributions may exist, which depend on the initial PMF. There is an analytical method to
determine stationary probabilities for SMCs of this kind aswell [56]. Note that the underlying SMC of every process
expression has only one initial PMF (that at the time moment 0), hence, the stationary distribution will be unique in
this case too. The general steady-state probabilities are then calculated as the sum of the stationary probabilities ofall
the ergodic classes of states, weighted by the probabilities to enter into these classes, starting from the initial state and
passing through some transient states. It is worth applyingthe method only to the systems with similar subprocesses.

Before calculating stationary probabilities, we can further reduce the quotient underlying SMC, using the algo-
rithm from [68, 5, 6] that eliminates vanishing states from the corresponding EDTMC and thereby decreases the size
of its TPM. For SMCs reduction we can also apply an analogue ofthe deterministic barrier partitioning method from
[41] for semi-Markov processes (SMPs), which allows one to perform quicker the first passage-time analysis. Another
option is the method of stochastic state classes from [49] for generalized SMPs (GSMPs) reduction, allowing one to
simplify transient performance analysis (based on the transient probabilities of being in the states of GSMPs).

Alternatively, the results at the end of Section 7 allow us tosimplify the steps 4 and 5 of the method above
by constructing the reduced quotient DTMC (instead of the quotient underlying SMC) from the quotient transition
system, followed by calculating the stationary probabilities of the quotient underlying SMC using this DTMC, and
then obtaining the performance indices. We first merge the equivalent states in transition systems and only then
eliminate the vanishing states in Markov chains. The reasonis that transition systems, being a higher-level formalism
than Markov chains, describe both functional (qualitative) and performance (quantitative) aspects of behaviour while
Markov chains represent only performance ones. Thus, eliminating vanishing states first would destroy the functional
behaviour (which is respected by the equivalence used for quotienting), since the steps with different multiaction parts
may lead to or start from different vanishing states.

Figure 18 presents the main stages of the standard and alternative equivalence-based simplification of performance
evaluation described above.

9. Shared memory system

In this section with a case study of the shared memory system we show how steady-state distribution can be used
for performance evaluation. The example also illustrates the method of performance analysis simplification above.

9.1. The standard system

Consider a model of two processors accessing a common sharedmemory described in [68, 5, 6] in the continuous
time setting on GSPNs. We shall analyze this shared memory system in the discrete time stochastic setting of dtsiPBC,
where concurrent execution of activities is possible, while no two transitions of a GSPN may fire simultaneously (in
parallel). The model works as follows. After activation of the system (turning the computer on), two processors are
active, and the common memory is available. Each processor can request an access to the memory after which the
instantaneous decision is made. When the decision is made infavour of a processor, it starts acquisition of the memory
and the other processor should wait until the former one endsits memory operations, and the system returns to the
state with both active processors and the available common memory. The diagram of the system is depicted in Figure
19.
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✲
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Figure 19: The diagram of the shared memory system.

Let us explain the meaning of actions from the syntax of dtsiPBC expressions which will specify the system
modules. The actiona corresponds to the system activation. The actionsr i (1 ≤ i ≤ 2) represent the common
memory request of processori. The instantaneous actionsdi correspond to the decision on the memory allocation in
favour of the processori. The actionsmi represent the common memory access of processori. The other actions are
used for communication purposes only via synchronization,and we abstract from them later using restriction. For
a1, . . . , an ∈ Act (n ∈ IN), we shall abbreviatesy a1 · · · sy an rs a1 · · · rs an to sr (a1, . . . , an).

The static expression of the first processor is

E1 = [({x1},
1
2

) ∗ (({r1},
1
2

); ({d1, y1}, 1); ({m1, z1},
1
2

)) ∗ Stop].

The static expression of the second processor is

E2 = [({x2},
1
2

) ∗ (({r2},
1
2

); ({d2, y2}, 1); ({m2, z2},
1
2

)) ∗ Stop].

The static expression of the shared memory is

E3 = [({a, x̂1, x̂2},
1
2

) ∗ ((({ŷ1}, 1); ({ẑ1},
1
2

))[](( {ŷ2}, 1); ({ẑ2},
1
2

))) ∗ Stop].

The static expression of the shared memory system with two processors is

E = (E1‖E2‖E3) sr (x1, x2, y1, y2, z1, z2).

Let us illustrate an effect of synchronization. As result of the synchronization ofimmediate multiactions ({di, yi}, 1)
and ({ŷi}, 1) we obtain ({di}, 2) (1 ≤ i ≤ 2). The synchronization of stochastic multiactions ({mi , zi},

1
2) and ({ẑi},

1
2)

produces ({mi},
1
4) (1 ≤ i ≤ 2). The result of synchronization of ({a, x̂1, x̂2},

1
2) with ({x1},

1
2) is ({a, x̂2},

1
4), and that

of synchronization of ({a, x̂1, x̂2},
1
2) with ({x2},

1
2) is ({a, x̂1},

1
4). After applying synchronization to ({a, x̂2},

1
4) and

({x2},
1
2), as well as to ({a, x̂1},

1
4) and ({x1},

1
2), we obtain the same activity ({a}, 1

8).

DR(E) consists of the equivalence classes

s1 = [([ ({x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop]‖

[({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop]‖

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[](( {ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s2 = [([( {x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop]‖

[({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop]‖

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[](( {ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,
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s3 = [([( {x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop]‖

[({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop]‖

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[](( {ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s4 = [([( {x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop]‖

[({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop]‖

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[]( ({ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s5 = [([( {x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop]‖

[({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop]‖

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[](( {ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s6 = [([( {x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop]‖

[({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop]‖

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[]( ({ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s7 = [([( {x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop]‖

[({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop]‖

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[](( {ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s8 = [([( {x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop]‖

[({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop]‖

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[](( {ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈,

s9 = [([( {x1},
1
2) ∗ (({r1},

1
2); ({d1, y1}, 1); ({m1, z1},

1
2)) ∗ Stop]‖

[({x2},
1
2) ∗ (({r2},

1
2); ({d2, y2}, 1); ({m2, z2},

1
2)) ∗ Stop]‖

[({a, x̂1, x̂2},
1
2) ∗ ((({ŷ1}, 1); ({ẑ1},

1
2))[](( {ŷ2}, 1); ({ẑ2},

1
2))) ∗ Stop])

sr (x1, x2, y1, y2, z1, z2)]≈.

We haveDRT(E) = {s1, s2, s5, s7, s8, s9} andDRV(E) = {s3, s4, s6}.
The states are interpreted as follows:s1 is the initial state,s2: the system is activated and the memory is not requested,
s3: the memory is requested by the first processor,s4: the memory is requested by the second processor,s5: the
memory is allocated to the first processor,s6: the memory is requested by two processors,s7: the memory is allocated
to the second processor,s8: the memory is allocated to the first processor and the memoryis requested by the second
processor,s9: the memory is allocated to the second processor and the memory is requested by the first processor.

In Figure 20, the transition systemTS(E) is presented. In Figure 21, the underlying SMCSMC(E) is de-
picted. Note that, in step semantics, we may execute the following activities in parallel: ({r1},

1
2), ({r2},

1
2), as well

as ({r1},
1
2), ({m2},

1
4), and ({r2},

1
2), ({m1},

1
4).

The average sojourn time vector ofE is

SJ=

(
8,

4
3
, 0, 0,

8
5
, 0,

8
5
, 4, 4

)
.

The sojourn time variance vector ofE is
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Figure 20: The transition system of the shared memory system.
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Figure 21: The underlying SMC of the shared memory system.
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Table 5: Transient and steady-state probabilities for the EDTMC of the shared memory system.

k 0 5 10 15 20 25 30 35 40 45 50 ∞

ψ∗1[k] 1 0 0 0 0 0 0 0 0 0 0 0
ψ∗2[k] 0 0 0.0754 0.0859 0.0677 0.0641 0.0680 0.0691 0.0683 0.0680 0.0681 0.0682
ψ∗3[k] 0 0.2444 0.2316 0.1570 0.1554 0.1726 0.1741 0.1702 0.1696 0.1705 0.1707 0.1705
ψ∗5[k] 0 0.2333 0.0982 0.1516 0.1859 0.1758 0.1672 0.1690 0.1711 0.1708 0.1703 0.1705
ψ∗6[k] 0 0.0444 0.0323 0.0179 0.0202 0.0237 0.0234 0.0226 0.0226 0.0228 0.0228 0.0227
ψ∗8[k] 0 0 0.1163 0.1395 0.1147 0.1077 0.1130 0.1150 0.1139 0.1133 0.1136 0.1136

VAR=

(
56,

4
9
, 0, 0,

24
25
, 0,

24
25
, 12, 12

)
.

The TPM forEDTMC(E) is

P∗ =



0 1 0 0 0 0 0 0 0
0 0 1

3
1
3 0 1

3 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1

5 0 1
5 0 0 0 3

5 0
0 0 0 0 0 0 0 1

2
1
2

0 1
5

1
5 0 0 0 0 0 3

5
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0



.

In Table 5, the transient and the steady-state probabilitiesψ∗i [k] (i ∈ {1, 2, 3, 5, 6, 8}) for the EDTMC of the shared
memory system at the time momentsk ∈ {0, 5, 10, . . . , 50} andk = ∞ are presented, and in Figure 22, the alteration
diagram (evolution in time) for the transient probabilities is depicted. It is sufficient to consider the probabilities for
the statess1, s2, s3, s5, s6, s8 only, since the corresponding values coincide fors3, s4, as well as fors5, s7, and fors8, s9.

The steady-state PMF forEDTMC(E) is

ψ∗ =

(
0,

3
44
,
15
88
,
15
88
,
15
88
,

1
44
,
15
88
,

5
44
,

5
44

)
.

The steady-state PMFψ∗ weighted bySJ is
(
0,

1
11
, 0, 0,

3
11
, 0,

3
11
,

5
11
,

5
11

)
.

It remains to normalize the steady-state weighted PMF by dividing it by the sum of its components

ψ∗SJT =
17
11
.

Thus, the steady-state PMF forSMC(E) is

ϕ =

(
0,

1
17
, 0, 0,

3
17
, 0,

3
17
,

5
17
,

5
17

)
.

Otherwise, from TS(E), we can construct the DTMC ofE, DTMC(E), and then calculateϕ using it.
In Figure 23, the DTMCDTMC(E) is depicted.
The TPM forDTMC(E) is
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Figure 22: Transient probabilities alteration diagram forthe EDTMC of the shared memory system.
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Figure 23: The DTMC of the shared memory system
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Table 6: Transient and steady-state probabilities for the DTMC of the shared memory system

k 0 5 10 15 20 25 30 35 40 45 50 ∞

ψ1[k] 1 0.5129 0.2631 0.1349 0.0692 0.0355 0.0182 0.0093 0.0048 0.0025 0.0013 0
ψ2[k] 0 0.1161 0.0829 0.0657 0.0569 0.0524 0.0501 0.0489 0.0483 0.0479 0.0478 0.0476
ψ3[k] 0 0.0472 0.0677 0.0782 0.0836 0.0864 0.0878 0.0885 0.0889 0.0891 0.0892 0.0893
ψ5[k] 0 0.0581 0.0996 0.1207 0.1315 0.1370 0.1399 0.1413 0.1421 0.1425 0.1427 0.1429
ψ6[k] 0 0.0311 0.0220 0.0171 0.0146 0.0133 0.0126 0.0123 0.0121 0.0120 0.0120 0.0119
ψ8[k] 0 0.0647 0.1487 0.1923 0.2146 0.2260 0.2319 0.2349 0.2365 0.2373 0.2377 0.2381
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Figure 24: Transient probabilities alteration diagram forthe DTMC of the shared memory system

P =



7
8

1
8 0 0 0 0 0 0 0

0 1
4

1
4

1
4 0 1

4 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1

8 0 1
8

3
8 0 0 3

8 0
0 0 0 0 0 0 0 1

2
1
2

0 1
8

1
8 0 0 0 3

8 0 3
8

0 0 0 1
4 0 0 0 3

4 0
0 0 1

4 0 0 0 0 0 3
4



.

In Table 6, the transient and the steady-state probabilitiesψi [k] (i ∈ {1, 2, 3, 5, 6, 8}) for the DTMC of the shared
memory system at the time momentsk ∈ {0, 5, 10, . . . , 50} andk = ∞ are presented, and in Figure 24, the alteration
diagram (evolution in time) for the transient probabilities is depicted. It is sufficient to consider the probabilities for
the statess1, s2, s3, s5, s6, s8 only, since the corresponding values coincide fors3, s4, as well as fors5, s7, and fors8, s9.

The steady-state PMF forDTMC(E) is
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ψ =

(
0,

1
21
,

5
56
,

5
56
,
1
7
,

1
84
,
1
7
,

5
21
,

5
21

)
.

Remember thatDRT (E) = {s1, s2, s5, s7, s8, s9} andDRV(E) = {s3, s4, s6}. Hence,

∑

s∈DRT (E)

ψ(s) = ψ(s1) + ψ(s2) + ψ(s5) + ψ(s7) + ψ(s8) + ψ(s9) =
17
21
.

By Proposition 5.2, we have

ϕ(s1) = 0 · 21
17 = 0,

ϕ(s2) = 1
21 ·

21
17 =

1
17,

ϕ(s3) = 0,

ϕ(s4) = 0,

ϕ(s5) = 1
7 ·

21
17 =

3
17,

ϕ(s6) = 0,

ϕ(s7) = 1
7 ·

21
17 =

3
17,

ϕ(s8) = 5
21 ·

21
17 =

5
17,

ϕ(s9) = 5
21 ·

21
17 =

5
17.

Thus, the steady-state PMF forSMC(E) is

ϕ =

(
0,

1
17
, 0, 0,

3
17
, 0,

3
17
,

5
17
,

5
17

)
.

This coincides with the result obtained with the use ofψ∗ andSJ.
Alternatively , fromTS(E), we can construct the reduced DTMC ofE, RDTMC(E), and then calculateϕ using it.
Remember thatDRT(E) = {s1, s2, s5, s7, s8, s9} andDRV(E) = {s3, s4, s6}. We reorder the elements ofDR(E), by

moving the equivalence classes of vanishing states to the first positions:s3, s4, s6, s1, s2, s5, s7, s8, s9.
The reordered TPM forDTMC(E) is

Pr =



0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

2
1
2

0 0 0 7
8

1
8 0 0 0 0

1
4

1
4

1
4 0 1

4 0 0 0 0
0 1

8 0 0 1
8

3
8 0 3

8 0
1
8 0 0 0 1

8 0 3
8 0 3

8
0 1

4 0 0 0 0 0 3
4 0

1
4 0 0 0 0 0 0 0 3

4



.

