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Abstract

We propose an extension with immediate multiactions of discrete time stochastic Petri box calculus (dtsPBC), pre-
sented by I.V. Tarasyuk. The resulting algebra dtsiPBC is a discrete time analogue of stochastic Petri box calculus
(sPBC) with immediate multiactions, proposed by H. Macia, V. Valero and others within a continuous time domain.
The step operational semantics is constructed via labeled probabilistic transition systems. The denotational semantics
is defined on the basis of a subclass of labeled discrete time stochastic Petri nets with immediate transitions. The
consistency of the both semantics is demonstrated. In order to evaluate performance, the corresponding semi-Markov
chains and (reduced) discrete time Markov chains are analyzed. We define step stochastic bisimulation equivalence
of expressions and prove that it can be applied to reduce their transition systems and underlying semi-Markov chains
while preserving the functionality and performance characteristics. We explain how this equivalence may help to sim-
plify performance analysis of the algebraic processes. In a case study, a method of modeling, performance evaluation
and behaviour preserving reduction of concurrent systems is outlined and applied to the shared memory system.

Keywords: stochastic process algebra, Petri box calculus, discrete time, immediate multiaction, performance
evaluation, stochastic equivalence
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1. Introduction

Algebraic process calculi like CSP [48], ACP [8] and CCS [70] are a well-known formal model for the specifi-
cation of computing systems and analysis of their behaviour. In such process algebras (PAs), systems and processes
are specified by formulas, and verification of their properties is accomplished at a syntactic level via equivalences,
axioms and inference rules. In the last decades, stochastic extensions of PAs were proposed, such as MTIPP [45],
PEPA [47] and EMPA [14, 13, 9]. Stochastic process algebras (SPAs) do not just specify actions which can occur as
usual process algebras (qualitative features), but they associate some quantitative parameters with actions (quantitative
characteristics).

1.1. Petri box calculus

PAs specify concurrent systems in a compositional way via an expressive formal syntax. On the other hand, Petri
nets (PNs) provide a graphical representation of such systems and capture explicit asynchrony in their behaviour. To
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combine advantages of both models, a semantics of algdbraitlas in terms of PNs has been defined. Petri box
calculus (PBC) [15, 17, 16] is a flexible and expressive pse@dgebra developed as a tool for specification of the
PNs structure and their interrelations. Its goal was algwepose a compositional semantics for high level construct
of concurrent programming languages in terms of elemeréaly. Formulas of PBC are combined not from single
(visible or invisible) actions and variables, like in CC8t from multisets of elementary actions and their conjugjate
called multiactionslfasic formulag The empty multiset of actions is interpreted as the siteultiaction specifying
some invisible activity. In contrast to CCS, synchroniaatis separated from parallelismancurrent construcjs
Synchronization is a unary multi-way stepwise operatioseblaon communication of actions and their conjugates.
This extends the CCS approach with conjugate matchingdaBghchronization in PBC is asynchronous, unlike that
in Synchronous CCS (SCCS) [70]. Other operations are seguamd choicesequential constructs The calculus
includes also restriction and relabelirgpétraction construcjs To specify infinite processes, refinement, recursion
and iteration operations were adddudefarchical construcfs Thus, unlike CCS, PBC has an additional iteration
construction to specify infinite behaviour when the sentaintierpretation in finite PNs is possible. PBC has a step
operational semantics in terms of labeled transition systdased on the structural operational semantics (SO rul
The operational semantics of PBC is of step type, since itS 8@ks have transitions with (multi)sets of activities,
corresponding to simultaneous executions of activitie=p@. A denotational semantics of PBC was proposed via a
subclass of PNs equipped with an interface and considergalispmorphism, called Petri boxes. For more detailed
comparison of PBC with other process algebras see [15, 16thd last years, several extensions of PBC with a
deterministic, a nondeterministic or a stochastic modéhaé were presented.

1.2. Time extensions of Petri box calculus

To specify systems with time constraints, such as real tipstems, deterministic (fixed) or nondeterministic
(interval) time delays are used. A time extension of PBC witmondeterministic time model, called time Petri box
calculus (tPBC), was proposed in [55]. IntPBC, timing imf@tion is added by associating time intervals (the earliest
and the latest firing time) with instantaneadions Its denotational semantics was defined in terms of a subclas
of labeled time Petri nets (LtPNs), based on tPNs [69] ankddime Petri boxes (ct-boxes). tPBC has a step time
operational semantics in terms of labeled transition syste

Another time enrichment of PBC, called Timed Petri box chis TPBC), was defined in [66], it accommo-
dates a deterministic model of time. In contrast to tPBC timciions of TPBC are not instantaneous, but have time
durations. Additionally, in TPBC there exist no “illegal’uttiaction occurrences, unlike tPBC. The complexity of
“illegal” occurrences mechanism was one of the main interstito construct TPBC though this calculus appeared to
be more complicated than tPBC. The denotational semarftitBBC was defined in terms of a subclass of labeled
Timed Petri nets (LTPNSs), based on TPNs [79] and called TiRetti boxes (T-boxes). TPBC has a step timed oper-
ational semantics in terms of labeled transition systentte that tPBC and TPBC fller in ways they capture time
information, and they are not in competition but compleneamh other.

The third time extension of PBC, called arc time Petri boxcahis (atPBC), was constructed in [75], and it
implements a nondeterministic time. In atPBC, multiactiane associated with time delay intervals. Its denotakiona
semantics was defined on a subclass of labeled arc time B&tjatPNs), where time restrictions are associated with
the arcs, called arc time Petri boxes (at-boxes). atPBCGegess a step time operational semantics in terms of labeled
transition systems. Further, all the calculi tPBC, TPBC atRBC apply the discrete time approach, but only tPBC
and atPBC have immediate (multi)actions.

1.3. Stochastic extensions of Petri box calculus

The set of states for the systems with deterministic or ntardenistic delays often diers drastically from that

for the timeless systems, hence, the analysis results fiimed systems may be not valid for the time ones. To
solve this problem, stochastic delays are considered,hndrie the random variables with a (discrete or continuous)
probability distribution. If the random variables govergidelays have an infinite support then the corresponding SPA
can exhibit all the same behaviour as its underlying untifdf@dA stochastic extension of PBC, called stochastic
Petri box calculus (sPBC), was proposed in [62]. In sPBC tiaxtlons have stochastic delays that follow negative
exponential distribution. Each multiaction is equippethvei rate that is a parameter of the corresponding expotentia
distribution. The instantaneous execution of a stochastitiaction is possible only after the corresponding sémstic
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time delay. Just a finite part of PBC was initially used for gh@chastic enrichment, i.e. in its former version sPBC
has neither refinement nor recursion nor iteration oparatid he calculus has an interleaving operational semantics
defined via transition systems labeled with multiactiordteir rates. Its denotational semantics was defined insterm
of a subclass of labeled continuous time stochastic PNs @FINS), based on CTSPNSs [67, 5] and called stochastic
Petri boxes (s-boxes). In [59], the iteration operator wdded to sPBC. In sPBC with iteration, performance of the
processes is evaluated by analyzing their underlying noatis time Markov chains (CTMCSs). In [60], a number of
new equivalence relations were proposed for regular tefreBBC with iteration to choose later a suitable candidate
for a congruence. sPBC with iteration was enriched furthiéh wnmediate multiactions having zero time delay in
[61]. We call such an sPBC extension generalized sPBC or @sPB interleaving operational semantics of gsPBC
was constructed via transition systems labeled with sttghar immediate multiactions together with their rates or
probabilities. A denotational semantics of gsPBC was dédfina a subclass of labeled generalized stochastic PNs
(LGSPNSs), based on GSPNs [67, 5, 6] and called generalipetiastic Petri boxes (gs-boxes). The performance
analysis in gsPBC is based on the underlying semi-MarkoinsH&MCSs).

PBC has a step operational semantics, whereas sPBC hagdeawing one. Remember that in step semantics,
parallel executions of activities (steps) are permittedenin interleaving semantics, we can execute only single ac
tivities. Hence, a stochastic extension of PBC with a stepaseics is needed to keep the concurrency degree of
behavioural analysis at the same level as in PBC. As merdionf2, 73], in contrast to continuous time approach
(usedin sPBC), discrete time approach allows for constrgchodels of common clock systems and clocked devices.
In such models, multiple transition firings (or executiofisnultiple activities) at time moments (ticks of the central
clock) are possible, resulting in a step semantics. Monme@veployment of discrete stochastic time fills the gap be-
tween the models with deterministic (fixed) time delays drasé with continuous stochastic time delays. As argued
in [1], arbitrary delay distributions are much easier todiarnn a discrete time domain. In [64, 65], discrete stochas-
tic time was preferred to enable simultaneous expiratiomoltiple delays. In [82, 84], a discrete time stochastic
extension dtsPBC of finite PBC was presented. In dtsPBC,gbidence time in the process states is geometrically
distributed. A step operational semantics of dtsPBC wastcocted via labeled probabilistic transition systems. It
denotational semantics was defined in terms of a subclasbeldd discrete time stochastic PNs (LDTSPNSs), based
on DTSPNs [72, 73] and called discrete time stochastic Beés (dts-boxes). A variety of stochastic equivalences
were proposed to identify stochastic processes with sirb@haviour which are elierentiated by the semantic equiv-
alence. The interrelations of all the introduced equiveésnvere studied. In [83, 85], we constructed an enrichment
of dtsPBC with the iteration operator used to specify inéiitocesses. The performance evaluation in dtsPBC with
iteration is accomplished via the underlying discrete thMtaakov chains (DTMCs) of the algebraic processes. Since
dtsPBC has a discrete time semantics and geometricallybdittd sojourn time in the process states, unlike sPBC
with continuous time semantics and exponentially distedudelays, the calculi apply twoféérent approaches to
the stochastic extension of PBC, in spite of some similasfttheir syntax and semantics inherited from PBC. The
main advantage of dtsPBC is that concurrency is treatedrilRBC having step semantics, whereas in sPBC paral-
lelism is simulated by interleaving, obliging one to cotltéee information on causal independence of activities teefo
constructing the semantics. In [86, 87], we presented tiension dtsiPBC of the latter calculus with immediate
multiactions. Immediate multiactions increase the spaatifin capability: they can model logical conditions, prob
abilistic branching, instantaneous probabilistic cheiaad activities whose durations are negligible in comparis
with those of others. They are also used to specify urgeitities and the ones not relevant for performance eval-
uation. Thus, immediate multiactions can be consideredkirsobof instantaneous dynamic state adjustment and, in
many cases, they result in a simpler and more clear systemsenmtation.

1.4. Equivalence relations

A notion of equivalence is important in theory of computiygtems. Equivalences are applied both to compare
behaviour of systems and reduce their structure. There igla diversity of behavioural equivalences, and their
interrelations are well explored in the literature. Thetda®wn and widely used one is bisimulation. Typically,
the mentioned equivalences take into account only funatifmualitative) but not performance (quantitative) aspec
Additionally, the equivalences are usually interleavimgs, i.e. they interpret concurrency as sequential nondete
minism. Interleaving equivalences permit to imitate plat&xecution of actions via all possible occurrence seqeen
(interleavings) of them. Step equivalences require imsg#aulating such a parallel execution by simultaneous oc-
currence (step) of all the involved actions. To respect ttaive features of behaviour, probabilistic equivalesic
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have additional requirement on execution probabilitieso Bquivalent processes must be able to execute the same
sequences of actions, and for every such sequence, itstisxeptobabilities within both processes should coincide.
In case of probabilistic bisimulation equivalence, théestérom which similar future behaviours start are groupéal i
equivalence classes that form elements of the aggregatedsgtace. From every two bisimilar states, the same ac-
tions can be executed, and the subsequent states resutingkecution of an action belong to the same equivalence
class. In addition, for both states, the cumulative prdiisgs to move to the same equivalence class by executing
the same action coincide. Aftirent kind of quantitative relations is called Markoviam®glences, which take rate
(the parameter of exponential distribution that govermetdelays) instead of probability. Note that the probabilis
tic equivalences can be seen as discrete time analogues dMalkovian ones, since the latter are defined as the
continuous time relations.

Interleaving probabilistic weak trace equivalence wasoithiced in [31] on labeled probabilistic transition sys-
tems. Interleaving probabilistic strong bisimulation mgience was proposed in [58] on the same model. Interlgavin
Markovian strong bisimulation equivalence was constaiategl45] for MTIPP, in [47] for PEPA and in [14, 13, 9]
for EMPA. Interleaving probabilistic equivalences werdiked for probabilistic processes in [51, 39]. Some variants
of interleaving Markovian weak bisimulation equivalencererconsidered in [26] on Markovian process algebras, in
[27] on labeled CTSPNs and in [28] on labeled GSPNSs. In[1],déomparison of interleaving Markovian trace, test,
strong and weak bisimulation equivalences was carried ogeguential and concurrent Markovian process calculi.
Nevertheless, no appropriate equivalence notion was dfiimeoncurrent SPAs. The non-interleaving bisimulation
equivalence in GSMPA [20, 19] uses ST-semantics for actatigles while in & [78] it is based on a sophisticated
labeling.

1.5. Our contributions

In this paper, we present dtsPBC with iteration extendeld iwitmediate multiactions, calletiscrete time stochas-
tic and immediate Petri box calculdtsiPBC), which is a discrete time analog of sSPBC. Thelatdculus has iter-
ation and immediate multiactions within the context of atowrous time domain. The step operational semantics is
constructed with the use of labeled probabilistic traneiystems. The denotational semantics is defined in terms of
a subclass of labeled discrete time stochastic and imneslNs$ (LDTSPNs with immediate transitions, LDTSIPNS),
based on the extension of DTSPNs with transition labelirdjisnrmediate transitions, called dtsi-boxes. LDTSIPNs
possess some features of discrete time deterministic aotagtic PNs (DTDSPNSs) [92] and discrete deterministic
and stochastic PNs (DDSPNSs) [91], but in LDTSIPNs simultarsgransition firings are possible while in DTDSPNs
and DDSPNs only firings of single transitions are allowede Thnsistency of both semantics is demonstrated. The
corresponding stochastic process, the underlying SMQyristeucted and investigated, with the purpose of perfor-
mance evaluation, which is the same for both semantics. ditiad, the alternative solution methods are developed,
based on the underlying DTMC and its reduction (RDTMC) byn@liating vanishing states. Further, we propose step
stochastic bisimulation equivalence allowing one to idgm@tigebraic processes with similar behaviour that are-how
ever diferentiated by the semantics of the calculus. We examinentbeélations of the proposed relation with other
equivalences of the algebra. We describe how step stoclésitnulation equivalence can be used to reduce transition
systems of expressions and their underlying SMCs whilegovésg the qualitative and the quantitative charactessti
We prove that the mentioned equivalence guarantees igeftie stationary behaviour and the residence time prop-
erties in the equivalence classes. This implies coincidef@erformance indices based on steady-state probasiliti
of the modeled stochastic systems. The equivalences pirsgdBe property can be used to reduce the state space
of a system and thus simplify its performance evaluatioratvigusually a complex problem due to the state space
explosion. We present a case study of a system with two psoceand a common shared memory explaining how
to model concurrent systems within the calculus and analyzie performance, as well as in which way to reduce
the systems while preserving their performance indicesnaaking simpler the performance evaluation. Finally, we
consider diferences and similarities between dtsiPBC and other SPAstéordine the advantages of our calculus.

The first results on this subject can be found in [86]. Coniogrdifferences from our previous journal papers
about dtsiPBC [87, 88, 89], the present text is much moreilddtand many new results have been added. In par-
ticular, all the used notions (such as numbering, functamitecting executable activities, probability functidrase
formally defined and completely explained with examples;dherational and denotational semantics are given in full
detail (the inaction, action rules, LDTSPNs and dtsi-baxesextensively described and discussed); compact illus-
trative examples (of standard and alternative solutiorhoeis) are presented; keeping properties of original Markov
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chains (irreducibility, positive recurrence and aperaitgt) in their embedded and state-aggregated versionsids st
ied. The main new contribution of the paper, step stochastinulation equivalence of the process expressions, is
introduced and checked for stationary behaviour preservin the equivalence classes; quotienting the transition
systems, SMCs and DTMCs by it, as well as the resulting sfioation of performance evaluation, are considered.
As an application example, the standard and generalizégihtaiof the shared memory system, quotients of their be-
haviour (represented by the transition systems, SMCs aM@x) by the equivalence and reductions of the quotients
by removing vanishing states are constructed; the gemedhfirobabilities of the reduced quotient DTMC are treated
as parameters to be adjusted for performance optimizaliothe enhanced related work overview, strong points of
dtsiPBC with respect to other SPAs are detected; in the g&son, analytical solution, application area, concuryenc
interpretation and general advantages of dtsiPBC are ieggla

If we compare dtsiPBC with the classical SPAs MTIPP, PEPAENIPA, the first main diference between them
comes from PBC, since dtsiPBC is based on this calculus:lggbaaic operations and a notion of multiaction are
inherited from PBC. The second mainférence is discrete probabilities of activities induced lgy discrete time
approach, whereas action rates are used in the standardv@®PAsontinuous time. As a consequence, dtsiPBC
has a non-interleaving step operational semantics. This é®ntrast to the classical SPAs, where concurrency is
modeled by interleaving because of the continuous proibabistributions of action delays and the race condition
applied when several actions can be executed in a state.hiftartain diference is immediate multiactions. There
are no instantaneous activities in MTIPP and PEPA whilertivaédiate actions in EMPA can havetdrent priority
levels, unlike the immediate multiactions in dtsiPBC. Théent point of dtsiPBC is a combination of immediate
multiactions, discrete stochastic time and step semainties SPA. Thus, the main contributions of the paper are the
following.