The result of the decomposingPr are the matrices

C =


0 0 0
0 0 0
0 0 0

 , D =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1

2
1
2

 , E =



0 0 0
1
4

1
4

1
4

0 1
8 0

1
8 0 0
0 1

4 0
1
4 0 0



, F =



7
8

1
8 0 0 0 0

0 1
4 0 0 0 0

0 1
8

3
8 0 3

8 0
0 1

8 0 3
8 0 3

8
0 0 0 0 3

4 0
0 0 0 0 0 3

4



.

SinceC1 = 0, we have∀k > 0, Ck = 0, hence,l = 0 and there are no loops among vanishing states. Then
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Figure 25: The reduced DTMC of the shared memory system

Table 7: Transient and steady-state probabilities for the RDTMC of the shared memory system

k 0 5 10 15 20 25 30 35 40 45 50 ∞

ψ⋄1[k] 1 0.5129 0.2631 0.1349 0.0692 0.0355 0.0182 0.0093 0.0048 0.0025 0.0013 0
ψ⋄2[k] 0 0.1244 0.0931 0.0764 0.0679 0.0635 0.0612 0.0600 0.0594 0.0591 0.0590 0.0588
ψ⋄3[k] 0 0.0863 0.1307 0.1530 0.1644 0.1703 0.1733 0.1748 0.1756 0.1760 0.1763 0.1765
ψ⋄5[k] 0 0.0951 0.1912 0.2413 0.2670 0.2802 0.2870 0.2905 0.2922 0.2932 0.2936 0.2941

G =
l∑

k=0

Ck = C0 = I .

Further, the TPM forRDTMC(E) is

P⋄ = F + EGD = F + EID = F + ED =


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8
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8
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4



.

In Figure 25, the reduced DTMCRDTMC(E) is presented.
In Table 7, the transient and the steady-state probabilities ψ⋄i [k] (i ∈ {1, 2, 3, 5}) for the RDTMC of the shared

memory system at the time momentsk ∈ {0, 5, 10, . . . , 50} andk = ∞ are presented, and in Figure 26, the alteration
diagram (evolution in time) for the transient probabilities is depicted. It is sufficient to consider the probabilities for
the statess1, s2, s5, s8 only, since the corresponding values coincide fors5, s7, as well as fors8, s9.

The steady-state PMF forRDTMC(E) is

ψ⋄ =

(
0,

1
17
,

3
17
,

3
17
,

5
17
,

5
17

)
.

Note thatψ⋄ = (ψ⋄(s1), ψ⋄(s2), ψ⋄(s5), ψ⋄(s7), ψ⋄(s8), ψ⋄(s9)). By Proposition 5.3, we have

ϕ(s1) = 0, ϕ(s2) = 1
17, ϕ(s5) = 3

17, ϕ(s7) = 3
17, ϕ(s8) = 5

17, ϕ(s9) = 5
17.

Thus, the steady-state PMF forSMC(E) is
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Figure 26: Transient probabilities alteration diagram forthe RDTMC of the shared memory system

ϕ =

(
0,

1
17
, 0, 0,

3
17
, 0,

3
17
,

5
17
,

5
17

)
.

This coincides with the result obtained with the use ofψ∗ andSJ.
We can now calculate the main performance indices.

• The average recurrence time in the states2, where no processor requests the memory, called theaverage system
run-through, is 1

ϕ2
= 17.

• The common memory is available only in the statess2, s3, s4, s6. The steady-state probability that the memory
is available isϕ2+ϕ3+ϕ4+ϕ6 =

1
17 +0+0+0 = 1

17. Then the steady-state probability that the memory is used
(i.e. not available), called theshared memory utilization, is 1− 1

17 =
16
17.

• After activation of the system, we leave the states1 for ever, and the common memory is either requested or
allocated in every remaining state, with exception ofs2. Thus, therate with which the necessity of shared
memory emergescoincides with the rate of leavings2, calculated asϕ2

SJ2
= 1

17 ·
3
4 =

3
68.

• The common memory request of the first processor ({r1},
1
2) is only possible from the statess2, s7. In each of

the states, the request probability is the sum of the execution probabilities for all sets of activities containing
({r1},

1
2). Thesteady-state probability of the shared memory request fromthe first processoris

ϕ2
∑
{Υ|({r1},

1
2 )∈Υ} PT(Υ, s2) + ϕ7

∑
{Υ|({r1},

1
2 )∈Υ} PT(Υ, s7) = 1

17

(
1
4 +

1
4

)
+ 3

17

(
3
8 +

1
8

)
= 2

17.

In Figure 27, the marked dtsi-boxes corresponding to the dynamic expressions of two processors, shared memory
and the shared memory system are presented, i.e.Ni = Boxdtsi(Ei) (1 ≤ i ≤ 3) andN = Boxdtsi(E).

9.2. The abstract system and its reduction

Let us consider a modification of the shared memory system with abstraction from identifiers of the processors,
i.e. such that they are indistinguishable. For example, we can just see that a processor requires memory or the
memory is allocated to it but cannot observe which processoris it. We call this system the abstract shared memory
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Figure 27: The marked dtsi-boxes of two processors, shared memory and the shared memory system.

one. To implement the abstraction, we replace the actionsr i , di,mi (1 ≤ i ≤ 2) in the system specification byr, d,m,
respectively.

The static expression of the first processor is

F1 = [({x1},
1
2

) ∗ (({r},
1
2

); ({d, y1}, 1); ({m, z1},
1
2

)) ∗ Stop].

The static expression of the second processor is

F2 = [({x2},
1
2

) ∗ (({r},
1
2

); ({d, y2}, 1); ({m, z2},
1
2

)) ∗ Stop].

The static expression of the shared memory is

F3 = [({a, x̂1, x̂2},
1
2

) ∗ ((({ŷ1}, 1); ({ẑ1},
1
2

))[](( {ŷ2}, 1); ({ẑ2},
1
2

))) ∗ Stop].

The static expression of the abstract shared memory system with two processors is

F = (F1‖F2‖F3) sr (x1, x2, y1, y2, z1, z2).

DR(F) resemblesDR(E), andTS(F) is similar toTS(E). We haveSMC(F) ≃ SMC(E). Thus, the average sojourn
time vectors ofF andE, as well as the TPMs and the steady-state PMFs forEDTMC(F) andEDTMC(E), coincide.

The first, second and third performance indices are the same for the standard and the abstract systems. Let us
consider the following performance index which is specific to the abstract system.

• The common memory request of a processor ({r}, 1
2) is only possible from the statess2, s5, s7. In each of the

states, the request probability is the sum of the execution probabilities for all sets of activities containing ({r}, 1
2).

The steady-state probability of the shared memory request froma processoris ϕ2
∑
{Υ|({r}, 1

2 )∈Υ} PT(Υ, s2) +

ϕ5
∑
{Υ|({r}, 1

2 )∈Υ} PT(Υ, s5) + ϕ7
∑
{Υ|({r}, 1

2 )∈Υ} PT(Υ, s7) = 1
17

(
1
4 +

1
4 +

1
4

)
+ 3

17

(
3
8 +

1
8

)
+ 3

17

(
3
8 +

1
8

)
= 15

68.
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Figure 28: The quotient transition system of the abstract shared memory system.

The marked dtsi-boxes corresponding to the dynamic expressions of the standard and the abstract two processors
and shared memory are similar, as well as the marked dtsi-boxes corresponding to the dynamic expression of the
standard and the abstract shared memory systems.

We haveDR(F)/Rss(F) = {K1,K2,K3,K4,K5,K6}, whereK1 = {s1} (the initial state),K2 = {s2} (the system is
activated and the memory is not requested),K3 = {s3, s4} (the memory is requested by one processor),K4 = {s5, s7}

(the memory is allocated to a processor),K5 = {s6} (the memory is requested by two processors),K6 = {s8, s9} (the
memory is allocated to a processor and the memory is requested by another processor).

We also haveDRT(F)/Rss(F) = {K1,K2,K4,K6} andDRV(F)/Rss(F) = {K3,K5}.

In Figure 28, the quotient transition systemTS↔ss
(F) is presented. In Figure 29, the quotient underlying SMC

SMC↔ss
(F) is depicted. Note that, in step semantics, we may execute the following multiactions in parallel:{r}, {r},

as well as{r}, {m}.
The quotient average sojourn time vector ofF is

SJ′ =

(
8,

4
3
, 0,

8
5
, 0, 4

)
.

The quotient sojourn time variance vector ofF is

VAR′ =

(
56,

4
9
, 0,

24
25
, 0, 12

)
.

The TPM forEDTMC↔ss
(F) is
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Figure 29: The quotient underlying SMC of the abstract shared memory system.

P′∗ =



0 1 0 0 0 0
0 0 2

3 0 1
3 0

0 0 0 1 0 0
0 1

5
1
5 0 0 3

5
0 0 0 0 0 1
0 0 1 0 0 0



.

In Table 8, the transient and the steady-state probabilities ψ′i
∗[k] (1 ≤ i ≤ 6) for the quotient EDTMC of the

abstract shared memory system at the time momentsk ∈ {0, 5, 10, . . . , 50} andk = ∞ are presented, and in Figure 30,
the alteration diagram (evolution in time) for the transient probabilities is depicted.

The steady-state PMF forEDTMC↔ss
(F) is

Table 8: Transient and steady-state probabilities for the quotient EDTMC of the abstract shared memory system.

k 0 5 10 15 20 25 30 35 40 45 50 ∞

ψ′1
∗[k] 1 0 0 0 0 0 0 0 0 0 0 0

ψ′2
∗[k] 0 0 0.0754 0.0859 0.0677 0.0641 0.0680 0.0691 0.0683 0.0680 0.0681 0.0682

ψ′3
∗[k] 0 0.4889 0.4633 0.3140 0.3108 0.3452 0.3482 0.3404 0.3392 0.3409 0.3413 0.3409

ψ′4
∗[k] 0 0.4667 0.1964 0.3031 0.3719 0.3517 0.3344 0.3380 0.3422 0.3417 0.3407 0.3409

ψ′5
∗[k] 0 0.0444 0.0323 0.0179 0.0202 0.0237 0.0234 0.0226 0.0226 0.0228 0.0228 0.0227

ψ′6
∗[k] 0 0 0.2325 0.2791 0.2294 0.2154 0.2260 0.2299 0.2277 0.2267 0.2271 0.2273

61



æ

ææææææææææææææææææææææææææææææææææææææææææææææææææà

à

àà

à

à

àà

à

à
à
à

à
àà
à
àà
à
àààààààààààààààààààààààààààààààà

ìì

ì

ì

ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ìì

ì

ì
ì
ì

ì
ìì
ì
ìì
ì
ìììììììììììììììììììììììì

òòò

ò

ò

ò
ò

ò

ò

ò

ò

ò

ò

ò

ò

òò

ò

ò
ò
ò

ò
òò
ò
òò
ò
òòòòòòòòòòòòòòòòòòòòòòò

ôô

ô

ôô

ô

ô
ôô
ô
ôôô

ôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôô
ççç

ç

ç

ç

ç
ç

ç

ç

ç

ç

ç

çç

ç

ç
ç

ç

ç
çç
ç
çç
ç
ççççççççççççççççççççççççç

10 20 30 40 50
k

0.2

0.4

0.6

0.8

1.0

ç Ψ6
¢*@kD

ô Ψ5
¢*@kD

ò Ψ4
¢*@kD

ì Ψ3
¢*@kD

à Ψ2
¢*@kD

æ Ψ1
¢*@kD

Figure 30: Transient probabilities alteration diagram forthe quotient EDTMC of the abstract shared memory system.

ψ′
∗
=

(
0,

3
44
,
15
44
,
15
44
,

1
44
,

5
22

)
.

The steady-state PMFψ′∗ weighted bySJ′ is
(
0,

1
11
, 0,

6
11
, 0,

10
11

)
.

It remains to normalize the steady-state weighted PMF by dividing it by the sum of its components

ψ′
∗SJ′T =

17
11
.

Thus, the steady-state PMF forSMC↔ss
(F) is

ϕ′ =

(
0,

1
17
, 0,

6
17
, 0,

10
17

)
.

Otherwise, fromTS↔ss
(F), we can construct the quotient DTMC ofF, DTMC↔ss

(F), and then calculateϕ′ using
it.

In Figure 31, the quotient DTMCDTMC↔ss
(F) is depicted.

The TPM forDTMC↔ss
(F) is

P′ =



7
8

1
8 0 0 0 0

0 1
4

1
2 0 1

4 0
0 0 0 1 0 0
0 1

8
1
8

3
8 0 3

8
0 0 0 0 0 1
0 0 1

4 0 0 3
4



.
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Figure 31: The quotient DTMC of the abstract shared memory system

In Table 9, the transient and the steady-state probabilitiesψ′i [k] (1 ≤ i ≤ 6) for the quotient DTMC of the abstract
shared memory system at the time momentsk ∈ {0, 5, 10, . . . , 50} andk = ∞ are presented, and in Figure 32, the
alteration diagram (evolution in time) for the transient probabilities is depicted.

The steady-state PMF forDTMC↔ss
(F) is

ψ′ =

(
0,

1
21
,

5
28
,
2
7
,

1
84
,
10
21

)
.

Remember thatDRT (F)/Rss(F) = {K1,K2,K4,K6} andDRV(F)/Rss(F) = {K3,K5}. Hence,

∑

K∈DRT (F)/Rss(F)

ψ′(K) = ψ′(K1) + ψ′(K2) + ψ
′(K4) + ψ′(K6) =

17
21
.

By the “quotient” analogue of Proposition 5.2, we have

Table 9: Transient and steady-state probabilities for the quotient DTMC of the abstract shared memory system

k 0 5 10 15 20 25 30 35 40 45 50 ∞

ψ′1[k] 1 0.5129 0.2631 0.1349 0.0692 0.0355 0.0182 0.0093 0.0048 0.0025 0.0013 0
ψ′2[k] 0 0.1161 0.0829 0.0657 0.0569 0.0524 0.0501 0.0489 0.0483 0.0479 0.0478 0.0476
ψ′3[k] 0 0.0944 0.1353 0.1564 0.1672 0.1727 0.1756 0.1770 0.1778 0.1782 0.1784 0.1786
ψ′4[k] 0 0.1162 0.1992 0.2414 0.2630 0.2740 0.2797 0.2826 0.2841 0.2849 0.2853 0.2857
ψ′5[k] 0 0.0311 0.0220 0.0171 0.0146 0.0133 0.0126 0.0123 0.0121 0.0120 0.0120 0.0119
ψ′6[k] 0 0.1294 0.2974 0.3845 0.4292 0.4521 0.4638 0.4698 0.4729 0.4745 0.4753 0.4762
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Figure 32: Transient probabilities alteration diagram forthe quotient DTMC of the abstract shared memory system

ϕ′(K1) = 0 · 21
17 = 0,

ϕ′(K2) = 1
21 ·

21
17 =

1
17,

ϕ′(K3) = 0,

ϕ′(K4) = 2
7 ·

21
17 =

6
17,

ϕ′(K5) = 0,

ϕ′(K6) = 10
21 ·

21
17 =

10
17.

Thus, the steady-state PMF forSMC↔ss
(F) is

ϕ′ =

(
0,

1
17
, 0,

6
17
, 0,

10
17

)
.

This coincides with the result obtained with the use ofψ′∗ andSJ′.
Alternatively , from TS↔ss

(F), we can construct the reduced quotient DTMC ofF, RDTMC↔ss
(F), and then

calculateϕ′ using it.
Remember thatDRT(F)/Rss(F) = {K1,K2,K4,K6} andDRV(F)/Rss(F) = {K3,K5}. We reorder the elements of

DR(F)/Rss(F), by moving the equivalence classes of vanishing states to the first positions:K3,K5,K1,K2,K4,K6.

The reordered TPM forDTMC↔ss
(F) is

P′r =



0 0 0 0 1 0
0 0 0 0 0 1
0 0 7

8
1
8 0 0

1
2

1
4 0 1

4 0 0
1
8 0 0 1

8
3
8

3
8

1
4 0 0 0 0 3

4



.

The result of the decomposingP′r are the matrices
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Figure 33: The reduced quotient DTMC of the abstract shared memory system.

Table 10: Transient and steady-state probabilities for thereduced quotient DTMC of the abstract shared memory system.

k 0 5 10 15 20 25 30 35 40 45 50 ∞

ψ′1
⋄[k] 1 0.5129 0.2631 0.1349 0.0692 0.0355 0.0182 0.0093 0.0048 0.0025 0.0013 0

ψ′2
⋄[k] 0 0.1244 0.0931 0.0764 0.0679 0.0635 0.0612 0.0600 0.0594 0.0591 0.0590 0.0588

ψ′3
⋄[k] 0 0.1726 0.2614 0.3060 0.3289 0.3406 0.3466 0.3497 0.3513 0.3521 0.3525 0.3529

ψ′4
⋄[k] 0 0.1901 0.3824 0.4826 0.5341 0.5605 0.5740 0.5810 0.5845 0.5863 0.5872 0.5882

C′ =
(

0 0
0 0

)
, D′ =

(
0 0 1 0
0 0 0 1

)
, E′ =



0 0
1
2

1
4

1
8 0
1
4 0


, F′ =



7
8

1
8 0 0

0 1
4 0 0

0 1
8

3
8

3
8

0 0 0 3
4


.

SinceC′1 = 0, we have∀k > 0, C′k = 0, hence,l = 0 and there are no loops among vanishing states. Then

G′ =
l∑

k=0

C′l = C′0 = I .

Further, the TPM forRDTMC↔ss
(F) is

P′⋄ = F′ + E′G′D′ = F′ + E′ID ′ = F′ + E′D′ =



7
8

1
8 0 0

0 1
4

1
2

1
4

0 1
8

1
2

3
8

0 0 1
4

3
4


.

In Figure 33, the reduced quotient DTMCRDTMC↔ss
(F) is presented.

In Table 10, the transient and the steady-state probabilitiesψ′i
⋄[k] (1 ≤ i ≤ 4) for the reduced quotient DTMC of

the abstract shared memory system at the time momentsk ∈ {0, 5, 10, . . . , 50} andk = ∞ are presented, and in Figure
34, the alteration diagram (evolution in time) for the transient probabilities is depicted.
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Figure 34: Transient probabilities alteration diagram forthe reduced quotient DTMC of the abstract shared memory system.

Then the steady-state PMF forRDTMC↔ss
(F) is

ψ′⋄ =

(
0,

1
17
,

6
17
,
10
17

)
.

Note thatψ′⋄ = (ψ′⋄(K1), ψ′⋄(K2), ψ′⋄(K4), ψ′⋄(K6)). By the “quotient” analogue of Proposition 5.3, we have

ϕ′(K1) = 0, ϕ′(K2) = 1
17, ϕ′(K3) = 0, ϕ′(K4) = 6

17, ϕ′(K5) = 0, ϕ′(K6) = 10
17.

Thus, the steady-state PMF forSMC↔ss
(F) is

ϕ′ =

(
0,

1
17
, 0,

6
17
, 0,

10
17

)
.

This coincides with the result obtained with the use ofψ′∗ andSJ′.
We can now calculate the main performance indices.

• The average recurrence time in the stateK2, where no processor requests the memory, called theaverage system
run-through, is 1

ϕ′2
= 17

1 = 17.

• The common memory is available only in the statesK2,K3,K5. The steady-state probability that the memory
is available isϕ′2 + ϕ

′
3 + ϕ

′
5 =

1
17 + 0+ 0 = 1

17. Then the steady-state probability that the memory is used (i.e.
not available), called theshared memory utilization, is 1− 1

17 =
16
17.

• After activation of the system, we leave the stateK1 for ever, and the common memory is either requested or
allocated in every remaining state, with exception ofK2. Thus, therate with which the necessity of shared

memory emergescoincides with the rate of leavingK2, calculated as
ϕ′2
SJ′2
= 1

17 ·
3
4 =

3
68.

• The common memory request of a processor{r} is only possible from the statesK2,K4. In each of the states, the
request probability is the sum of the execution probabilities for all multisets of multiactions containing{r}. The
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steady-state probability of the shared memory request froma processoris ϕ′2
∑
{A,K̃ |{r}∈A, K2

A
→K̃}

PMA(K2, K̃) +

ϕ′4
∑
{A,K̃|{r}∈A, K4

A
→K̃}

PMA(K4, K̃) = 1
17

(
1
2 +

1
4

)
+ 6

17

(
3
8 +

1
8

)
= 15

68.

One can see that the performance indices are the same for the complete and the quotient abstract shared memory
systems. The coincidence of the first, second and third performance indices obviously illustrates the results of Propo-
sition 8.1 and Proposition 8.2. The coincidence of the fourth performance index is due to Theorem 8.1: one should
just apply its result to the derived step traces{{r}}, {{r}, {r}}, {{r}, {m}} of the expressionF and itself, and then sum the
left and right parts of the three resulting equalities.

9.3. The generalized system

Now we obtain the performance indices taking general valuesfor all multiaction probabilities and weights. Let
us suppose that all the mentioned stochastic multiactions have the same generalized probabilityρ ∈ (0; 1), and all the
immediate ones have the same generalized weightl ∈ IN≥1. The resulting specificationK of the generalized shared
memory system is defined as follows.

The static expression of the first processor is

K1 = [({x1}, ρ) ∗ (({r1}, ρ); ({d1, y1}, l); ({m1, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

K2 = [({x2}, ρ) ∗ (({r2}, ρ); ({d2, y2}, l); ({m2, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

K3 = [({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, l); ({ẑ1}, ρ))[](( {ŷ2}, l); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the generalized shared memory system with two processors is

K = (K1‖K2‖K3) sr (x1, x2, y1, y2, z1, z2).

We haveDRT(K) = {s̃1, s̃2, s̃5, s̃5, s̃8, s̃9} andDRV(K) = {s̃3, s̃4, s̃6}.
The states are interpreted as follows: ˜s1 is the initial state, ˜s2: the system is activated and the memory is not requested,
s̃3: the memory is requested by the first processor, ˜s4: the memory is requested by the second processor, ˜s5: the
memory is allocated to the first processor, ˜s6: the memory is requested by two processors, ˜s7: the memory is allocated
to the second processor, ˜s8: the memory is allocated to the first processor and the memoryis requested by the second
processor, ˜s9: the memory is allocated to the second processor and the memory is requested by the first processor.

In Figure 35, the transition systemTS(K) is presented. In Figure 36, the underlying SMCSMC(K) is de-
picted. Note that, in step semantics, we may execute the following activities in parallel: ({r1}, ρ), ({r2}, ρ), as well
as ({r1}, ρ), ({m2}, ρ

2), and ({r2}, ρ), ({m1}, ρ
2).

The average sojourn time vector ofK is

S̃J=

(
1
ρ3
,

1
ρ(2− ρ)

, 0, 0,
1

ρ(1+ ρ − ρ2)
, 0,

1
ρ(1+ ρ − ρ2)

,
1
ρ2
,

1
ρ2

)
.

The sojourn time variance vector ofK is

ṼAR=

(
1− ρ3

ρ6
,

(1− ρ)2

ρ2(2− ρ)2
, 0, 0,

(1− ρ)2(1+ ρ)
ρ2(1+ ρ − ρ2)2

, 0,
(1− ρ)2(1+ ρ)
ρ2(1+ ρ − ρ2)2

,
1− ρ2

ρ4
,
1− ρ2

ρ4

)
.

The TPM forEDTMC(K) is
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✛
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✚
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✚
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Figure 35: The transition system of the generalized shared memory system.
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Figure 36: The underlying SMC of the generalized shared memory system.
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P̃∗ =



0 1 0 0 0 0 0 0 0
0 0 1−ρ

2−ρ
1−ρ
2−ρ 0 ρ

2−ρ 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0

0 ρ(1−ρ)
1+ρ−ρ2 0 ρ2

1+ρ−ρ2 0 0 0 1−ρ2

1+ρ−ρ2 0
0 0 0 0 0 0 0 1

2
1
2

0 ρ(1−ρ)
1+ρ−ρ2

ρ2

1+ρ−ρ2 0 0 0 0 0 1−ρ2

1+ρ−ρ2

0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0



.

The steady-state PMF forEDTMC(K) is

ψ̃∗ = 1
2(6+3ρ−9ρ2+2ρ3) (0, 2ρ(2− 3ρ − ρ2), 2+ ρ − 3ρ2 + ρ3, 2+ ρ − 3ρ2 + ρ3, 2+ ρ − 3ρ2 + ρ3, 2ρ2(1− ρ),

2+ ρ − 3ρ2 + ρ3, 2− ρ − ρ2, 2− ρ − ρ2).

The steady-state PMF̃ψ∗ weighted byS̃J is

1
2ρ2(6+ 3ρ − 9ρ2 + 2ρ3)

(0, 2ρ2(1− ρ), 0, 0, ρ(2− ρ), 0, ρ(2− ρ), 2− ρ − ρ2, 2− ρ − ρ2).

It remains to normalize the steady-state weighted PMF by dividing it by the sum of its components

ψ̃∗S̃J
T
=

2+ ρ − ρ2 − ρ3

ρ2(6+ 3ρ − 9ρ2 + 2ρ3)
.

Thus, the steady-state PMF forSMC(K) is

ϕ̃ =
1

2(2+ ρ − ρ2 − ρ3)
(0, 2ρ2(1− ρ), 0, 0, ρ(2− ρ), 0, ρ(2− ρ), 2− ρ − ρ2, 2− ρ − ρ2).

Otherwise, from TS(K), we can construct the DTMC ofK, DTMC(K), and then calculate ˜ϕ using it.
In Figure 37, the DTMCDTMC(K) is depicted.
The TPM forDTMC(K) is

P̃ =



1− ρ3 ρ3 0 0 0 0 0 0 0
0 (1− ρ)2 ρ(1− ρ) ρ(1− ρ) 0 ρ2 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 ρ2(1− ρ) 0 ρ3 (1− ρ)(1− ρ2) 0 0 ρ(1− ρ2) 0
0 0 0 0 0 0 0 1

2
1
2

0 ρ2(1− ρ) ρ3 0 0 0 (1− ρ)(1− ρ2) 0 ρ(1− ρ2)
0 0 0 ρ2 0 0 0 1− ρ2 0
0 0 ρ2 0 0 0 0 0 1− ρ2



.

The steady-state PMF forDTMC(K) is

ψ̃ = 1
2(2+ρ+ρ2−2ρ4) (0, 2ρ

2(1− ρ), ρ2(2+ ρ − 3ρ2 + ρ3), ρ2(2+ ρ − 3ρ2 + ρ3), ρ(2− ρ), 2ρ4(1− ρ), ρ(2− ρ),
2− ρ − ρ2, 2− ρ − ρ2).

Remember thatDRT (K) = {s̃1, s̃2, s̃5, s̃5, s̃8, s̃9} andDRV(K) = {s̃3, s̃4, s̃6}. Hence,
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Figure 37: The DTMC of the generalized shared memory system

∑

s̃∈DRT (K)

ψ̃(s̃) = ψ̃(s̃1) + ψ̃(s̃2) + ψ̃(s̃5) + ψ̃(s̃7) + ψ̃(s̃8) + ψ̃(s̃9) =
2+ ρ − ρ2 − ρ3

2+ ρ + ρ2 − 2ρ4
.

By Proposition 5.2, we have

ϕ̃(s̃1) = 0 · 2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 = 0,

ϕ̃(s̃2) = ρ2(1−ρ)
2+ρ+ρ2−2ρ4 ·

2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 =
ρ2(1−ρ)

2+ρ−ρ2−ρ3 ,

ϕ̃(s̃3) = 0,

ϕ̃(s̃4) = 0,

ϕ̃(s̃5) = ρ(2−ρ)
2(2+ρ+ρ2−2ρ4) ·

2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 =
ρ(2−ρ)

2(2+ρ−ρ2−ρ3) ,

ϕ̃(s̃6) = 0,

ϕ̃(s̃7) = ρ(2−ρ)
2(2+ρ+ρ2−2ρ4) ·

2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 =
ρ(2−ρ)

2(2+ρ−ρ2−ρ3) ,

ϕ̃(s̃8) = 2−ρ−ρ2

2(2+ρ+ρ2−2ρ4) ·
2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 =
2−ρ−ρ2

2(2+ρ−ρ2−ρ3) ,

ϕ̃(s̃9) = 2−ρ−ρ2

2(2+ρ+ρ2−2ρ4) ·
2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 =
2−ρ−ρ2

2(2+ρ−ρ2−ρ3) .

Thus, the steady-state PMF forSMC(K) is

ϕ̃ =
1

2(2+ ρ − ρ2 − ρ3)
(0, 2ρ2(1− ρ), 0, 0, ρ(2− ρ), 0, ρ(2− ρ), 2− ρ − ρ2, 2− ρ − ρ2).

This coincides with the result obtained with the use ofψ̃∗ andS̃J.
Alternatively , from TS(K), we can construct the reduced DTMC ofK, RDTMC(K), and then calculate ˜ϕ using

it.
Remember thatDRT(K) = {s̃1, s̃2, s̃5, s̃7, s̃8, s̃9} andDRV(K) = {s̃3, s̃4, s̃6}. We reorder the elements ofDR(K), by

moving the equivalence classes of vanishing states to the first positions: ˜s3, s̃4, s̃6, s̃1, s̃2, s̃5, s̃7, s̃8, s̃9.
The reordered TPM forDTMC(K) is
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P̃r =



0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

2
1
2

0 0 0 1− ρ3 ρ3 0 0 0 0
ρ(1− ρ) ρ(1− ρ) ρ2 0 (1− ρ)2 0 0 0 0

0 ρ3 0 0 ρ2(1− ρ) (1− ρ)(1− ρ2) 0 ρ(1− ρ2) 0
ρ3 0 0 0 ρ2(1− ρ) 0 (1− ρ)(1− ρ2) 0 ρ(1− ρ2)
0 ρ2 0 0 0 0 0 1− ρ2 0
ρ2 0 0 0 0 0 0 0 1− ρ2



.