Powerful and expressive discrete time SPA with immediatigities called dtsiPBC in its final form.

Step operational semantics of dtsiPBC in terms of labeletdatilistic transition systems.

Petri net denotational semantics of dtsiPBC based on désttnee stochastic and immediate Petri nets.

Performance analysis via underlying semi-Markov chairts(aeduced) discrete time Markov chains.

Stochastic equivalence used for behaviour-preservingetazh that simplifies the performance evaluation.

Extended case study illustrating how to apply the obtaihedtetical results in practice.

1.6. Structure of the paper

The paper is organized as follows. In Section 2, the syntak®fextended calculus dtsiPBC is presented. In
Section 3, we construct the operational semantics of trebadgin terms of labeled probabilistic transition systeins.
Section 4, we propose the denotational semantics basedutitkass of LDTSIPNSs. In Section 5, the corresponding
stochastic process is defined and analyzed. Step stochastiaulation equivalence is defined and investigated in
Section 6. In Section 7, we explain how to reduce transitimiesns and underlying SMCs of process expressions
modulo the equivalence. In Section 8, the introduced edgriea is applied to the stationary behaviour comparison to
verify the performance preservation. In Section 9, a sharethory system is presented as a case study. Hezelice
between dtsiPBC and other well-known or similar SPAs is wered in Section 10. The advantages of dtsiPBC are
explained in Section 11. Finally, Section 12 summarizesélalts obtained and outlines the research perspectives.

2. Syntax

In this section, we propose the syntax of dtsiPBC. First, @malt a definition of multiset that is an extension of
the set notion by allowing several identical elements.

Definition 2.1. Let X be a set. A finitenultiset (bag) MoverX is a mappingM : X — N such that{x € X | M(X) >
0}] < o0, i.e. it can contain a finite number of elements only.



We denote theet of all finite multisetever a seX by Nﬁn. LetM, M’ € Nﬁn. Thecardinality of M is defined
as|M| = Y yex M(X). We writex € M if M(x) > 0 andM € M’ if Yx e X, M(X) < M’(x). We define M1 + M")(X) =
M(X) + M’(x) and M — M")(X) = max0, M(x) — M’(X)}. WhenV¥x € X, M(X) <1, M can be interpreted as a proper
set and denoted byl € X. Theset of all subsets (powerset) X is denoted by %.

Let Act = {a,b,...} be the set oklementary actions ThenAct = {(a,b,...} is the set ofconjugated actions
(conjugatespuch thal™+ aanda = a. Let A = ActU Actbe the set ofill actions and£ = Nfi‘n be the set o#ll
multiactions Note that) € £, this corresponds to an internal move, i.e. the executianrotiltiaction that contains
no visible action names. Ttaphabetf a € L is defined asA(a) = {x € A | a(X) > O}.

A stochastic multiactionis a pair ¢, p), wherea € L andp € (0;1) is theprobability of the multiactiona.
This probability is interpreted as that of independent akiea of the stochastic multiaction at the next discreteetim
moment. Such probabilities are used to calculate thosestoues (possibly empty) sets of stochastic multiactiorey aft
one time unit delay. The probabilities of stochastic matitans are required not to be equal to 1 to avoid extra model
complexity due to assigning with them weights needed to naakkoice when several stochastic multiactions with
probability 1 can be executed from a state. In this case, spotdems appear with conflicts resolving. See [72, 73]
for the discussion on SPNs. This decision also allows usaalaechnical dficulties related to conditioning events
with probability 0. Another reason is that not allowing pabldity 1 for stochastic multiactions excludes a potential
source of periodicity (hence, non-ergodicity) in the umglag SMCs of the algebraic expressions. On the other hand,
there is no sense to allow zero probabilities of multiacti@ince they would never be performed in this case S.£t
be the set oéll stochastic multiactions

An immediate multiactioris a pair ¢,1), wherea € £ andl € Ny; = {1,2,...} is the non-zeraveightof the
multiactiona. This weight is interpreted as a measure of importance Qaigénterest) or a bonus reward associated
with execution of the immediate multiaction at the currestrkete time moment. Such weights are used to calculate
the probabilities to execute sets of immediate multiactiorstantly. Immediate multiactions have a priority over
stochastic ones. One can assume that all immediate midtiadhave priority 1, whereas all stochastic ones have
priority 0. This means that in a state where both kinds of iactions can occur, immediate multiactions always occur
before stochastic ones. Stochastic and immediate mudtieectannot participate together in some step (concurrent
execution), i.e. the steps consisting only of immediatetiactions or those including only stochastic multiactiens
allowed. LetZ £ be the set o&ll immediate multiactions

Note that the same multiactiene £ may have dierent probabilities and weights in the same specificatiois. |
easy to dfferentiate between probabilities and weights, hence, lethwchastic and immediate multiactions, since
the probabilities of stochastic multiactions belong to ithterval (0; 1), and the weights of immediate multiactions
are non-zero (positive) natural numbers frddp;. An activity is a stochastic or an immediate multiaction. Let
SIL = SL U IL be the set ofill activities The alphabetof a multiset of activitiesr € N7< is defined as
A(T) = U erA(a). For an activity &, ) € SI.L, we define itanultiaction partas L(«, x) = @ and itsprobability
orweight partasQ(a, ) = x. Themultiaction partof a multiset of activitie§" € Nfi;fl is defined asL(") = X, ger @-

Activities are combined into formulas (process expressidny the following operationsequential execution
choice[], parallelism||, relabeling[ f] of actions,restrictionrs over a single actiorsynchronizatiorsy on an action
and its conjugate, aniteration[ = = ] with three arguments: initialization, body and termioati

Sequential execution and choice have a standard intetiprethike in other process algebras, but parallelism does
not include synchronization, unlike the correspondingrafien in CCS [70].

Relabeling functiond : A — A are bijections preserving conjugates, i¥x € A, f(X) = ﬁf) Relabeling
is extended to multiactions in the usual way: foe £, we definef(a) = },., f(X). Relabeling is extended to the
multisets of activities as follows: for € NI, we definef (1) = 3, ger(f(a), &).

Restriction over an elementary actiar Actmeans that, for a given expression, any process behaviataining
aor its conjugate’s not allowed.

Leta,B € L be two multiactions such that for some elementary acienActwe havea € « anda e 8, ord € «
anda € 8. Then, synchronization ef andg by a is defined as @, 8 = y, where

a(X)+B(X)—1, x=aorx=4§
7 = { a(X) + B(X), otherwise

In other words, we require that®, 8 = a + 8 — {a, &}, i.e. we remove one exemplarafind one exemplar & from
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the multiset suna + B3, since the synchronization afandd produced). Activities are synchronized with the use of
their multiaction parts, i.e. the synchronization &pf two activities, whose multiaction partssandg possess the
properties mentioned above, results in the activity withrtfultiaction partr &, 8. We may synchronize activities of
the same type only: either both stochastic multiactionsothh bnmediate ones, since immediate multiactions have a
priority over stochastic ones, hence, stochastic and inmtesthultiactions cannot be executed together (note aégo th
the execution of immediate multiactions takes no time,kenthat of stochastic ones). Synchronizatiorsyeans
that, for a given expression with a process behaviour coinigiiwo concurrent activities that can be synchronized by
a, there exists also the process behaviour thi@di from the former only in that the two activities are replhby the
result of their synchronization.

In the iteration, the initialization subprocess is exeddiest, then the body is performed zero or more times, and,
finally, the termination subprocess is executed.

Static expressions specify the structure of processes. éAshall see, the expressions correspond to unmarked
LDTSIPNSs (note that LDTSIPNs are marked by definition).

Definition 2.2. Let (o, k) € ST L anda € Act A static expressioof dtsiPBC is defined as
E:= (o,x) |E;E|E[JE|E|E| E[f] |Ersa| Esya]|[E « E « E].

Let StatExprdenote the set ddll static expressionef dtsiPBC.