The result of the decomposing̃Pr are the matrices

C̃ =


0 0 0
0 0 0
0 0 0

 , D̃ =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1

2
1
2

 , Ẽ =



0 0 0
ρ(1− ρ) ρ(1− ρ) ρ2

0 ρ3 0
ρ3 0 0
0 ρ2 0
ρ2 0 0



,

F̃ =



1− ρ3 ρ3 0 0 0 0
0 (1− ρ)2 0 0 0 0
0 ρ2(1− ρ) (1− ρ)(1− ρ2) 0 ρ(1− ρ2) 0
0 ρ2(1− ρ) 0 (1− ρ)(1− ρ2) 0 ρ(1− ρ2)
0 0 0 0 1− ρ2 0
0 0 0 0 0 1− ρ2



.

SinceC̃1 = 0, we have∀k > 0, C̃k = 0, hence,l = 0 and there are no loops among vanishing states. Then

G̃ =
l∑

k=0

C̃k = C̃0 = I .

Further, the TPM forRDTMC(K) is

P̃⋄ = F̃ + ẼG̃D̃ = F̃ + ẼI D̃ = F̃ + ẼD̃ =


1− ρ3 ρ3 0 0 0 0

0 (1− ρ)2 ρ(1− ρ) ρ(1− ρ) ρ2

2
ρ2

2
0 ρ2(1− ρ) (1− ρ)(1− ρ2) ρ3 ρ(1− ρ2) 0
0 ρ2(1− ρ) ρ3 (1− ρ)(1− ρ2) 0 ρ(1− ρ2)
0 0 0 ρ2 1− ρ2 0
0 0 ρ2 0 0 1− ρ2



.

In Figure 38, the reduced DTMCRDTMC(K) is presented.
Then the steady-state PMF forRDTMC(K) is

ψ̃⋄ =
1

2(2+ ρ − ρ2 − ρ3)
(0, 2ρ2(1− ρ), ρ(2− ρ), ρ(2− ρ), 2− ρ − ρ2, 2− ρ − ρ2).

Note thatψ̃⋄ = (ψ̃⋄(s̃1), ψ̃⋄(s̃2), ψ̃⋄(s̃5), ψ̃⋄(s̃7), ψ̃⋄(s̃8), ψ̃⋄(s̃9)). By Proposition 5.3, we have

ϕ̃(s̃1) = 0, ϕ̃(s̃2) = ρ2(1−ρ)

2+ρ−ρ2−ρ3 , ϕ̃(s̃5) = ρ(2−ρ)

2(2+ρ−ρ2−ρ3)
, ϕ̃(s̃7) = ρ(2−ρ)

2(2+ρ−ρ2−ρ3)
, ϕ̃(s̃8) = 2−ρ−ρ2

2(2+ρ−ρ2−ρ3)
, ϕ̃(s̃9) = 2−ρ−ρ2

2(2+ρ−ρ2−ρ3)
.

Thus, the steady-state PMF forSMC(K) is
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Figure 38: The reduced DTMC of the generalized shared memorysystem

ϕ̃ =
1

2(2+ ρ − ρ2 − ρ3)
(0, 2ρ2(1− ρ), 0, 0, ρ(2− ρ), 0, ρ(2− ρ), 2− ρ − ρ2, 2− ρ − ρ2).

This coincides with the result obtained with the use ofψ̃∗ andS̃J.
We can now calculate the main performance indices.

• The average recurrence time in the state ˜s2, where no processor requests the memory, called theaverage system

run-through, is 1
ϕ̃2
=

2+ρ−ρ2−ρ3

ρ2(1−ρ) .

• The common memory is available only in the states ˜s2, s̃3, s̃4, s̃6. The steady-state probability that the memory
is available is ˜ϕ2 + ϕ̃3 + ϕ̃4 + ϕ̃6 =

ρ2(1−ρ)
2+ρ−ρ2−ρ3 + 0+ 0+ 0 = ρ2(1−ρ)

2+ρ−ρ2−ρ3 . Then the steady-state probability that the

memory is used (i.e. not available), called theshared memory utilization, is 1− ρ2(1−ρ)
2+ρ−ρ2−ρ3 =

2+ρ−2ρ2

2+ρ−ρ2−ρ3 .

• After activation of the system, we leave the state ˜s1 for ever, and the common memory is either requested or
allocated in every remaining state, with exception of ˜s2. Thus, therate with which the necessity of shared

memory emergescoincides with the rate of leaving ˜s2, calculated asϕ̃2

S̃J2
=

ρ2(1−ρ)
2+ρ−ρ2−ρ3 ·

ρ(2−ρ)
1 =

ρ3(1−ρ)(2−ρ)
2+ρ−ρ2−ρ3 .

• The common memory request of the first processor ({r1}, ρ) is only possible from the states ˜s2, s̃7. In each of the
states, the request probability is the sum of the execution probabilities for all sets of activities containing ({r1}, ρ).
Thesteady-state probability of the shared memory request fromthe first processoris ϕ̃2

∑
{Υ|({r1},

1
2 )∈Υ} PT(Υ, s̃2)+

ϕ̃7
∑
{Υ|({r1},

1
2 )∈Υ} PT(Υ, s̃7) =

ρ2(1−ρ)
2+ρ−ρ2−ρ3 (ρ(1− ρ) + ρ(1− ρ)) + ρ(2−ρ)

2(2+ρ−ρ2−ρ3) (ρ(1− ρ2) + ρ3) = ρ2(2+3ρ−8ρ2+4ρ3)
2(2+ρ−ρ2−ρ3) .

9.4. The abstract generalized system and its reduction

Let us consider a modification of the generalized shared memory system with abstraction from identifiers of the
processors. We call this system the abstract generalized shared memory one.

The static expression of the first processor is

L1 = [({x1}, ρ) ∗ (({r}, ρ); ({d, y1}, l); ({m, z1}, ρ)) ∗ Stop].

The static expression of the second processor is

L2 = [({x2}, ρ) ∗ (({r}, ρ); ({d, y2}, l); ({m, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is

L3 = [({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, l); ({ẑ1}, ρ))[](( {ŷ2}, l); ({ẑ2}, ρ))) ∗ Stop].
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Figure 39: The quotient transition system of the abstract generalized shared memory system.

The static expression of the abstract generalized shared memory system with two processors is

L = (L1‖L2‖L3) sr (x1, x2, y1, y2, z1, z2).

DR(L) resemblesDR(K), andTS(L) is similar toTS(K). We haveSMC(L) ≃ SMC(K). Thus, the average sojourn
time vectors ofL andK, as well as the TPMs and the steady-state PMFs forEDTMC(L) andEDTMC(K), coincide.

The first, second and third performance indices are the same for the generalized system and its abstract modifica-
tion. Let us consider the following performance index whichis again specific to the abstract system.

• The common memory request of a processor ({r}, ρ) is only possible from the states ˜s2, s̃5, s̃7. In each of the
states, the request probability is the sum of the execution probabilities for all sets of activities containing ({r}, ρ).
The steady-state probability of the shared memory request froma processoris ϕ̃2

∑
{Υ|({r},ρ)∈Υ} PT(Υ, s̃2) +

ϕ̃5
∑
{Υ|({r},ρ)∈Υ} PT(Υ, s̃5) + ϕ̃7

∑
{Υ|({r},ρ)∈Υ} PT(Υ, s̃7) =

ρ2(1−ρ)
2+ρ−ρ2−ρ3 (ρ(1− ρ) + ρ(1− ρ) + ρ2) +

ρ(2−ρ)
2(2+ρ−ρ2−ρ3) (ρ(1− ρ2) + ρ3) + ρ(2−ρ)

2(2+ρ−ρ2−ρ3) (ρ(1− ρ2) + ρ3) = ρ2(2−ρ)(1+ρ−ρ2)
2+ρ−ρ2−ρ3 .

We haveDR(L)/Rss(L) = {K̃1, K̃2, K̃3, K̃4, K̃5, K̃6}, whereK̃1 = {s̃1} (the initial state),K̃2 = {s̃2} (the system is

activated and the memory is not requested),K̃3 = {s̃3, s̃4} (the memory is requested by one processor),K̃4 = {s̃5, s̃7}

(the memory is allocated to a processor),K̃5 = {s̃6} (the memory is requested by two processors),K̃6 = {s̃8, s̃9} (the
memory is allocated to a processor and the memory is requested by another processor).

We also haveDRT(L)/Rss(L) = {K̃1, K̃2, K̃4, K̃6} andDRV(L)/Rss(L) = {K̃3, K̃5}.

In Figure 39, the quotient transition systemTS↔ss
(L) is presented. In Figure 40, the quotient underlying SMC

SMC↔ss
(L) is depicted. Note that, in step semantics, we may execute the following multiactions in parallel:{r}, {r},

as well as{r}, {m}.
The quotient average sojourn time vector ofF is
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Figure 40: The quotient underlying SMC of the abstract generalized shared memory system.

S̃J
′
=

(
1
ρ3
,

1
ρ(2− ρ)

, 0,
1

ρ(1+ ρ − ρ2)
, 0,

1
ρ2

)
.

The quotient sojourn time variance vector ofF is

ṼAR
′
=

(
1− ρ3

ρ6
,

(1− ρ)2

ρ2(2− ρ)2
, 0,

(1− ρ)2(1+ ρ)
ρ2(1+ ρ − ρ2)2

, 0,
1− ρ2

ρ4

)
.

The TPM forEDTMC↔ss
(L) is

P̃′∗ =



0 1 0 0 0 0
0 0 2(1−ρ)

2−ρ 0 ρ

2−ρ 0
0 0 0 1 0 0

0 ρ(1−ρ)
1+ρ−ρ2

ρ2

1+ρ−ρ2 0 0 1−ρ2

1+ρ−ρ2

0 0 0 0 0 1
0 0 1 0 0 0



.

The steady-state PMF forEDTMC↔ss
(L) is

ψ̃′∗ =
1

6+ 3ρ − 9ρ2 + 2ρ3
(0, ρ(2− 3ρ + ρ2), 2+ ρ − 3ρ2 + ρ3, 2+ ρ − 3ρ2 + ρ3, ρ2(1− ρ), 2− ρ − ρ2).

The steady-state PMF̃ψ′∗ weighted byS̃J
′
is

1
ρ2(6+ 3ρ − 9ρ2 + 2ρ3)

(0, ρ2(1− ρ), 0, ρ(2− ρ), 0, 2− ρ − ρ2).
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Figure 41: The quotient DTMC of the abstract generalized shared memory system

It remains to normalize the steady-state weighted PMF by dividing it by the sum of its components

ψ̃′∗S̃J
′T
=

2+ ρ − ρ2 − ρ3

ρ2(6+ 3ρ − 9ρ2 + 2ρ3)
.

Thus, the steady-state PMF forSMC↔ss
(L) is

ϕ̃′ =
1

2+ ρ − ρ2 − ρ3
(0, ρ2(1− ρ), 0, ρ(2− ρ), 0, 2− ρ − ρ2).

Otherwise, from TS↔ss
(L), we can construct the quotient DTMC ofL, DTMC↔ss

(L), and then calculate ˜ϕ′ using it.

In Figure 41, the quotient DTMCDTMC↔ss
(L) is depicted.

The TPM forDTMC↔ss
(L) is

P̃′ =



1− ρ3 ρ3 0 0 0 0
0 (1− ρ)2 2ρ(1− ρ) 0 ρ2 0
0 0 0 1 0 0
0 ρ2(1− ρ) ρ3 (1− ρ)(1− ρ2) 0 ρ(1− ρ2)
0 0 0 0 0 1
0 0 ρ2 0 0 1− ρ2



.

The steady-state PMF forDTMC↔ss
(L) is

ψ̃′ =
1

2+ ρ + ρ2 − 2ρ4
(0, ρ2(1− ρ), ρ2(2+ ρ − 3ρ2 + ρ3), ρ(2− ρ), ρ4(1− ρ), 2− ρ − ρ2).

Remember thatDRT (L)/Rss(L) = {K̃1, K̃2, K̃4, K̃6} andDRV(L)/Rss(L) = {K̃3, K̃5}. Hence,
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∑

K̃∈DRT (L)/Rss(L)

ψ̃′(K̃) = ψ̃′(K̃1) + ψ̃′(K̃2) + ψ̃′(K̃4) + ψ̃′(K̃6) =
2+ ρ − ρ2 − ρ3

2+ ρ + ρ2 − 2ρ4
.

By the “quotient” analogue of Proposition 5.2, we have

ϕ̃′(K̃1) = 0 · 2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 = 0,

ϕ̃′(K̃2) = ρ2(1−ρ)
2+ρ+ρ2−2ρ4 ·

2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 =
ρ2(1−ρ)

2+ρ−ρ2−ρ3 ,

ϕ̃′(K̃3) = 0,

ϕ̃′(K̃4) = ρ(2−ρ)
2+ρ+ρ2−2ρ4 ·

2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 =
ρ(2−ρ)

2+ρ−ρ2−ρ3 ,

ϕ̃′(K̃5) = 0,

ϕ̃′(K̃6) = 2−ρ−ρ2

2+ρ+ρ2−2ρ4 ·
2+ρ+ρ2−2ρ4

2+ρ−ρ2−ρ3 =
2−ρ−ρ2

2+ρ−ρ2−ρ3 .

Thus, the steady-state PMF forSMC↔ss
(L) is

ϕ̃′ =
1

2+ ρ − ρ2 − ρ3
(0, ρ2(1− ρ), 0, ρ(2− ρ), 0, 2− ρ − ρ2).

This coincides with the result obtained with the use ofψ̃′∗ andS̃J
′
.

Alternatively , from TS↔ss
(L), we can construct the reduced quotient DTMC ofL, RDTMC↔ss

(L), and then cal-
culateϕ̃′ using it.

Remember thatDRT(L)/Rss(L) = {K̃1, K̃2, K̃4, K̃6} and DRV(L)/Rss(L) = {K̃3, K̃5}. We reorder the elements of

DR(L)/Rss(L), by moving the equivalence classes of vanishing states to the first positions:K̃3, K̃5, K̃1, K̃2, K̃4, K̃6.

The reordered TPM forDTMC↔ss
(L) is

P̃′r =



0 0 0 0 1 0
0 0 0 0 0 1
0 0 1− ρ3 ρ3 0 0

2ρ(1− ρ) ρ2 0 (1− ρ)2 0 0
ρ3 0 0 ρ2(1− ρ) (1− ρ)(1− ρ2) ρ(1− ρ2)
ρ2 0 0 0 0 1− ρ2



.

The result of the decomposing̃P′r are the matrices

C̃′ =
(

0 0
0 0

)
, D̃′ =

(
0 0 1 0
0 0 0 1

)
, Ẽ′ =



0 0
2ρ(1− ρ) ρ2

ρ3 0
ρ2 0


,

F̃′ =



1− ρ3 ρ3 0 0
0 (1− ρ)2 0 0
0 ρ2(1− ρ) (1− ρ)(1− ρ2) ρ(1− ρ2)
0 0 0 1− ρ2


.

SinceC̃′1 = 0, we have∀k > 0, C̃′k = 0, hence,l = 0 and there are no loops among vanishing states. Then

G̃′ =
l∑

k=0

C̃′l = C̃′0 = I .

Further, the TPM forRDTMC↔ss
(L) is
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Figure 42: The reduced quotient DTMC of the abstract generalized shared memory system.

P̃′⋄ = F̃′ + Ẽ′G̃′D̃′ = F̃′ + Ẽ′I D̃′ = F̃′ + Ẽ′D̃′ =



1− ρ3 ρ3 0 0
0 (1− ρ)2 2ρ(1− ρ) ρ2

0 ρ2(1− ρ) 1− ρ − ρ2 + 2ρ3 ρ(1− ρ2)
0 0 ρ2 1− ρ2


.

In Figure 42, the reduced quotient DTMCRDTMC↔ss
(L) is presented.

Then the steady-state PMF forRDTMC↔ss
(L) is

ψ̃′⋄ =
1

2+ ρ − ρ2 − ρ3
(0, ρ2(1− ρ), ρ(2− ρ), 2− ρ − ρ2).

Note thatψ̃′⋄ = (ψ̃′⋄(K̃1), ψ̃′⋄(K̃2), ψ̃′⋄(K̃4), ψ̃′⋄(K̃6)). By the “quotient” analogue of Proposition 5.3, we have

ϕ̃′(K̃1) = 0, ϕ̃′(K̃2) = ρ2(1−ρ)
2+ρ−ρ2−ρ3 , ϕ̃′(K̃3) = 0, ϕ̃′(K̃4) = ρ(2−ρ)

2+ρ−ρ2−ρ3 , ϕ̃′(K̃5) = 0, ϕ̃′(K̃6) = 2−ρ−ρ2

2+ρ−ρ2−ρ3 .

Thus, the steady-state PMF forSMC↔ss
(L) is

ϕ̃′ =
1

2+ ρ − ρ2 − ρ3
(0, ρ2(1− ρ), 0, ρ(2− ρ), 0, 2− ρ − ρ2).

This coincides with the result obtained with the use ofψ̃′∗ andS̃J
′
.

We can now calculate the main performance indices.

• The average recurrence time in the stateK̃2, where no processor requests the memory, called theaverage system

run-through, is 1
ϕ̃′2
=

2+ρ−ρ2−ρ3

ρ2(1−ρ) .

• The common memory is available only in the statesK̃2, K̃3, K̃5. The steady-state probability that the memory

is available is ˜ϕ′2 + ϕ̃
′
3 + ϕ̃

′
5 =

ρ2(1−ρ)
2+ρ−ρ2−ρ3 + 0+ 0 = ρ2(1−ρ)

2+ρ−ρ2−ρ3 . Then the steady-state probability that the memory

is used (i.e. not available), called theshared memory utilization, is 1− ρ2(1−ρ)
2+ρ−ρ2−ρ3 =

2+ρ−2ρ2

2+ρ−ρ2−ρ3 .
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Figure 43: Steady-state probabilities ˜ϕ′2, ϕ̃
′
4, ϕ̃

′
6 as functions of the parameterρ.

• After activation of the system, we leave the stateK̃1 for ever, and the common memory is either requested or
allocated in every remaining state, with exception ofK̃2. Thus, therate with which the necessity of shared

memory emergescoincides with the rate of leaving̃K2, calculated as
ϕ̃′2

S̃J
′

2

=
ρ2(1−ρ)

2+ρ−ρ2−ρ3 ·
ρ(2−ρ)

1 =
ρ3(1−ρ)(2−ρ)
2+ρ−ρ2−ρ3 .

• The common memory request of a processor{r} is only possible from the states̃K2, K̃4. In each of the states, the
request probability is the sum of the execution probabilities for all multisets of multiactions containing{r}. The
steady-state probability of the shared memory request froma processoris ϕ̃′2

∑
{A,K̃ |{r}∈A, K̃2

A
→K̃}

PMA(K̃2, K̃) +

ϕ̃′4
∑
{A,K̃|{r}∈A, K̃4

A
→K̃}

PMA(K̃4, K̃) = ρ2(1−ρ)
2+ρ−ρ2−ρ3 (2ρ(1− ρ) + ρ2) + ρ(2−ρ)

2+ρ−ρ2−ρ3 (ρ(1− ρ2) + ρ3) = ρ2(2−ρ)(1+ρ−ρ2)
2+ρ−ρ2−ρ3 .

One can see that the performance indices are the same for the complete and the quotient abstract generalized
shared memory systems. The coincidence of the first, second and third performance indices obviously illustrates the
results of Proposition 8.1 and Proposition 8.2. The coincidence of the fourth performance index is due to Theorem
8.1: one should just apply its result to the derived step traces{{r}}, {{r}, {r}}, {{r}, {m}} of the expressionL and itself,
and then sum the left and right parts of the three resulting equalities.

Let us consider what is the effect of quantitative changes of the parameterρ upon performance of the quotient
abstract generalized shared memory system in its steady state. Remember thatρ ∈ (0; 1) is the probability of every
multiaction of the system. The closer isρ to 0, the less is the probability to execute some activities at every discrete
time tact, hence, the system will most probablystand idle. The closer isρ to 1, the greater is the probability to execute
some activities at every discrete time tact, hence, the system will most probablyoperate.

Sinceϕ̃′1 = ϕ̃
′
3 = ϕ̃

′
5 = 0, only ϕ̃′2 =

ρ2(1−ρ)
2+ρ−ρ2−ρ3 , ϕ̃

′
4 =

ρ(2−ρ)
2+ρ−ρ2−ρ3 , ϕ̃

′
6 =

2−ρ−ρ2

2+ρ−ρ2−ρ3 depend onρ. In Figure 43, the plots
of ϕ̃′2, ϕ̃

′
4, ϕ̃

′
6 as functions ofρ are depicted. Notice that, however, we do not allowρ = 0 orρ = 1.

One can see that ˜ϕ′2, ϕ̃
′
4 tend to 0 and ˜ϕ′6 tends to 1 whenρ approaches 0. Thus, whenρ is closer to 0, the

probability that the memory is allocated to a processor and the memory is requested by another processor increases,
hence, we havemore unsatisfied memory requests.

Further,ϕ̃′2, ϕ̃
′
6 tend to 0 and ˜ϕ′4 tends to 1 whenρ approaches 1. Thus, whenρ is closer to 1, the probability that

the memory is allocated to a processor (and not requested by another one) increases, hence, we haveless unsatisfied
memory requests.

The maximal value 0.0797 of ϕ̃′2 is reached whenρ = 0.7433. In this case, the probability that the system is
activated and the memory is not requested is maximal, i.e. themaximal shared memory availabilityis about 8%.

In Figure 44, the plot of the average system run-through, calculated as1
ϕ̃′2

, as a function ofρ is depicted. One can
see that the run-through tends to∞ whenρ approaches 0 or 1. Its minimal value 12.5516 is reached whenρ = 0.7433.
To speed up operation of the system, one should take the parameterρ closer to 0.7433.
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Figure 44: Average system run-through1
ϕ̃′2

as a function of the parameterρ.

The first curve in Figure 45 represents the shared memory utilization, calculated as 1− ϕ̃′2 − ϕ̃
′
3 − ϕ̃

′
5, as a function

of ρ. One can see that the utilization tends to 1 both whenρ approaches 0 and whenρ approaches 1. The minimal
value 0.9203 of the utilization is reached whenρ = 0.7433. Thus, theminimal shared memory utilizationis about
92%. To increase the utilization, one should take the parameterρ closer to 0 or 1.

The second curve in Figure 45 represents the rate with which the necessity of shared memory emerges, calculated
as

ϕ̃′2

S̃J
′

2

, as a function ofρ. One can see that the rate tends to 0 both whenρ approaches 0 and whenρ approaches 1.

The maximal value 0.0751 of the rate is reached whenρ = 0.7743. Thus, themaximal rate with which the necessity of
shared memory emergesis about 1

13. To decrease the mentioned rate, one should take the parameterρ closer to 0 or 1.
The third curve in Figure 45 represents the steady-state probability of the shared memory request from a processor,

calculated as ˜ϕ′2Σ̃
′
2 + ϕ̃

′
4Σ̃
′
4, wherẽΣ′i =

∑
{A,K̃|{r}∈A, K̃i

A
→K̃}

PMA(K̃i , K̃), i ∈ {2, 4}, as a function ofρ. One can see that

the probability tends to 0 whenρ approaches 0 and it tends to 1 whenρ approaches 1. To increase the mentioned
probability, one should take the parameterρ closer to 1.

10. Related work

In this section, we consider in detail differences and similarities between dtsiPBC and other well-known or similar
SPAs for the purpose of subsequent determining the specific advantages of dtsiPBC.

10.1. Continuous time and interleaving semantics

Let us compare dtsiPBC with classical SPAs: Markovian TimedProcesses for Performance Evaluation (MTIPP)
[45], Performance Evaluation Process Algebra (PEPA) [47] and Extended Markovian Process Algebra (EMPA) [14].

In MTIPP, every activity is a pair consisting of the action name (including the symbolτ for the internal, invisible
action) and the parameter of exponential distribution of the action delay (therate). The operations areprefix, choice,
parallel composition includingsynchronizationon the specified action set andrecursion. It is possible to specify pro-
cesses by recursive equations as well. The interleaving semantics is defined on the basis of Markovian (i.e. extended
with the specification of rates) labeled transition systems. Note that we have the interleaving behaviour here because
the exponential PDF is a continuous one, and a simultaneous execution of any two activities has zero probability
according to the properties of continuous distributions. CTMCs can be derived from the mentioned transition systems
to analyze performance.

In PEPA, activities are the pairs consisting of action types(including theunknown, unimportant typeτ) and
activity rates. The rate is either the parameter of exponential distribution of the activity duration or it isunspecified,
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Figure 45: Some performance indices as functions of the parameterρ.

denoted by⊤. An activity with unspecified rate ispassiveby its action type. The set of operations includesprefix,
choice, cooperation, hiding and constants whose meaning is given by the defining equations including therecursive
ones. The cooperation is accomplished on the set of action types (the cooperation set) on which the components must
synchronizeor cooperate. If the cooperation set is empty, the cooperation operator turns into theparallel combinator.
The semantics is interleaving, it is defined via the extension of labeled transition systems with a possibility to specify
activity rates. Based on the transition systems, the continuous time Markov processes (CTMPs) are generated which
are used for performance evaluation with the help of the embedded continuous time Markov chains (ECTMCs).

In EMPA, each action is a pair consisting of its type and rate.Actions can beexternalor internal (denoted by
τ) according to types. There are three kinds of actions according to rates:timedones with exponentially distributed
durations (essentially, the actions from MTIPP and PEPA),immediateones with priorities and weights (the actions
analogous to immediate transitions of GSPNs) andpassiveones (similar to passive actions of PEPA). Timed actions
specify activities that are relevant for performance analysis. Immediate actions model logical events and the activities
that are irrelevant from the performance viewpoint or much faster than others. Passive actions model activities waiting
for the synchronization with timed or immediate ones, and express nondeterministic choice. The set of operators
consist ofprefix, functionalabstraction, functionalrelabeling, alternativecomposition andparallelcomposition ones.
Parallel composition includessynchronizationon the set of action types like in TCSP [48]. The syntax also includes
recursivedefinitions given by means of constants. The semantics is interleaving and based on the labeled transition
systems enriched with the information about action rates. For the exponentially timed kernel of the algebra (the
sublanguage including only exponentially timed and passive actions), it is possible to construct CTMCs from the
transition systems of the process terms to analyze the performance.

In dtsiPBC, every activity is a pair consisting of the multiaction (not just an action, as in the classical SPAs) as
a first element. The second element is either the probability(not the rate, as in the classical SPAs) to execute the
multiaction independently (the activity is called a stochastic multiaction in this case) or the weight expressing how
important is the execution of this multiaction (the activity is called an immediate multiaction in this case). Immediate
multiactions in dtsiPBC are similar to immediate actions inEMPA, but all the immediate multiactions have the same
priority 1 (with the purpose to execute them always before stochastic multiactions, all having the same priority 0),
whereas the immediate actions in EMPA can have different priority levels. There are no immediate actions in MTIPP
and PEPA. Immediate actions are available only in iPEPA [44], where they are analogous to immediate multiactions in
dtsiPBC, and in a variant of TIPP [40] discussed while constructing the calculus PM-TIPP in [80], but there immediate
activities are used just to specify probabilistic branching and they cannot be synchronized.

dtsiPBC has the sequence operation in contrast to the prefix one in the classical SPAs. One can combine arbitrary
expressions with the sequence operator, i.e. it is more flexible than the prefix one, where the first argument should
be a single activity. The choice operation in dtsiPBC is analogous to that in MTIPP and PEPA, as well as to the
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alternative composition in EMPA, in the sense that the choice is probabilistic, but a discrete probability function is
used in dtsiPBC, unlike continuous ones in the classical calculi. Concurrency and synchronization in dtsiPBC are
different operations (this feature is inherited from PBC), unlike the situation in the classical SPAs where parallel
composition (combinator) has a synchronization capability. Relabeling in dtsiPBC is analogous to that in EMPA, but
it is additionally extended to conjugated actions. The restriction operation in dtsiPBC differs from hiding in PEPA
and functional abstraction in EMPA, where the hidden actions are labeled with a symbol of “silent” actionτ. In
dtsiPBC, restriction by an action means that, for a given expression, any process behaviour containing the action or its
conjugate is not allowed. The synchronization on an elementary action in dtsiPBC collects all the pairs consisting of
this elementary action and its conjugate which are contained in the multiactions from the synchronized activities. The
operation produces new activities such that the first element of every resulting activity is the union of the multiactions
from which all the mentioned pairs of conjugated actions areremoved. The second element is either the product of
the probabilities of the synchronized stochastic multiactions or the sum of the weights of the synchronized immediate
multiactions. This differs from the way synchronization is applied in the classicalSPAs where it is accomplished over
identical action names, and every resulting activity consist of the same action name and the rate calculated via some
expression (including sums, minimums and products) on the rates of the initial activities, such as the apparent rate in
PEPA. dtsiPBC has no recursion operation or recursive definitions, but it includes the iteration operation to specify
infinite looping behaviour with the explicitly defined startand termination.

dtsiPBC has a discrete time semantics, and residence time inthe tangible states is geometrically distributed, unlike
the classical SPAs with continuous time semantics and exponentially distributed activity delays. As a consequence,
the semantics of dtsiPBC is the step one in contrast to the interleaving semantics of the classical SPAs. The per-
formance is investigated via the underlying SMCs and (reduced) DTMCs extracted from the labeled probabilistic
transition systems associated with expressions of dtsiPBC. In the classical SPAs, CTMCs are usually used for per-
formance evaluation. In [37], a denotational semantics of PEPA has been proposed via PEPA nets that are high-level
CTSPNs with coloured tokens (coloured CTSPNs), from which the underlying CTMCs can be retrieved. In [13, 9], a
denotational semantics of EMPA based on GSPNs has been defined, from which one can also extract the underlying
SMCs and CTMCs (when both immediate and timed transitions are present) or DTMCs (but when there are only im-
mediate transitions). dtsiPBC has a denotational semantics in terms of LDTSIPNs from which the underlying SMCs
and (reduced) DTMCs can be derived.