To make the grammar above unambiguous, one can add paresithake productions with binary operations:
(E; E), (E[]E), (E|IE). However, we prefer the PBC approach and add them to reaatiaéguities only.

To avoid technical diiculties with the iteration operator, we should not allow aoncurrency at the highest
level of the second argument of iteration. This is not a sevestriction though, since we can always prefix parallel
expressions by an activity with the empty multiaction pdrater on, in Example 4.2, we shall demonstrate that
relaxing the restriction can result in nets which are no¢ safternatively, we can use aftBrent, safe, version of the
iteration operator, but its net translation has six argusie®ee also [16] for discussion on this subject.

Definition 2.3. Let (o, k) € ST L anda € Act A regular static expressioaf dtsiPBC is defined as

E:= (a,x) |E;E|E[JE|E|IE|E[f]|Ersal| Esya]|[E =D« E],
whereD ::= (a,«) | D;E | D[JD | D[f] | Drsa|Dsya|[D =D = E].

Let RegS tatE xpdenote the set d@ll regular static expressionsf dtsiPBC.

Dynamic expressions specify the states of processes. Asaliesee, the expressions correspond to LDTSIPNs
(which are marked by default). Dynamic expressions areinddsrom static ones, by annotating them with upper or
lower bars which specify the active components of the sysiime current moment of time. The dynamic expression
with upper bar (the overlined on&) denotes thénitial, and that with lower bar (the underlined origlenotes the
final state of the process specified by a static expredsioithe underlying static expressioof a dynamic one is
obtained by removing all upper and lower bars from it.

Definition 2.4. Let E € StatExpranda € Act A dynamic expressioof dtsiPBC is defined as

G:= E|E|G.E|E;G|G[E|E[G|GIG|G[f] |Grsa|Gsya|[G*Ex«E]|[E+GxE]|[Ex*ExG].

Let DynExprdenote the set dadll dynamic expressionsf dtsiPBC.
Note that if the underlying static expression of a dynamie smot regular, the corresponding LDTSIPN can be
non-safe (though, it is 2-bounded in the worst case [16]).

Definition 2.5. A dynamic expression igularif its underlying static expression is regular.

Let RegDynE xpdenote the set dadll regular dynamic expressiord dtsiPBC.



3. Operational semantics

In this section, we define the step operational semanti@ring of labeled transition systems.

3.1. Inactionrules

The inaction rules for dynamic expressions describe theicsiral transformations in the form & = G which
do not change the states of the specified processes. Thefghabke syntactic transformations is to obtain the well-
structured resulting expressions called operative onadich no inaction rules can be further applied. As we shall
see, the application of an inaction rule to a dynamic exjwasioes not lead to any discrete time tact or any transition
firing in the corresponding LDTSIPN, hence, its current nregkemains unchanged.

Thus, an application of every inaction rule does not reqaimg discrete time delay, i.e. the dynamic expression
transformation described by the rule is accomplished irtista

First, in Table 1, we define inaction rules for regular dynaexpressions in the form of overlined and underlined
static ones. In this tabl&, F, K € RegS tatExpanda € Act

Table 1: Inaction rules for overlined and underlined regstatic expressions.

EF=EF EF=EF EF=EF EIF — EOF
E[IF = E[IF E[IF = EQIF E[E = ElF E|F = EIIF

ElF = EIF E[f] = E[f] E[f] = E[f] Ersa=Ersa
Ersa=Ersa Esya=Esya Esya:?sya [ExF«K] = [ExF *K]
[ExF«K]=[E*F*K] [ExFxK]=[ExF K] [E*E*KQE*F*R] [ExF xK] = [Ex*F xK]

Second, in Table 2, we introduce inaction rules for reguaraginic expressions in the arbitrary form. In this table,
E,F € RegStatExprG, H,G, H € RegDynExpanda € Act

Table 2: Inaction rules for arbitrary regular dynamic exsgsiens.

G=G, ol G=G, o[} G=>G H=H G=G
GoE=GoE EoG=EoG G|IH = G|H GlIH = G|IH G[f] = G[f]

G =G, o€ {rs,sy} G=G G=G G=G
Goa=Goa [G+xE*F] =>[G+ExF] [ExGx*F]=[E+«GxF] [ExF«G]=[E*F xG]

Definition 3.1. A regular dynamic expressida is operativeif no inaction rule can be applied to it.

Let OpRegDynE xpdenote the set dadll operative regular dynamic expressioofdtsiPBC.
Note that any dynamic expression can be always transformtedai (not necessarily unique) operative one by
using the inaction rules. In the following, we consider legexpressions only and omit the word “regular”.

Definition 3.2. Let~ = (= U <)* be a structural equivalence of dynamic expressions in @GiH hus, two dynamic
expression$s andG’ arestructurally equivalentdenoted byG ~ G’, if they can be reached from each other by
applying the inaction rules in a forward or backward direati



3.2. Action and empty loop rules

The action rules are applied when some activities are ezdcWith these rules we capture the prioritization of
immediate multiactions with respect to stochastic ones.alse have the empty loop rule which is used to capture
a delay of one discrete time unit in the same state when no diateemultiactions are executable. In this case, the
empty multiset of activities is executed. The action and tgrigop rules will be used later to determine all multisets
of activities which can be executed from the structural egjence class of every dynamic expression (i.e. from the
state of the corresponding process). This informationttegyavith that about probabilities or weights of the aci@st
to be executed from the current process state will be usealtolate the probabilities of such executions.

The action rules with stochastic (or immediate, otherwisaltiactions describe dynamic expression transforma-

tions in the form ofG > G (orG 4 G) due to execution of non-empty multisét®f stochastic (ot of immediate)
multiactions. The rules represent possible state charfghe specified processes when some non-empty multisets of
stochastic (or immediate) multiactions are executed. Ashadl see, the application of an action rule with stochastic
(or immediate) multiactions to a dynamic expression leadthé corresponding LDTSIPN to a discrete time tact
at which some stochastic transitions fire (or to the insteadas firing of some immediate transitions) and possible
change of the current marking. The current marking remaichanged only if there is a self-loop produced by the
iterative execution of a non-empty multiset, which must be-element, i.e. the single stochastic (or immediate)
multiaction. The reason is the regularity requirement #ilmws no concurrency at the highest level of the second
argument of iteration.

The empty loop rule (applicable only when no immediate raatiobns can be executed from the current state)

describes dynamic expression transformations in the fdr@ 6% G due to execution of the empty multiset of
activities at a discrete time tick. The rule reflects a norezobability to stay in the current state at the next time
moment, which is an essential feature of discrete time ststahprocesses. As we shall see, the application of the
empty loop rule to a dynamic expression leads to a discrete tact in the corresponding LDTSIPN at which no
transitions fire and the current marking is not changed. iBhésnew rule that has no prototype among inaction rules

of PBC, since it represents a time delay, but no notion of txists in PBC. The PBC rul& % G from [17, 16]

in our setting would correspond to the r@e= G that describes staying in the current state when no timesetap
Since we do not need the latter rule to transform dynamicesgions into operative ones and it can even destroy the
definition of operative expressions, we do not introduce itsiPBC.

Thus, an application of every action rule with stochastidtiactions or the empty loop rule requires one discrete
time unit delay, i.e. the execution of a (possibly empty) tisat of stochastic multiactions leading to the dynamic
expression transformation described by the rule is acdsim instantly after one time unit. An application of
every action rule with immediate multiactions does not takg time, i.e. the execution of a (hon-empty) multiset of
immediate multiactions is accomplished instantly at theent moment of time.

Note that expressions of dtsiPBC can contain identicaditiets. To avoid technical dficulties, such as the proper
calculation of the state change probabilities for multiplnsitions, we can always enumerate coinciding actiitie
from left to right in the syntax of expressions. The new atifig resulted from synchronization will be annotated
with concatenation of numberings of the activities they edrom, hence, the numbering should have a tree structure
to reflect the &ect of multiple synchronizations. Now we define the numlgevihich encodes a binary tree with the
leaves labeled by natural numbers.

Definition 3.3. Thenumberingof expressions is defined as= n| (¢t)(c), wheren € N.
Let Numdenote the set all numberingf expressions.

Example 3.1. The numberindl encodes the binary tree depicted in Figure 1(a) with the fabeled byl. The
numbering(1)(2) corresponds to the binary tree depicted in Figure 1(b) withianternal nodes and with two leaves
labeled byl and2. The numbering1)((2)(3)) represents the binary tree depicted in Figure 1(c) with amerinal
node, which is the root for the subtré®)(3), and three leaves labeled ly2 and3.

The new activities resulting from synchronizations iffelient orders should be considered up to permutation of
their numbering. In this way, we shall recognizéelient instances of the same activity. If we compare the ctsite
of different numberings, i.e. the sets of natural numbers in thenshall be able to identify the mentioned instances.
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Figure 1: The binary trees encoded with the numberingd(2) and (1)((2)(3)).

Thecontentof a numbering € Numis

(1), te N;
Conty) = { Conf(i1) U Contea), ¢ = (11)(c2).

After the enumeration, the multisets of activities from #xpressions will become the proper sets. Suppose that
the identical activities are enumerated when needed ta@arbiguity. This enumeration is considered to be implicit.

Let X be some set. We denote the Cartesian productX by X2. Let& € X? be an equivalence relation o6
Then theequivalence claséwith respect taS) of an elemenk € X is defined by K]l = {y € X | (x,y) € &}. The
equivalence partitionsX into theset of equivalence classe$g$= {[X]¢ | X € X}.

Let G be a dynamic expression. The@]L = {H | G ~ H} is the equivalence class & with respect to the
structural equivalences is aninitial dynamic expression, denoted injt(G), if 3E € RegStatExprG € [E]~. G is
afinal dynamic expression, denoted bial(G), if E € RegStatExprG € [E]-.

Definition 3.4. LetG € OpRegDynExprWe define thaet of all non-empty sets of activities which can be potéyntia
executed from Gdenoted byCan(G). Let (o, «) € ST L, E,F € RegStatExprH € OpRegDynExpanda € Act

1. If final(G) thenCan(G) = 0.
2. If G = (@, ) thenCan(G) = {{(a, «)}}.
3. If T e Can(G) thenT € CanGo E), T € CanE o G) (o € {;,[]}), T € Can(G||H), T € Can(H||G),
f(T) e Can(G[f]), T € Can(Grs a) (whena,a ¢ A(Y)), T € Can(G sy a), T € Can([G = E * F]),
T e Can[E =G = F]), T € Can(E = F = G]).
4. If T € Can(G) and= € Can(H) thenY + E € Can(G||H).
5. If Y € Can(G sy a) and ¢, «), (8, 1) € T are diferent activities such thate «, & € g then
@) (F+{(a@ap,c- D)\ {(e.4), (B, )} € CanG sy a), if «, 1 € (0; 1);
(b) (T + {(@®a B,k + DN\ {(a, k), (B, 1)} € Can(G sy a), if k, A € Nxj.
When we synchronize the same set of activities ifiedeént orders, we obtain several activities with the
same multiaction and probability or weight parts, but witfietent numberings having the same content.
Then we only consider a single one of the resulting actwitieavoid introducing redundant ones.
For example, the synchronization of stochastic multiaxi@, o)1 and 3, ). in different orders generates
the activities & @a 5,0 - X))2) and B @a @, x - p))w). Similarly, the synchronization of immediate
multiactions &, 1)1 and @, m), in different orders generates the activitiesst 8, | + m)1y2) and
(B ®a o, m+ l)2y1). SinceCont((1)(2)) = {1,2} = Con{(2)(1)), in both cases, only the first activity (or,
symmetrically, the second one) resulting from synchrdiopawill appear in a set fror€an(G sy a).

Note that if Y € Can(G) then by definition ofCan(G), YE C T, E # 0, we haves € CanG).

LetG € OpRegDynExprObviously, if there are only stochastic (or only immedjatriltiactions in the sets from
Can(G) then these stochastic (or immediate) multiactions carxbewged fronG. Otherwise, besides stochastic ones,
there are also immediate multiactions in the sets f@an(G). By the note above, there are non-empty sets of imme-
diate multiactions irCan(G) as well, i.e.37 € Can(G), T € N{If \ {0}. In this case, no stochastic multiactions can
be executed frors, even ifCan(G) contains non-empty sets of stochastic multiactions gsimenediate multiactions
have a priority over stochastic ones, and should be exefintéd
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Definition 3.5. Let G € OpRegDynE xprTheset of all non-empty sets of activities which can be exeduedGis

_ | can@), (Can(G) € Nyt \ {0)) v (Can(G) € Nt \ (0));
Now() = { Can(G) N NZ£,  otherwise

An expressiorG € OpRegDynExpis tangible denoted bytang(G), if NowG) < me \ {0}. Otherwise, the
expressiol is vanishing denoted bywanisi{G), and in this cas&low(G) C me \ {0}.

fin>

Example3 2.Let G = (({a}, 1)[I({b 2))||( 2) and G = (({a}, 1)[]({b}, 2) 2))||( 2) Then G~ G/, but Car(G) =

{{(fa), 1)), {(fe), ) (@ 1), (fe), )1, Can(G') = {{({b), )}, {({e), 5)1 (b}, 2), ({c), 5)1) and NowG) = {{({a), 1)},
Now(G") = {{({b}, 2)}}. Clearly, we have vanig) and vaniskG’). The executions like that éf(c}, 3)} (and all sets
including it) from G and G must be disabled using preconditions in the action ruleszesimmediate multiactions
have a priority over stochastic ones, hence, the former amays executed first.

Let H = ({a}, 1)[({b}, 2) and H = ({a}, 1)[I({b}, ). Then H~ H’, but Car{H) = Now(H) = {{({a}, 1)}} and
Can(H’) = NowH’) = {{({b}, 2)}}. We have vanigit), but tandH’). To make the action rules correct under
structural equivalence, the executions like thaf(¢if}, %)} from H must be disabled using preconditions in the action
rules, since immediate multiactions have a priority oveckastic ones, hence, the choices between them are always
resolved in favour of the former.

Now, in Table 3, we define the action and empty loop rules. imtdble, &, p), (B,x) € SL, (a,1),(8,m) € 7L
and @,«) € SIL. Further, E F € RegStatExprG, H e OpRegDynExprG,H € RegDynExpranda € Act
Moreover,[, A € NS5\ {0}, T7 e NS£ 1,0 e NEE\{0), 17 € NTZ andT e NPT\ {0). The first rule in the table
is the empty loop rul&l. The other rules are the action rules descrlblng transdions of dynamic expressions,
which are built using particular algebraic operations. éf@annot merge a rule with stochastic multiactions and a rule
with immediate multiactions for some operation then we fetdoupled action rules. In such cases, the names of the
action rules with immediate multiactions have dfisu'i’. To make presentation more compact, the action rules with
double conclusion are combined from two distinct actioeswhith the same premises.

Almost all the rules in Table 3 (exceptifd, P2, P2i, Sy2andSy2i) resemble those of gsPBC [61], but the former
correspond to execution of sets of activities, not of sireglgvities, as in the latter, and our rules have simpler pre-
conditions (if any), since all immediate multiactions isSi®BC have the same priority level, unlike those of gsPBC.
The preconditions in ruleBl, C, P1, 12 andI3 are needed to ensure that (possibly empty) sets of stochmastti-
actions are executed only frofangibleoperative dynamic expressions, such that all operativauhyo expressions
structurally equivalent to them are tangible as well. Faregle, ifinit(G) in rule C thenG = F for some static
expressiorF andG[]E = F[]E ~ F[]E. Hence, it should be guaranteed ttaatg(F[] E), which holds if tang(E). The
caseE[]G is treated similarly. Further, in rulel, assuming thaiangG), it should be guaranteed thaing(G||H) and
tang(H||G), which holds ff tang(H). The preconditions in ruld? andI3 are analogous to that in ru@

RuleEl corresponds to one discrete time unit delay while executingctivities and therefore it has no analogues
among the rules of gsPBC that adopts the continuous time imnode

RulesP2 andP2i have no similar rules in gsPBC, since interleaving semantfache algebra allows no simul-
taneous execution of activities. On the other haP@andP2i have in PBC the analogous ruRAR that is used to
construct step semantics of the calculus, but the formerrtiles correspond to execution of sets of activities, unlike
that of multisets of multiactions in the latter rule.

RulesSy2 and Sy?2i differ from the corresponding synchronization rules in gsPB@esthe probability or the
weight of synchronization in the former rules and the ratéher weight of synchronization in the latter rules are
calculated in two distinct ways.

RuleSy2establishes that the synchronization of two stochastitiantions is made by taking the product of their
probabilities, since we are considering that both must ofmuthe synchronization to happen, so this corresponds,
in some sense, to the probability of the independent evéartsiection, but the real situation is more complex, since
these stochastic multiactions can be also executed inlglarblevertheless, when scoping (the combined operation
consisting of synchronization followed by restriction otlee same action [16]) is applied over a parallel executian,
get as final result just the simple product of the probabsitsince no normalization is needed there. Multiplicaison
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Table 3: Action and empty loop rules.