10.2. Continuous time and non-interleaving semantics

Only a few non-interleaving SPAs were considered among non-Markovian ones [54, 21]. The semantics of all
Markovian calculi is interleaving and their action delays have exponential distribution, which is the only continuous
probability distribution with memoryless (Markovian) property.

In [23], Generalized Stochastic Process Algebra (GSPA) wasintroduced. It has a true-concurrent denotational
semantics in terms of generalized stochastic event structures (GSESs) with non-Markovian stochastic delays of events.
In that paper, no operational semantics or performance evaluation methods for GSPA were presented. Later, in [53],
generalized semi-Markov processes (GSMPs) were extractedfrom GSESs to analyze performance.

In [77, 78], generalized Stochasticπ-calculus (Sπ) with general continuous distributions of activity delayswas
defined. It has a proved operational semantics with transitions labeled by encodings of their deduction trees. No
well-established underlying performance model for this version of Sπ was described.

In [20, 19], Generalized Semi-Markovian Process Algebra (GSMPA) was developed with an ST-operational se-
mantics and non-Markovian action delays. The performance analysis in GSMPA is accomplished via GSMPs.

Again, the first fundamental difference between dtsiPBC and the calculi GSPA, Sπ and GSMPA is that dtsiPBC
is based on PBC, whereas GSPA is an extension of simple Process Algebra (PA) from [23], Sπ extendsπ-calculus
[71] and GSMPA is an enrichment of EMPA. Therefore, both GSPAand GSMPA haveprefixing, choice(alternative
composition),parallel composition,renaming(relabeling) and hiding (abstraction) operations, but only GSMPA
permitsconstants. Unlike dtsiPBC, GSPA has neither iteration or recursion, GSMPA allows onlyrecursivedefinitions,
whereas Sπ additionally has operations to specifymobility. Note also that GSPA, Sπ and GSMPA do not specify
instantaneous events or activities while dtsiPBC has immediate multiactions.

The second significant difference is that geometrically distributed or zero delays areassociated with process states
in dtsiPBC, unlike generally distributed delays assigned to events in GSPA or to activities in Sπ and GSMPA. As
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a consequence, dtsiPBC has a discrete time operational semantics allowing for concurrent execution of activities
in steps. GSPA has no operational semantics while Sπ and GSMPA have continuous time ones. In continuous
time semantics, concurrency is simulated by interleaving,since simultaneous occurrence of any two events has zero
probability according to the properties of continuous probability distributions. Therefore, interleaving transitions are
often annotated with an additional information to keep concurrency data. The transition labels in the operational
semantics of Sπ encode the action causality information and allow one to derive the enabling relations and the firing
distributions of concurrent transitions from the transition sequences. At the same time, abstracting from stochastic
delays leads to the classical early interleaving semanticsof π-calculus. The ST-operational semantics of GSMPA is
based on decorated transition systems governed by transition rules with rather complex preconditions. There are two
types of transitions: the choice (action beginning) and thetermination (action ending) ones. The choice transitions
are labeled by weights of single actions chosen for execution while the termination transitions have no labels. Only
single actions can begin, but several actions can end in parallel. Thus, the choice transitions happen just sequentially
while the termination transitions can happen simultaneously. As a result, the decorated interleaving/ step transition
systems are obtained. dtsiPBC has an SPN-based denotational semantics. In comparison with event structures, PNs
are more expressive and visually tractable formalism, capable of finitely specifying an infinite behaviour. Recursion
in GSPA produces infinite GSESs while dtsiPBC has iteration operation with a finite SPN semantics. Identification of
infinite GSESs that can be finitely represented in GSPA was left for a future research.

10.3. Discrete time
In [1], a class of compositional DTSPNs with generally distributed discrete time transition delays was proposed,

called dts-nets. The denotational semantics of a stochastic extension (we call it stochastic ACP or sACP) of a subset
of Algebra of Communicating Processes (ACP) [8] can be constructed via dts-nets. There are two types of transitions
in dts-nets: immediate (timeless) ones, with zero delays, and time ones, whose delays are random variables having
general discrete distributions. The top-down synthesis ofdts-nets consists in the substitution of their transitionsby
blocks (dts-subnets) corresponding to the sequence, choice, parallelism and iteration operators. It was explained how
to calculate the throughput time of dts-nets using the service time (defined as holding time or delay) of their transitions.
For this, the notions of service distribution for the transitions and throughput distribution for the building blocks were
defined. Since the throughput time of the parallelism block was calculated as the maximal service time for its two
constituting transitions, the analogue of the step semantics approach was implemented.

In [64, 65], an SPA called Theory of Communicating Processeswith discrete stochastic time (TCPdst) was in-
troduced. It has discrete real time (deterministic) delays(including zero time delays) and discrete stochastic time
delays. The algebra generalizes real time processes to discrete stochastic time ones by applying real time properties
to stochastic time and imposing race condition to real time semantics.TCPdst has an interleaving operational se-
mantics in terms of stochastic transition systems. The performance is analyzed via discrete time probabilistic reward
graphs which are essentially the reward transition systemswith probabilistic states having finite number of outgo-
ing probabilistic transitions and timed states having a single outgoing timed transition. The mentioned graphs can
be transformed by unfolding or geometrization into discrete time Markov reward chains (DTMRCs) appropriate for
transient or stationary analysis.

The first difference between dtsiPBC and the algebras sACP andTCPdst is that dtsiPBC is based on PBC, but sACP
andTCPdst are the extensions of ACP. sACP has taken from ACP onlysequence, choice, parallelismand iteration
operations, whereas dtsiPBC has additionally relabeling,restriction and synchronization ones, inherited from PBC.
In TCPdst, besides standard actionprefixing, alternative, parallel composition,encapsulation(similar to restriction)
andrecursivevariables, there are alsotimed delay prefixing, dependent delays scopeand themaximal time progress
operators, which are new both for ACP and dtsiPBC.

The second difference is that dtsiPBC, sACP andTCPdst, all have zero delays, however, discrete time delays in
dtsiPBC are zeros or geometrically distributed and associated with process states. The zero delays are possible just
in vanishing states while geometrically distributed delays are possible only in tangible states. For each tangible state,
the parameter of geometric distribution governing the delay in the state is completely determined by the probabilities
of all stochastic multications executable from it. In sACP and TCPdst, delays are generally distributed, but they are
assigned to transitions in sACP and separated from actions (excepting zero delays) inTCPdst. Moreover, a special
attention is given to zero delays in sACP and deterministic delays inTCPdst. In sACP, immediate (timeless) transitions
with zero delays serve as source and sink transitions of the dts-subnets corresponding to the choice, parallelism and
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Table 11: Classification of stochastic process algebras.

Time Immediate Interleaving semantics Non-interleaving semantics
(multi)actions

Continuous No MTIPP (CTMC),PEPA (CTMP), GSPA (GSMP), Sπ, GSMPA (GSMP)
sPBC(CTMC)

Yes EMPA (SMC, CTMC),gsPBC(SMC) —
Discrete No — dtsPBC (DTMC)

Yes TCPdst (DTMRC) sACP, dtsiPBC (SMC, DTMC)

iteration operators. InTCPdst, zero delays of actions are specified by undelayable action prefixes while positive
deterministic delays of processes are specified with timed delay prefixes. Neither formal syntax nor operational
semantics for sACP are defined and it is not explained how to derive Markov chains from the algebraic expressions
or the corresponding dts-nets to analyze performance. It isnot stated explicitly, which type of semantics (interleaving
or step) is accommodated in sACP. In spite of the discrete time approach, operational semantics ofTCPdst is still
interleaving, unlike that of dtsiPBC. In addition, no denotational semantics was defined forTCPdst.

Table 11 summarizes the SPAs comparison above and that from Section 1 (the calculi sPBC, gsPBC and dtsPBC),
by classifying the SPAs according to the concept of time, thepresence of immediate (multi)actions and the type of
operational semantics. The names of SPAs, whose denotational semantics is based on SPNs, are printed in bold font.
The underlying stochastic process (if defined) is specified in parentheses near the name of the corresponding SPA.

11. Discussion

Let us now discuss which advantages has dtsiPBC in comparison with the SPAs described in Section 10.

11.1. Analytical solution
An important aspect is the analytical tractability of the underlying stochastic process, used for performance eval-

uation in SPAs. The underlying CTMCs in MTIPP and PEPA, as well as SMCs in EMPA, are treated analytically,
but these continuous time SPAs have interleaving semantics. GSPA, Sπ and GSMPA are the continuous time mod-
els, for which a non-interleaving semantics is constructed, but for the underlying GSMPs in GSPA and GSMPA,
only simulation and numerical methods are applied, whereasno performance model for Sπ is defined. sACP and
TCPdst are the discrete time models with the associated analyticalmethods for the throughput calculation in sACP
or for the performance evaluation based on the underlying DTMRCs in TCPdst, but both models have interleaving
semantics. dtsiPBC is a discrete time model with a non-interleaving semantics, where analytical methods are applied
to the underlying SMCs. Hence, if an interleaving model is appropriate as a framework for the analytical solution
towards performance evaluation then one has a choice between the continuous time SPAs MTIPP, PEPA, EMPA and
the discrete time ones sACP,TCPdst. Otherwise, if one needs a non-interleaving model with the associated analytical
methods for performance evaluation and the discrete time approach is feasible then dtsiPBC is the right choice.

An existence of the analytical solution also permits to interpret quantitative values (rates, probabilities etc.) from
the system specifications as parameters, which can be adjusted to optimize the system performance, like in dtsPBC,
dtsiPBC and parametric probabilistic transition systems (i.e. DTMCs whose transition probabilities may be real-value
parameters) [57]. Note that DTMCs whose transition probabilities are parameters were introduced in [33]. CTMCs
with the transition rates treated as parameters were investigated in [42]. On the other hand, no parameters in formulas
of SPAs were considered in the literature so far. In dtsiPBC we can easily construct examples with more parameters
than we did in our case study. The performance indices will bethen interpreted as functions of several variables. The
advantage of our approach is that, unlike of the method from [57], we should not impose to the parameters any special
conditions needed to guarantee that the real values, interpreted as the transition probabilities, always lie in the interval
[0; 1]. To be convinced of this fact, just remember that, as wehave demonstrated, the positive probability functions
PF, PT, PM, PM∗, PM⋄ define probability distributions, hence, they always return probabilities belonging to (0; 1]
for any parameters from (0; 1).
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11.2. Application area
From the application viewpoint, one considers what kind of systems are more appropriate to be modeled and

analyzed within SPAs. MTIPP and PEPA are well-suited for theinterleaving continuous time systems such that the
activity rates or the average sojourn time in the states are known in advance and exponential distribution approximates
well the activity delay distributions, whereas EMPA can be used to model the mentioned systems with the activity
delays of different duration order or the extended systems, in which purely probabilistic choices or urgent activities
must be implemented. GSPA and GSMPA fit well for modeling the continuous time systems with a capability to keep
the activity causality information, and with the known activity delay distributions, which cannot be approximated
accurately by exponential distribution, while Sπ can additionally model mobility in such systems.TCPdst is a good
choice for interleaving discrete time systems with deterministic (fixed) and generalized stochastic delays, whereas
sACP is capable to model non-interleaving systems as well, but it offers not enough performance analysis methods.
dtsiPBC is consistent for the step discrete time systems such that the independent execution probabilities of activities
are known and geometrical distribution approximates well the state residence time distributions. In addition, dtsiPBC
can model these systems featuring very scattered activity delays or even more complex systems with instantaneous
probabilistic choice or urgency, hence, dtsiPBC can be taken as a non-interleaving discrete time counterpart of EMPA.

11.3. Concurrency interpretation
One can see that the stochastic process calculi proposed in the literature are based on interleaving, as a rule,

and parallelism is simulated by synchronous or asynchronous execution. As a semantic domain, the interleaving
formalism of transition systems is often used. Therefore, investigation of stochastic extensions for more expressive
and powerful algebraic calculi is an important issue. The development of step or “true concurrency” (such that
parallelism is considered as a causal independence) SPAs isan interesting and nontrivial problem, which has attracted
special attention last years. Nevertheless, not so many formal stochastic models were defined whose underlying
stochastic processes are based on DTMCs. As mentioned in [36], such models are more difficult to analyze, since a
lot of events can occur simultaneously in discrete time systems (the models have a step semantics) and the probability
of a set of events can be not easily related to the probabilityof the single ones. As observed in [49], even for stochastic
models with generally distributed time delays, some restrictions on the concurrency degree were imposed to simplify
their analysis techniques. In particular, the enabling restriction requires that no two generally distributed transitions
are enabled in any reachable marking. Hence, their activityperiods do not intersect and no two such transitions can
fire simultaneously, this results in interleaving semantics of the model.

Stochastic models with discrete time and step semantics have the following important advantage over those having
just an interleaving semantics. The underlying Markov chains of parallel stochastic processes have the additional tran-
sitions corresponding to the simultaneous execution of concurrent (i.e. non-synchronized) activities. The transitions
of that kind allow one to bypass a lot of intermediate states,which otherwise should be visited when interleaving
semantics is accommodated. When step semantics is used, theintermediate states can be also visited with some
probability (this is an advantage, since some alternative system’s behaviour may start from these states), but this prob-
ability is not greater than the corresponding one in case of interleaving semantics. While in interleaving semantics,
only the empty or singleton (multi)sets of activities can beexecuted, in step semantics, generally, the (multi)sets of
activities with more than one element can be executed as well. Hence, in step semantics, there are more variants of
execution from each state than in the interleaving case and the executions probabilities, whose sum should be equal
to 1, are distributed among more possibilities. Therefore,the systems with parallel stochastic processes usually have
smaller average run-through. In case the underlying Markovchains of the processes are ergodic, they will take less
discrete time units to stabilize the behaviour, since theirTPMs will be denser because of additional non-zero elements
outside the main diagonal. Hence, both the first passage-time performance indices based on the transient probabilities
and the steady-state performance indices based on the stationary probabilities can be computed quicker, resulting in
faster quantitative analysis of the systems. On the other hand, step semantics, induced by simultaneous firing several
transitions at each step, is natural for Petri nets and allows one to exploit full power of the model.