T ~
g 2ndS) B(@n) 3 (@,x) s——2>2¢ _
G-G G, E—-G,E,EiG—->EG
.G L G, =init(G) v (init(G) A tang(E)) - GLG oy G L G, tangH)
GE & G[IE, E[IG 5 E[IG GIE 5 G[IE, EIG S EJG  GIH 5 G|H, HIG 5 HIG
|~ r ~ A ~ | = ] o~
P1i . ~G =G — pp G2 G H=H Gn:' :’f' ppi &2 G H=H GHJH j~H
GIH 2 GlIH, HIG & H|IG GIH 23 GIA GIH 2 GIA
cLéG Rseié,a,agﬂ('r) 1 cLG
o] 18 6 Grsa—>Grsa [G+E%F] 5 [G+E *F]
G L G, —init(G) v (init(G) A tang(F)) o GLG
[E+GxF] 5 [ExGxF] [E+GxF] - [ExGxF]
3 G L G, —init(G) v (init(G) A tang(F)) " GLG sy1—© LG
[E+F %G] 5 [E«F «G] [E+F %G] 5 [E*F «G] GsyasGsya
U +H(@o)+HBX)) = ~ +H@)+HBm) =< ~
Sstya——eGsya,aea,aeﬁ SZiGsya——»Gsya,aea,aeﬁ
y PH@ebr0l ~ y I H@epl M) ~
Gsya———> Gsya Gsya—— > Gsya

an associative and commutative binary operation that isldligive over addition, i.e. it fulfills all practical coiittbns
imposed on the synchronization operator in [46]. Furthfeébpth arguments of multiplication are from (0; 1) then
the result belongs to the same interval, hence, multiptinataturally maintains probabilistic compositionalityour
model. Our approach is similar to the multiplication of sat# the synchronized actions in MTIPP [45] in the case
when the rates are less than 1. Moreover, for the probasiitindy of two stochastic multiactions to be synchronized
we havep - y < min{p, y}, i.e. multiplication meets the performance requiremestirsg that the probability of the
resulting synchronized stochastic multiaction shoulddss than the probabilities of the two ones to be synchronized
While performance evaluation, it is usually supposed thatexecution of two components together require more
system resources and time than the execution of each singleThis resembles tHmunded capacitassumption
from [46]. Thus, multiplication is easy to handle with andatisfies the algebraic, probabilistic, time and perforcean
requirements. Therefore, we have chosen the product ofrttmpilities for the synchronization. See also [23, 22]
for a discussion about binary operations producing thesm@tsynchronization in the continuous time setting.

In rule Sy2i, we sum the weights of two synchronized immediate multiansj since the weights can be interpreted
as the rewards [81], thus, we collect the rewards. Next, weess that the synchronized execution of immediate
multiactions has more importance than that of every singke @he weights of immediate multiactions can be also
seen as bonus rewards associated with transitions [12].révberds are summed during synchronized execution of
immediate multiactions, since in this case all the synclzemhactivities can be seen as “operated”. We prefer toclle
more rewards, thus, the transitions providing greater resvaill have a preference and they will be executed with a
greater probability. Since execution of immediate muti@ts takes no time, we prefer to execute in a step as many
synchronized immediate multiactions as possible to geers@nificant progress in behaviour. Under behavioural
progress we understand an advance in executing activtieish does not always imply a progress in time, as in
the case when the activities are immediate multiactiongs aspect will be used later, while evaluating performance
via analysis of the embedded discrete time Markov chainsT{#0s) of expressions. Since every state change in
EDTMC takes one unit of (local) time, greater advance in afien of the EDTMC allows one to calculate quicker
performance indices.
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Table 4: Comparison of inaction, action and empty loop rules

| Rules | State change Time progress Activities execution

Inaction rules - - -
Action rules + + +
(stochastic multiactions
Action rules + - +
(immediate multiactions
Empty loop rule - + -

Example 3.3. In the following cases, the weights of immediate multiaxtiare interpreted as bonus rewards to be
summed while synchronous or parallel execution of the inm@chultiactions specifying instantaneous probabitisti
choice.

e A customer in a shop considers which products to purchasaviliget a bonus (pay points) k when he decides
({a}, k) to buy the product A and, for the decidif{@}, ) to buy the product B, he will have the bonus |. Thus,
on every decision to buy both products A and B (first A, and tirext B; or first B, then A; or on the decision
{({a}, k), {a}, 1)} to buy A and B together, in one visit to the shop, i.e. in patatir on the decisiorfd, k + I) to
buy a kit with A and B, which corresponds to their synchrothigzemposition), the customer will get a bonus
k + 1, this is a standard and well-accepted practice.

e A cook in a fast-food restaurant plans his everyday work kompa two-component dinner dish of vegetables
and meat), that consists in the decisi@a}, k) to perform work A (boil vegetables), for which he will get a
payment k, and the decisidfa}, 1) to perform work B (fry meat), with the payment |. The works A &n
are independent, and they can be even done together, siamedte several (at least, two) free rings on the
electric cooker in the kitchen. Then, on every decision tfope both works A and B (first A, then B; or first
B, then A; or on the decisioft{a}, k), {4}, )} to perform A and B in parallel; or on the decisid®, k + I) to do
a work including both A and B, for example, to warm up a frozemlgined (two-in-one) product (consisting of
vegetables and meat), prepared by the cook ahead of timehwbrresponds to the synchronized composition
of works A and B), the cook will get a payment k this is logical and fair.

In the both situations above, more successful customerak spends less resources (power, electricity, water, &ic.)
get his bonus or paymentk Thus, the preferred and encouraged way of doing (the ideh&viour or work) consists

in the parallel or the synchronized executing of actionsic8iwe prefer to collect more bonus rewards, clearly, the
decisions providing more rewards must have a preferenceshodld be executed with a greater probability.

The standard approach while system modeling within dtsiBBE split the system operations into the probabilis-
tic decision, specified by an immediate multiaction, andtitme-consuming work followed, that is specified by one
or more stochastic multiactions. It is more natural to iptet weights of immediate multiactions as bonus rewards,
subsequently used to determine the decision probabijlgirse probabilities of stochastic multiactions are idteh
to calculate the duration of work.

Observe also that we do not have self-synchronizationsyechronization of an activity with itself, since all the
(enumerated) activities executed together are considerkd diferent. This allows us to avoid rather cumbersome
and unexpected behaviour, as well as many techni@duliies [16].

In Table 4, inaction rules, action rules (with stochastitnemediate multiactions) and empty loop rule are com-
pared according to the three questions about their apjgicavhether it changes the current state, whether it leads t
a time progress, and whether it results in execution of satigities. Positive answers to the questions are denoted
by the plus sign while negative ones are specified by the nsigrs If both positive and negative answers can be
given to some of the questions irfidirent cases then the plus-minus sign is written. The pratatss are considered
up to structural equivalence of the corresponding exprassiand time progress is not regarded as a state change.
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3.3. Transition systems

Now we construct labeled probabilistic transition systeaasociated with dynamic expressions. The transition
systems are used to define the operational semantics of dyeapressions.

Definition 3.6. Thederivation sebf a dynamic expressio8, denoted byDR(G), is the minimal set such that

¢ [G]. € DRG);
e if [H]. € DR(G) and3Y, H - H then []. € DR(G).

Let G be a dynamic expression as® € DR(G).

The set ofall sets of activities executable insdefined aExecs) = {T |IH € s, IH, H 5 H}.
It can be proved by induction on the structure of expresdioas’ € Exeds) \ {0} implies3H € s, T € Now(H).
The reverse statement does not hold in general, as the rexipds shows.

Example 3.4. Let H, H’ be from Example 3.2 and=s[H]. = [H’].. We have No{H) = {{({a}, 1)}} and NowH") =
{({b}, %)}}. Since only rule€i andB can be applied to H while no action rule can be applied tq We get Exe) =
{{({a}, 1)}}. Then for H € s andY = {({b}, %)} € Now(H’) we obtainT ¢ Exeqs).

The statesis tangible if Exeds) Nﬁf For tangible states we may hazeegs) = {0}. Otherwise, the stateis

vanishing and in this cas& xeds) C N{If \ {0}. The set ofall tangible states from DE&5) is denoted byDRr (G), and
the set ofall vanishing states from D{&) is denoted byDRy(G). Clearly, DR(G) = DR;(G) w DRy(G) (v denotes
disjoint union).

Note that if Y € Exeds) then by ruleP2, P2i, Sy2, Sy2iand definition ofExeds), Y= C T, E # 0, we have
E € Exeqs).