11.4. Advantages of dtsiPBC
Thus, the main advantages of dtsiPBC are the flexible multiaction labels, immediate multiactions, powerful op-

erations, as well as a step operational and a Petri net denotational semantics allowing for concurrent execution of
activities (transitions), together with an ability for analytical and parametric performance evaluation.
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12. Conclusion

In this paper, we have proposed a discrete time stochastic extension dtsiPBC of a finite part of PBC enriched
with iteration and immediate multiactions. The calculus has a concurrent step operational semantics based on labeled
probabilistic transition systems and a denotational semantics in terms of a subclass of LDTSIPNs. A method of per-
formance evaluation in the framework of the calculus has been presented. Step stochastic bisimulation equivalence
of process expressions has been defined and its interrelations with other equivalences of the calculus have been in-
vestigated. We have explained how to reduce transition systems and underlying SMCs of expressions with respect
to the introduced equivalence. We have proved that the mentioned equivalence guarantees identity of the stationary
behaviour and the sojourn time properties, and thus preserves performance measures. A case study of the shared
memory system has been presented as an example of modeling, performance evaluation and performance preserving
reduction within the calculus.

The advantage of our framework is twofold. First, one can specify in it concurrent composition and synchroniza-
tion of (multi)actions, whereas this is not possible in classical Markov chains. Second, algebraic formulas represent
processes in a more compact way than Petri nets and allow one to apply syntactic transformations and comparisons.
Process algebras are compositional by definition and their operations naturally correspond to operators of program-
ming languages. Hence, it is much easier to construct a complex model in the algebraic setting than in PNs. The com-
plexity of PNs generated for practical models in the literature demonstrates that it is not straightforward to construct
such PNs directly from the system specifications. dtsiPBC iswell suited for the discrete time applications, such as
business processes, neural and transportation networks, computer and communication systems, whose discrete states
change with a global time tick, as well as for those, in which the distributed architecture or the concurrency level
should be preserved while modeling and analysis (remember that, in step semantics, we have additional transitions
due to concurrent executions).

Future work will consist in constructing a congruence for dtsiPBC, i.e. the equivalence that withstands application
of all operations of the algebra. The first possible candidate is a stronger version of↔ssdefined via transition systems
equipped with two extra transitionsskip and redo, like those from [60]. We also plan to extend the calculus with
deterministically timed multiactions having a fixed time delay (including the zero one which is the case of immediate
multiactions) to enhance expressiveness of the calculus and to extend application area of the associated analysis tech-
niques. The resulting SPA will be a concurrent discrete timeanalogue of SM-PEPA [18], whose underlying stochastic
model is a semi-Markov chain. Moreover, recursion could be added to dtsiPBC to increase further specification power
of the algebra.

Acknowledgements.The first author thanks Eike Best for the qualified consideration, encouraging discussions and
many valuable advices related to the subject of the paper.
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Appendix A. Proofs

Appendix A.1. Proof of Proposition 6.2

Like it has been done for strong equivalence in Proposition 8.2.1 from [47], we shall prove the following fact about
step stochastic bisimulation. Let us have∀ j ∈ J , R j : G↔ssG

′ for some index setJ. Then the transitive closure of
the union of all relationsR = (∪ j∈JR j)∗ is also an equivalence andR : G↔ssG

′.
Since∀ j ∈ J , R j is an equivalence, by definition ofR, we get thatR is also an equivalence.
Let j ∈ J, then, by definition ofR, (s1, s2) ∈ R j implies (s1, s2) ∈ R. Hence,∀H jk ∈ (DR(G)∪DR(G′))/R j , ∃H ∈

(DR(G) ∪ DR(G′))/R, H jk ⊆ H . Moreover,∃J ′, H = ∪k∈J ′H jk.
We denoteR(n) = (∪ j∈JR j)n. Let (s1, s2) ∈ R, then, by definition ofR, ∃n > 0, (s1, s2) ∈ R(n). We shall prove

thatR : G↔ssG
′ by induction onn.

It is clear that∀ j ∈ J , R j : G↔ssG
′ implies∀ j ∈ J , ([G]≈, [G′]≈) ∈ R j and we have ([G]≈, [G′]≈) ∈ R by

definition ofR.
It remains to prove that (s1, s2) ∈ R implies∀H ∈ (DR(G) ∪ DR(G′))/R, ∀A ∈ INLf in, PMA(s1,H) = PMA(s2,H).

• n = 1

In this case, (s1, s2) ∈ R implies ∃ j ∈ J , (s1, s2) ∈ R j . SinceR j : G↔ssG
′, we get∀H ∈ (DR(G) ∪

DR(G′))/R, ∀A ∈ INLf in,

PMA(s1,H) =
∑

k∈J ′
PMA(s1,H jk) =

∑

k∈J ′
PMA(s2,H jk) = PMA(s2,H).

• n→ n+ 1

Suppose that∀m ≤ n, (s1, s2) ∈ R(m) implies ∀H ∈ (DR(G) ∪ DR(G′))/R, ∀A ∈ INLf in, PMA(s1,H) =
PMA(s2,H).
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Then (s1, s2) ∈ R(n+1) implies∃ j ∈ J , (s1, s2) ∈ R j◦R(n), i.e.∃s3 ∈ (DR(G)∪DR(G′)), such that (s1, s3) ∈ R j

and (s3, s2) ∈ R(n).

Then, like for the casen = 1, we getPMA(s1,H) = PMA(s3,H). By the induction hypothesis, we get
PMA(s3,H) = PMA(s2,H). Thus,∀H ∈ (DR(G) ∪ DR(G′))/R, ∀A ∈ INLf in,

PMA(s1,H) = PMA(s3,H) = PMA(s2,H).

By definition,Rss(G,G′) is at least as large as the largest step stochastic bisimulation betweenG andG′. It fol-
lows from the proven above thatRss(G,G′) is an equivalence andRss(G,G′) : G↔ssG

′, hence, it is the largest step
stochastic bisimulation betweenG andG′. �

Appendix A.2. Proof of Proposition 8.1

By Proposition 6.1, (DR(G) ∪ DR(G′))/R = ((DRT(G) ∪ DRT(G′))/R) ⊎ ((DRV(G) ∪ DRV(G′))/R). Hence,∀H ∈
(DR(G)∪DR(G′))/R, all states fromH are tangible, whenH ∈ (DRT(G)∪DRT(G′))/R, or all of them are vanishing,
whenH ∈ (DRV(G) ∪ DRV(G′))/R.

By definition of the steady-state PMFs for SMCs,∀s ∈ DRV(G), ϕ(s) = 0 and∀s′ ∈ DRV(G′), ϕ′(s′) = 0. Thus,
∀H ∈ (DRV(G)∪DRV(G′))/R,

∑
s∈H∩DR(G) ϕ(s) =

∑
s∈H∩DRV(G) ϕ(s) = 0 =

∑
s′∈H∩DRV(G′) ϕ

′(s′) =
∑

s′∈H∩DR(G′) ϕ
′(s′).

By Proposition 5.2,∀s ∈ DRT(G), ϕ(s) = ψ(s)∑
s̃∈DRT (G) ψ(s̃) and∀s′ ∈ DRT(G′), ϕ′(s′) = ψ′(s′)∑

s̃′∈DRT (G′ ) ψ
′(s̃′) , whereψ andψ′

are the steady-state PMFs forDTMC(G) andDTMC(G′), respectively. Thus,∀H , H̃ ∈ (DRT(G) ∪ DRT(G′))/R,∑
s∈H∩DR(G) ϕ(s) =

∑
s∈H∩DRT (G) ϕ(s) =

∑
s∈H∩DRT (G)

(
ψ(s)∑

s̃∈DRT (G) ψ(s̃)

)
=

∑
s∈H∩DRT (G) ψ(s)∑

s̃∈DRT (G) ψ(s̃) =

∑
s∈H∩DRT (G) ψ(s)∑

H̃

∑
s̃∈H̃∩DRT (G) ψ(s̃) and

∑
s′∈H∩DR(G′) ϕ

′(s′) =
∑

s′∈H∩DRT (G′) ϕ
′(s′) =

∑
s′∈H∩DRT (G′)

(
ψ′(s′)∑

s̃′∈DRT (G′ ) ψ
′(s̃′)

)
=

∑
s′∈H∩DRT (G′ ) ψ

′(s′)∑
s̃′∈DRT (G′ ) ψ

′(s̃′) =

∑
s′∈H∩DRT (G′ ) ψ

′(s′)∑
H̃

∑
s̃′∈H̃∩DRT (G′ ) ψ

′(s̃′) .

It remains to prove that∀H ∈ (DRT(G) ∪ DRT(G′))/R,
∑

s∈H∩DRT (G) ψ(s) =
∑

s′∈H∩DRT (G′) ψ
′(s′). Since (DR(G) ∪

DR(G′))/R = ((DRT(G) ∪ DRT(G′))/R) ⊎ ((DRV(G) ∪ DRV(G′))/R), the previous equality is a consequence of the
following: ∀H ∈ (DR(G) ∪ DR(G′))/R,

∑
s∈H∩DR(G) ψ(s) =

∑
s′∈H∩DR(G′) ψ

′(s′).
Standard proof continuation.

It is sufficient to prove the previous statement for transient PMFs only, sinceψ = limk→∞ ψ[k] andψ′ = limk→∞ ψ
′[k].

We proceed by induction onk.

• k = 0

The only nonzero values of the initial PMFs ofDTMC(G) and DTMC(G′) areψ[0]([G]≈) andψ[0]([G′]≈).
Let H0 be the equivalence class containing [G]≈ and [G′]≈. Then

∑
s∈H0∩DR(G) ψ[0](s) = ψ[0]([G]≈) = 1 =

ψ′[0]([G′]≈) =
∑

s′∈H0∩DR(G′) ψ
′[0](s′).

As for other equivalence classes,∀H ∈ ((DR(G) ∪ DR(G′))/R) \ H0, we have
∑

s∈H∩DR(G) ψ[0](s) = 0 =∑
s′∈H∩DR(G′) ψ

′[0](s′).

• k→ k+ 1

LetH ∈ (DR(G)∪DR(G′))/R ands1, s2 ∈ H . We have∀H̃ ∈ (DR(G)∪DR(G′))/R, ∀A ∈ INLf in, s1
A
→P H̃ ⇔

s2
A
→P H̃ . Therefore,PM(s1, H̃) =

∑
{Υ|∃s̃1∈H̃ , s1

Υ
→s̃1}

PT(Υ, s1) =
∑

A∈INLf in

∑
{Υ|∃s̃1∈H̃ , s1

Υ
→s̃1, L(Υ)=A}

PT(Υ, s1) =
∑

A∈INLf in
PMA(s1, H̃) =

∑
A∈INLf in

PMA(s2, H̃) =
∑

A∈INLf in

∑
{Υ|∃s̃2∈H̃ , s2

Υ
→s̃2, L(Υ)=A}

PT(Υ, s2) =
∑
{Υ|∃s̃2∈H̃ , s2

Υ
→s̃2}

PT(Υ, s2) = PM(s2, H̃). Since we have the previous equality for alls1, s2 ∈ H , we can denote

PM(H , H̃) = PM(s1, H̃) = PM(s2, H̃). Note that transitions from the states ofDR(G) always lead to those
from the same set, hence,∀s ∈ DR(G), PM(s, H̃) = PM(s, H̃ ∩ DR(G)). The same is true forDR(G′).

By induction hypothesis,
∑

s∈H∩DR(G) ψ[k](s) =
∑

s′∈H∩DR(G′) ψ
′[k](s′). Further,∑

s̃∈H̃∩DR(G) ψ[k+ 1](s̃) =
∑

s̃∈H̃∩DR(G)

∑
s∈DR(G) ψ[k](s)PM(s, s̃) =

∑
s∈DR(G)

∑
s̃∈H̃∩DR(G) ψ[k](s)PM(s, s̃) =∑

s∈DR(G) ψ[k](s)
∑

s̃∈H̃∩DR(G) PM(s, s̃) =
∑
H

∑
s∈H∩DR(G) ψ[k](s)

∑
s̃∈H̃∩DR(G) PM(s, s̃) =∑

H

∑
s∈H∩DR(G) ψ[k](s)

∑
s̃∈H̃∩DR(G)

∑
{Υ|s

Υ
→s̃}

PT(Υ, s) =
∑
H

∑
s∈H∩DR(G) ψ[k](s)

∑
{Υ|∃s̃∈H̃∩DR(G), s

Υ
→s̃}

PT(Υ, s) =

89



∑
H

∑
s∈H∩DR(G) ψ[k](s)PM(s, H̃) =

∑
H

∑
s∈H∩DR(G) ψ[k](s)PM(H , H̃) =∑

H PM(H , H̃)
∑

s∈H∩DR(G) ψ[k](s) =
∑
H PM(H , H̃)

∑
s′∈H∩DR(G′) ψ

′[k](s′) =∑
H

∑
s′∈H∩DR(G′) ψ

′[k](s′)PM(H , H̃) =
∑
H

∑
s′∈H ′∩DR(G′) ψ

′[k](s′)PM(s′, H̃) =∑
H

∑
s′∈H∩DR(G′) ψ

′[k](s′)
∑
{Υ|∃s̃′∈H̃∩DR(G′), s′

Υ
→s̃′}

PT(Υ, s′) =∑
H

∑
s′∈H∩DR(G′) ψ

′[k](s′)
∑

s̃′∈H̃∩DR(G′)

∑
{Υ|∃s̃′, s′

Υ
→s̃′}

PT(Υ, s′) =∑
H

∑
s′∈H∩DR(G′) ψ

′[k](s′)
∑

s̃′∈H̃∩DR(G′) PM(s′, s̃′) =
∑

s′∈DR(G′) ψ
′[k](s′)

∑
s̃′∈H̃∩DR(G′) PM(s′, s̃′) =∑

s′∈DR(G′)
∑

s̃′∈H̃∩DR(G′) ψ
′[k](s′)PM(s′, s̃′) =

∑
s̃′∈H̃∩DR(G′)

∑
s′∈DR(G′) ψ

′[k](s′)PM(s′, s̃′) =∑
s̃′∈H̃∩DR(G′) ψ

′[k+ 1](s̃′). �

Alternative proof continuation.
Thus, we should now prove that∀H ∈ (DR(G) ∪ DR(G′))/R,

∑
{i|si∈H∩DR(G)} ψi =

∑
{ j|s′j∈H∩DR(G′)} ψ

′
j .