Since the inaction rules only distribute and move upper anei bars along the syntax of dynamic expressions,
all H € s have the same underlying static expresftorProcess expressions always have a finite length, hence, the
number of all (enumerated) activities and the number of@drations in the syntax &f are finite as well. The action
rulesSy2andSy?2iare the only ones that generate new activities. They resutt the handshake synchronization of
actions and their conjugates belonging to the multiactemsof the first and second constituent activity, respebtiv
Since we have a finite number of operatass in F and all the multiaction parts of the activities are finite tizeits,
the number of the new synchronized activities is also firlitee action rules contribute t6xeds) (in addition to the
empty set, if ruleéEl is applicable) only the sets consisting both of activitiesf F and the new activities, produced by
Sy2andSy?2i. Since we have a finite numbenf all such activities, we g¢E xegs)| < 2" < co. Thus, summation and
multiplication by elements from the finite sEixeqs) are well-defined. Similar reasoning can be used to demetestr
that for all dynamic expressior$ (not just for those frons), Now(H) is a finite set.

Let YT € Exeds) \ {#}. Theprobability that the set of stochastic multiactioxids ready for execution in er the
weight of the set of immediate multiactionisvhich is ready for execution inis

p- [l  @-x. seDRi@);
PF(T,s) = (@p)eT  {(Bx))eExe|9)|(B.x)eT)
Z l, se DRy(G).
(a.Der

In the casér’ = 0 ands € DRr(G) we define

(1-x), Exeqs) # {0};
PF(0,9) = { (Bx)cExets)
1, Execs) = {0}.

If se DRr(G) andExeds) # {0} thenPF(T, s) can be interpreted agj@int probability of independent events (in
a probability sense, i.e. the probability of intersectidrihese events is equal to the product of their probabi)ities
Each such an event consists in the positive or negativeidadis be executed of a particular stochastic multiaction.
Every executable stochastic multiaction decides prolstibélly (using its probabilistic part) and independgiitfom
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others), if it wants to be executed & If T is a set of all executable stochastic multiactions whichehdecided to
be executed irs andT € Exeds) then is ready for execution irs. The multiplication in the definition is used
because it reflects the probability of the independent eméertsection. Alternatively, whelf # 0, PF(, s) can be
interpreted as the probability to execuaeclusivelythe set of stochastic multiactionsin s, i.e. the probability of
intersectionof two events calculated using the conditional probabilitymula in the formP(X N'Y) = P(X|Y)P(Y).
The eveniX consists in the execution af in s. The eventy consists in the non-execution gof all the executable
stochastic multiactions not belonging 1o Since the mentioned non-executions are obviously indégr@revents,
the probability ofY is a product of the probabilities of the non-executioP&Y) = [1,,)cExeds)@.ner (1 — x)- The
conditioning of X by Y makes the executions of the stochastic multiactions fibmdependent, since all of them
can be executed in parallel by definition of Exeds). Hence, the probability to execuieunder conditiorthat no
executable stochastic multiactions not belonginy &re executed isis a product of probabilities of these stochastic
multiactions:P(X[Y) = [1, er p- Thus, the probability thar is execute@ndno executable stochastic multiactions
not belonging toY are executed irs is the probability ofX conditioned byY multiplied by the probability ofY:
P(XNY) = PXIY)P(Y) = [Twper P - [li@pcexeesignen (1 = x). WhenT = 0, PF(, s) can be interpreted as the
probability not to execute iis any executable stochastic multiactions, thRB(0, s) = [];,)cexeqs (1 — x). When
only the empty set of activities can be executed,ine. Exeqs) = {0}, we takePF(0, s) = 1, since we stay irsin
this case. Note that fare DRy (G) we havePF(0, s) € (0; 1], hence, we can stay Bat the next time moment with a
certain positive probability.

If se DRy(G) thenPF(T, s) can be interpreted as tlwwerall (cumulativeweight of the immediate multiactions
from 7, i.e. the sum of all their weights. The summation here is shece the weights can be seen as the rewards
which are collected [81]. In addition, this means that corent execution of the immediate multiactions has more
importance than that of every single one. The weights of idiate multiactions can be also interpreted as bonus
rewards of transitions [12]. The rewards are summed wheneidiate multiactions are executed in parallel, because
all of them “operated”, as a result. Since execution of imiaedmultiactions takes no time, we prefer to execute
in a step as many parallel immediate multiactions as passibfjet more progress in behaviour. This aspect will be
used later, while evaluating performance on the basis oEIDEMCs of expressions. Note that this reasoning is the
same as that used to define the probability of synchronizatkidiate multiactions in the rulgy2i. Another reason is
that our approach is analogous to the definition of the pritibabf conflicting immediate transitions in GSPNs [6].
The only diference is that we have a step semantics and, for every setrafdiate multiactions executed in parallel,
we use its cumulative weight. To get the analogy with GSPNss@ssing interleaving semantics, we interpret the
weights of immediate transitions of GSPNs as the cumulateights of the sets of immediate multiactions of dtsiPBC
(we assume that for each set of activities executable inta sfaa process specified by a dynamic expression of
dtsiPBC there exists a particular transition enabled ime¢spective marking of the corresponding GSPN). Since takin
positive real numbers as the weights of immediate multastilike in GSPNs) does not increase expressiveness of
the calculus, we use positive natural numbers for that mepo

Note that the definition dPF(r, ) (as well as the definitions of other probability functionsieh we shall present)
is based on the enumeration of activities which is consitiangplicit.

Let T € Exeds). BesidesY, some other sets of activities may be ready for executiog imence, a kind of
conditioning or normalization is needed to calculate thecetion probability. Theprobability to execute the set of
activitiesY in sis

PF(Y, s)
PF(E. )

ZeExecs)

If se DRr(G) thenPT(Y, s) can be interpreted as tltenditionalprobability to execut&” in s calculated using
the conditional probability formula in the forf(Z|W) = %. The even consists in the exclusive execution
of T in s, henceP(Z) = PF(Y, s). The eventV consists in the exclusive execution of any set (includirggempty
one)= € Exeds) in s. Thus,W = U;Z;, whereVj, Z; are mutually exclusive events (in a probability sense, i.e.
intersection of these events is the empty event) dindZ = Z;. We haveP(W) = 3, P(Zj) = Yzcexe¢s) PF(E. 9),
because summation reflects the probability of the mutuattjusive event union. SincenW = Z,nN(V;Z;) = Z = Z,

we haveP(Z|W) = % = %. PF(T, s) can be also seen as thetentialprobability to execut&' in s, since

PT(Y, ) =
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we havePF(Y, s) = PT(Y, s) only whenall sets (including the empty one) consisting of the executataehastic
multiactions can be executed é& In this case, all the mentioned stochastic multiactiomshmexecuted in parallel

in sand we havezcexeqs) PF(E, 5) = 1, since this sum collects the productsadifcombinations of the probability
parts of the stochastic multiactions and the negationsexfeitparts. But in general, for example, for two stochastic
multiactions &, p) and 3, y) executable irs, it may happen that they cannot be executesltimgether, in parallel, i.e.

0, {(a, )}, {(8, x)} € Exeqs), but{(a, p), (B, x)} ¢ Execs). Note that fors € DRr(G) we havePT(0, s) € (0; 1], hence,
there is a non-zero probability to stay in the statd the next time moment, and the residence timgimat least 1
discrete time unit.

If s e DRy(G) thenPT(Y, s) can be interpreted as the weight of the set of immediateiactitbnsY which is
ready for execution irs normalizedy the weights ofll the sets executable &

The advantage of our two-stage approach to definition of tbbagbility to execute a set of activities is that the
resulting probability formuld@T (7, s) is valid both for (sets of) stochastic and immediate matians. It allows one
to unify the notation used later while constructing the atienal semantics and analyzing performance.

Note that the sum of outgoing probabilities for the expmssibelonging to the derivations & is equal to 1.
More formally,Vs € DR(G), Y veexeqsy PT(T,S) = 1. This, obviously, follows from the definition &?T((, s), and
guarantees that it always defines a probability distritsutio

Theprobability to move from s t8 by executing any set of activitiiss

PM(s 3 = Z PT(Y, 9).
(T[AHes, T8 H-SH)
The summation in the definition above reflects the probgbdit the mutually exclusive event union, since
PT(Y,9) = 1 PF(T, s), where for eaclr’, PF(, s) is the prob-

2['_Y‘|_3Hes, IHes HOA) Szcereqy PFES) ZI'Y‘BHES, IHes HSA)
ability of the exclusive execution of in s. Note that/s € DR(G), > PM(s, 8 =

% 2,

{§FHes FAE 3T, HLA)

(§3Hes, FAS T, HSA) PT(Y, ) = Zreexeqs PT(T.9) = 1.