The steady-state PMFψ = (ψ1, . . . , ψn) for DTMC(G) is a solution of the linear equation system
{
ψP = ψ
ψ1T = 1

.

Then for alli (1 ≤ i ≤ n) we have

{ ∑n
j=1P jiψ j = ψi∑n
j=1ψ j = 1

.

By definition ofPi j (1 ≤ i, j ≤ n) we have

{ ∑n
j=1 PM(sj , si)ψ j = ψi∑n
j=1ψ j = 1

.

LetH ∈ (DR(G) ∪ DR(G′))/R ands1, s2 ∈ H . We have∀H̃ ∈ (DR(G) ∪ DR(G′))/R, ∀A ∈ INLf in, s1
A
→P H̃ ⇔

s2
A
→P H̃ . Therefore,PM(s1, H̃) =

∑
{Υ|∃s̃1∈H̃ s1

Υ
→s̃1}

PT(Υ, s1) =
∑

A∈INLf in

∑
{Υ|∃s̃1∈H̃ s1

Υ
→s̃1, L(Υ)=A}

PT(Υ, s1) =
∑

A∈INLf in
PMA(s1, H̃) =

∑
A∈INLf in

PMA(s2, H̃) =
∑

A∈INLf in

∑
{Υ|∃s̃2∈H̃ s2

Υ
→s̃2, L(Υ)=A}

PT(Υ, s2)=
∑
{Υ|∃s̃2∈H̃ s2

Υ
→s̃2}

PT(Υ, s2) =

PM(s2, H̃). Since we have the previous equality for alls1, s2 ∈ H , we can denotePM(H , H̃) = PM(s1, H̃) =
PM(s2, H̃). Note that transitions from the states ofDR(G) always lead to those from the same set, hence,
∀s ∈ DR(G), PM(s, H̃) = PM(s, H̃ ∩ DR(G)). The same is true forDR(G′).

LetH ∈ (DR(G) ∪ DR(G′))/R. We sum the left and right sides of the first equation from the system above for all
i such thatsi ∈ H ∩ DR(G). The resulting equation is

∑

{i|si∈H∩DR(G)}

n∑

j=1

PM(sj , si)ψ j =
∑

{i|si∈H∩DR(G)}

ψi .

Let us denote the aggregate steady-state PMF forDTMC(G) by ψH∩DR(G) =
∑
{i|si∈H∩DR(G)} ψi . Then for the left-

hand side of the equation above we get∑
{i|si∈H∩DR(G)}

∑n
j=1 PM(sj , si)ψ j =

∑n
j=1ψ j

∑
{i|si∈H∩DR(G)} PM(sj , si) =

∑n
j=1 PM(sj ,H)ψ j =∑

H̃∈(DR(G)∪DR(G′ ))/R

∑
{ j|sj∈H̃∩DR(G)} PM(sj ,H)ψ j =

∑
H̃∈(DR(G)∪DR(G′ ))/R

∑
{ j|sj∈H̃∩DR(G)} PM(H̃ ,H)ψ j =

∑
H̃∈(DR(G)∪DR(G′ ))/R

PM(H̃ ,H)
∑
{ j|sj∈H̃∩DR(G)} ψ j =

∑
H̃∈(DR(G)∪DR(G′ ))/R

PM(H̃ ,H)ψ
H̃∩DR(G).

For the left-hand side of the second equation from the systemabove, we have∑n
j=1ψ j =

∑
H̃∈(DR(G)∪DR(G′ ))/R

∑
{ j|sj∈H̃∩DR(G)} ψ j =

∑
H̃∈(DR(G)∪DR(G′ ))/R

ψH∩DR(G).
Thus, the aggregate linear equation system forDTMC(G) is



∑
H̃∈(DR(G)∪DR(G′ ))/R

PM(H̃ ,H)ψ
H̃∩DR(G) = ψH∩DR(G)∑

H̃∈(DR(G)∪DR(G′ ))/R
ψH∩DR(G) = 1

.
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Let us denote the aggregate steady-state PMFs forDTMC(G′) by ψ′
H∩DR(G′) =

∑
{ j|s′j∈H∩DR(G′)} ψ

′
j . Then, in a

similar way, the aggregate linear equation system forDTMC(G′) is



∑
H̃∈(DR(G)∪DR(G′ ))/R

PM(H̃ ,H)ψ′
H̃∩DR(G′)

= ψ′
H∩DR(G′)∑

H̃∈(DR(G)∪DR(G′ ))/R
ψ′
H∩DR(G′ ) = 1

.

Let (DR(G) ∪ DR(G′))/R = {H1, . . . ,Hl}. Then the aggregate steady-state PMFsψHk∩DR(G) andψ′
Hk∩DR(G′) (1 ≤

k ≤ l) satisfy the same aggregate system ofl + 1 linear equations withl independent equations andl unknowns. The
aggregate linear equation system has a unique solution, when a single aggregate steady-state PMF exists. This is the
case here, since in Section 5 we have demonstrated thatDTMC(G) has a single steady state iff S MC(G) has, and
aggregation preserves this property [25]. Hence,ψHk∩DR(G) = ψ

′
Hk∩DR(G′) (1 ≤ k ≤ l). �

Appendix A.3. Proof of Theorem 8.1

LetH ∈ (DR(G) ∪ DR(G′))/R ands, s̄ ∈ H . We have∀H̃ ∈ (DR(G) ∪ DR(G′))/R, ∀A ∈ INLf in, s
A
→P H̃ ⇔

s̄
A
→P H̃ . The previous equality is valid for alls, s̄ ∈ H , hence, we can rewrite it asH

A
→P H̃ and denote

PMA(H , H̃) = PMA(s, H̃) = PMA(s̄, H̃). Note that transitions from the states ofDR(G) always lead to those from
the same set, hence,∀s ∈ DR(G), PMA(s, H̃) = PMA(s, H̃ ∩ DR(G)). The same is true forDR(G′).

Let Σ = A1 · · ·An be a derived step trace ofG andG′. Then∃H0, . . . ,Hn ∈ (DR(G) ∪ DR(G′))/R, H0
A1
→P1

H1
A2
→P2 · · ·

An
→Pn Hn. Now we intend to prove that the sum of probabilities of all the paths starting in everys0 ∈ H0

and going through the states fromH1, . . . ,Hn is equal to the product ofP1, . . . ,Pn:

∑

{Υ1,...,Υn|s0
Υ1
→···

Υn
→sn, L(Υi )=Ai , si∈Hi (1≤i≤n)}

n∏

i=1

PT(Υi, si−1) =
n∏

i=1

PMAi (Hi−1,Hi).

We prove this equality by induction on the derived step tracelengthn.

• n = 1
∑
{Υ1|s0

Υ1
→s1, L(Υ1)=A1, s1∈H1}

PT(Υ1, s0) = PMA1(s0,H1) = PMA1(H0,H1).

• n→ n+ 1
∑
{Υ1,...,Υn,Υn+1|s0

Υ1
→···

Υn
→sn

Υn+1
→ sn+1, L(Υi )=Ai , si∈Hi (1≤i≤n+1)}

∏n+1
i=1 PT(Υi , si−1) =

∑
{Υn+1|sn

Υn+1
→ sn+1, L(Υn+1)=An+1, sn∈Hn, sn+1∈Hn+1}

∑
{Υ1,...,Υn|s0

Υ1
→···

Υn
→sn, L(Υi )=Ai , si∈Hi (1≤i≤n)}

∏n
i=1 PT(Υi, si−1)PT(Υn+1, sn) =

∑
{Υ1,...,Υn|s0

Υ1
→···

Υn
→sn, L(Υi )=Ai , si∈Hi (1≤i≤n)}

[∏n
i=1 PT(Υi , si−1)

∑
{Υn+1|sn

Υn+1
→ sn+1, L(Υn+1)=An+1, sn∈Hn, sn+1∈Hn+1}

PT(Υn+1, sn)
]
=

∑
{Υ1,...,Υn|s0

Υ1
→···

Υn
→sn, L(Υi )=Ai , si∈Hi (1≤i≤n)}

∏n
i=1 PT(Υi, si−1)PMAn+1(sn,Hn+1) =∑

{Υ1,...,Υn|s0
Υ1
→···

Υn
→sn, L(Υi )=Ai , si∈Hi (1≤i≤n)}

∏n
i=1 PT(Υi, si−1)PMAn+1(Hn,Hn+1) =

PMAn+1(Hn,Hn+1)
∑
{Υ1,...,Υn|s0

Υ1
→···

Υn
→sn, L(Υi )=Ai , si∈Hi (1≤i≤n)}

∏n
i=1 PT(Υi , si−1) =

PMAn+1(Hn,Hn+1)
∏n

i=1 PMAi (Hi−1,Hi) =
∏n+1

i=1 PMAi (Hi−1,Hi).

Let s0, s̄0 ∈ H0. We havePT(A1 · · ·An, s0) =
∑
{Υ1,...,Υn|s0

Υ1
→···

Υn
→sn, L(Υi )=Ai , (1≤i≤n)}

∏n
i=1 PT(Υi , si−1) =

∑
H1,...,Hn

∑
{Υ1,...,Υn|s0

Υ1
→···

Υn
→sn, L(Υi )=Ai , si∈Hi (1≤i≤n)}

∏n
i=1 PT(Υi , si−1) =

∑
H1,...,Hn

∏n
i=1 PMAi (Hi−1,Hi) =

∑
H1,...,Hn

∑
{Υ1,...,Υn|s̄0

Υ1
→···

Υn
→s̄n, L(Υi )=Ai , s̄i∈Hi (1≤i≤n)}

∏n
i=1 PT(Υi , s̄i−1) =

∑
{Υ1,...,Υn|s̄0

Υ1
→···

Υn
→s̄n, L(Υi)=Ai , (1≤i≤n)}

∏n
i=1 PT(Υi , s̄i−1) = PT(A1 · · ·An, s̄0).

Since we have the previous equality for alls0, s̄0 ∈ H0, we can denotePT(A1 · · ·An,H0) = PT(A1 · · ·An, s0) =
PT(A1 · · ·An, s̄0).
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By Proposition 8.1,
∑

s∈H∩DR(G) ϕ(s) =
∑

s′∈H∩DR(G′) ϕ
′(s′). Now we can complete the proof:∑

s∈H∩DR(G) ϕ(s)PT(Σ, s) =
∑

s∈H∩DR(G) ϕ(s)PT(Σ,H) = PT(Σ,H)
∑

s∈H∩DR(G) ϕ(s) =
PT(Σ,H)

∑
s′∈H∩DR(G′) ϕ

′(s′) =
∑

s′∈H∩DR(G′) ϕ
′(s′)PT(Σ,H) =

∑
s′∈H∩DR(G′ ) ϕ

′(s′)PT(Σ, s′). �

Appendix A.4. Proof of Proposition 8.2

Let us present two facts, which will be used in the proof.

1. By Proposition 6.1, (DR(G) ∪ DR(G′))/R = ((DRT(G) ∪ DRT(G′))/R) ⊎ ((DRV(G) ∪ DRV(G′))/R). Hence,
∀H ∈ (DR(G) ∪ DR(G′))/R, all states fromH are tangible, whenH ∈ (DRT(G) ∪ DRT(G′))/R, or all of them
are vanishing, whenH ∈ (DRV(G) ∪ DRV(G′))/R.

2. LetH ∈ (DR(G)∪DR(G′))/R ands1, s2 ∈ H . We have∀H̃ ∈ (DR(G)∪DR(G′))/R, ∀A ∈ INLf in, s1
A
→P H̃ ⇔

s2
A
→P H̃ . Therefore,PM(s1, H̃) =

∑
{Υ|∃s̃1∈H̃ , s1

Υ
→s̃1}

PT(Υ, s1) =
∑

A∈INLf in

∑
{Υ|∃s̃1∈H̃ , s1

Υ
→s̃1, L(Υ)=A}

PT(Υ, s1) =
∑

A∈INLf in
PMA(s1, H̃) =

∑
A∈INLf in

PMA(s2, H̃) =
∑

A∈INLf in

∑
{Υ|∃s̃2∈H̃ , s2

Υ
→s̃2, L(Υ)=A}

PT(Υ, s2) =
∑
{Υ|∃s̃2∈H̃ , s2

Υ
→s̃2}

PT(Υ, s2) = PM(s2, H̃). Since we have the previous equality for alls1, s2 ∈ H , we can denote

PM(H , H̃) = PM(s1, H̃) = PM(s2, H̃). The transitions from the states ofDR(G) always lead to those from the
same set, hence,∀s ∈ DR(G), PM(s, H̃) = PM(s, H̃ ∩ DR(G)). The same is true forDR(G′). Hence, for all
s ∈ H∩DR(G), we obtainPM(H , H̃) = PM(s, H̃) = PM(s, H̃ ∩DR(G)) = PM(H∩DR(G), H̃ ∩DR(G)). The
same is true forDR(G′). Finally,PM(H∩DR(G), H̃∩DR(G)) = PM(H , H̃) = PM(H∩DR(G′), H̃∩DR(G′)).

Let us now prove the proposition statement for the sojourn time averages.

• LetH ∈ (DRV(G) ∪ DRV(G′))/R.

Then we haveH ∩ DR(G) = H ∩ DRV(G) ∈ DRV(G)/R andH ∩ DR(G′) = H ∩ DRV(G′) ∈ DRV(G′)/R.
By definition of the average sojourn time in an equivalence class of states, we getSJR∩(DR(G))2(H ∩ DR(G)) =
SJR∩(DR(G))2 (H ∩ DRV(G)) = 0 = SJR∩(DR(G′))2(H ∩ DRV(G′)) = SJR∩(DR(G′))2(H ∩ DR(G′)).

• LetH ∈ (DRT(G) ∪ DRT(G′))/R.

Then we haveH ∩ DR(G) = H ∩ DRT(G) ∈ DRT (G)/R andH ∩ DR(G′) = H ∩ DRT(G′) ∈ DRT(G′)/R.
By definition of the average sojourn time in an equivalence class of states, we getSJR∩(DR(G))2(H ∩ DR(G)) =
SJR∩(DR(G))2 (H ∩ DRT(G)) = 1

1−PM(H∩DRT (G),H∩DRT (G)) =
1

1−PM(H∩DR(G),H∩DR(G)) =
1

1−PM(H ,H) =
1

1−PM(H∩DR(G′ ),H∩DR(G′)) =
1

1−PM(H∩DRT (G′),H∩DRT (G′)) = SJR∩(DR(G′))2(H∩DRT(G′)) = SJR∩(DR(G′))2(H∩DR(G′)).

Thus,∀H ∈ (DR(G) ∪ DR(G′))/R we haveSJR∩(DR(G))2(H ∩ DR(G)) = SJR∩(DR(G′))2(H ∩ DR(G′)).
The proposition statement for the sojourn time variances isproved similarly to that for the averages. �
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