(T AHes, IHeE HSA)
Example 3.5. Let E = ({a}, p)[]({a}, x), wherep, y € (0;1). DR(E) consists of the equivalence classgs=sS[E]-
and $ = [E].. We have DR(E) = {s1, S;}. The execution probabilities are calculated as follows\cBIE xets;) =
{0.{({a}. )} {({a}, )}, we get PR{({a}. p)}. s1) = p(1 - x), PF({(fal.x)} 1) = x(1 - p) and PRO,s;) = (1 -
P - x) Thenz_eEerSi) PFE. s1) = p(1-x) +x(1-p) + (1 - p)A -x) = 1-px. Thus, PT{({a}.p)}. 51) =
2429 pT((({a}, )} s1) = 222 and PT(0, s1) = PM(s1, 1) = %. Further, Exe¢s;) = {0}, hence,

1-px ° 1-px
Yzekxeqs) PFE. 82) = PF(0, %) = 1and PT(0, ) = PM(s, ) = § = 1. Finally, PM(s1, 82) = PT({({a}, p)}, s1) +
PT((((a), ) 50) = 42 + Ha) — oo

Let E = ({a}, )[]({a}, m), where |m € Ns;. DR(E’) consists of the equivalence classgegs{g]: and g = [E']..

We have DR(E’) ={s,}and DR,(E ) = {s;}. The execution probabilities are calculated as followsiIcBIE xe¢s, ) =

{{({a}, D}, {({a}, m)}}, we get PR{({a}, )}, 5'1) I and PF( aj,my},s) = m. ThenzgeExeq%)PF(E,s’l) =1+m.
Thus, PT{({a},)}.s) = I+m and PT({({a}, m)},s)) = . Further, Exe¢s)) = henceziExed%) PF(:, s) =
PF(0, gz) = 1and PT(0,s) = PM(s,, sz) 1 = 1. Finally, PM(s|, s)) = PT( aL ), s) + PT({({a), m), s) =

' =1

T+m + I+m

Definition 3.7. Let G be a dynamic expression. Tifiebeled probabilistic) transition systeof G is a quadruple
TS(G) = (Se, Le, TG, Ss), Where

e the set ofstatesis Sg = DR(G);
e the set ofabelsis Lg = 257£ x (0; 1];
« the set otransitionsis 75 = {(s (7, PT(Y,9),9 | s §€ DRG), dH e s dH € & H 5 A):

e theinitial stateis sg = [G].
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The definition ofT S(G) is correct, i.e. for every state, the sum of the probabdinf all the transitions starting
fromitis 1. This is guaranteed by the note after the definibbPT(r, s). Thus, we have definedgenerativenodel
of probabilistic processes [39]. The reason is that the sthregprobabilities of the transitions with all possible ééd
should be equal to 1, not only of those with the same labeltqmumeration of activities they include) as in the
reactivemodels, and we do not have a nested probabilistic choicethg siratifiedmodels.

The transition syster S(G) associated with a dynamic expressi®rdescribes all the steps (concurrent execu-
tions) that occur at discrete time moments with some (oep}gtrobability and consist of sets of activities. Everypste
consisting of stochastic multiactions or the empty step (ihat consisting of the empty set of activities) occurs in-
stantly after one discrete time unit delay. Each step ctingisfimmediate multiactions occurs instantly withouyan
delay. The step can change the current state. The statdseatuctural equivalence classes of dynamic expressions
obtained by application of action rules starting from thpressions belonging t&] .. A transition §, (Y, P), 9 € T¢

. . T o .. - ~ . .
will be written ass —¢ §. It is interpreted as follows: the probability to charg® §as a result of executiny is P.
Note that for tangible state¥; can be the empty set, and its execution does not change trentatate (i.e. the

equivalence class), since we have a loop trans'ﬂ;iewmp s from a tangible stats to itself. This corresponds to the
application of the empty loop rule to expressions from th&edence class. We have to keep track of such executions,
calledempty loopsbecause they have non-zero probabilities. This folloasifthe definition oPF(0, s) and the fact
that multiaction probabilities cannot be equal to 1 as thelpig to the interval (0; 1). For vanishing statésannot
be the empty set, since we must execute some immediate atialtia from them at the current moment.

The step probabilities belong to the interval (0; 1], beirig the case when we cannot leave a tangible stated

the only transition leaving it is the empty loop ogse»1 s, or if there is just a single transition from a vanishing stat
to any other one.

We Writesl Sif AP, SI)p Sands — §if AT, SI) S.
The first equivalence we are going to introduce is isomomhigich is a coincidence of systems up to renaming
of their components or states.

Definition 3.8. Let TS(G) = (Sg, Le, 76, Ss) andT S(G') = (Se', Le» Te, So) be the transition systems of dynamic
expression& andG’, respectively. A mapping : Sg — Sg is anisomorphisnbetweenT S(G) andT S(G’), denoted
byg: TS(G) =~ TS(G), if

1. Bis a bijection such thg(sg) = s

2. Vs, 8€ Sg, VT, Sip 5 o B(9) I@ B(3).
Two transition systems S(G) andT S(G’) areisomorphic denoted byl S(G) ~ T S(G'), if 38 : TS(G) = TS(G).

Transition systems of static expressions can be definedlasfweE € RegS tatExpriet TS(E) = T S(E).
Definition 3.9. Two dynamic expressions andG’ are equivalent with respect to transition systerdgnoted by
G =G, if TS(G) ~ TS(G).

Example 3.6. Consider the expressidtop = ({g}, %) rs g specifying the special process that is only able to perform
empty loops with probabilitit and never terminates. We could actually use any arbitratyoacfrom A and any
probability belonging to the intervgD; 1)in the definition oStop. Note thatStop is analogous to the one used in the
examples of [60]. Then, faf, y,0,¢ € (0; 1)and L m e N5, let

E = [({a}, p) = (({b}, x); (((ch, 1); (), ) I(({e}, m); ({ T}, ¢)))) * Stop].

DR(E) consists of the equivalence classes

s = [[({a}, p) = (({b} x); (((eh, 1); ({d), 0)(({ed, m); (111, ¢))))  Stop]] .
sz = [[({a}, p) = (({b}. x); ((({eh, 1); (d}, ) [(({e}, m); (£}, 4))))  Stop]] .
ss = [[({a}, p) = (({b}, x); (((eh, 1); ({d}, O)(({ed, m); (1£1, ¢)))) = Stop]] ~,
sa = [[(fa, p) * (b}, x); (((fe}, 1); ({d), O)O((ted, m); (1), 9)))) * Stop]] -,
ss = [[({a), {b} {c}.1); (td}, { {f},

[({a), ) * (({b}, x); ((Cteh, ); (), O)D(( (&), m); ((F), 6))
17
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Figure 2: The transition system &ffor E = [({a}, p) * (({b}, x); ((({c}, 1); ({d}, O(({e}, m); ({ T}, ¢)))) * Stop].

We have DR(E) = {s1, S, S4, S5} and DR/(E) = {sg}.

In Figure 2, the transition system TB) is presented. The tangible states are depicted in ovalslamsadnishing
ones are depicted in boxes. For simplicity of the graphiepresentation, the singleton sets of activities are writte
without outer braces.

4. Denotational semantics

In this section, we construct the denotational semanti¢srins of a subclass of labeled discrete time stochastic
and immediate PNs (LDTSIPNSs), called discrete time staghaad immediate Petri boxes (dtsi-boxes).

4.1. Labeled DTSIPNs

Let us introduce a class of labeled discrete time stochasticimmediate Petri nets (LDTSIPNSs), a subclass of
DTSPNs [72, 73] (we do not allow the transition probabistte be equal to 1) extended with transition labeling and
immediate transitions. LDTSIPNs resemble in part disctiete deterministic and stochastic PNs (DTDSPNSs) [92],
as well as discrete deterministic and stochastic PNs (DB3FN]. DTDSPNs and DDSPNs are the extensions of
DTSPNs with deterministic transitions (having fixed delhgittcan be zero), inhibitor arcs, priorities and guards.
In addition, while stochastic transitions of DTDSPNSs, ltkese of DTSPNs, have geometrically distributed delays,
stochastic transitions of DDSPNs have discrete time phizsébtdited delays. At the same time, LDTSIPNs are not
subsumed by DTDSPNs or DDSPNSs, since LDTSIPNs have a stepngiesiwhile DTDSPNs and DDSPNs have
interleaving one. LDTSIPNs are somewhat similar to labeleighted DTSPNs (LWDTSPNSs) from [29], but in
LWDTSPNSs there are no immediate transitions, all (stodtjastnsitions have weights, the transition probabiitie
may be equal to 1 and only maximal fireable subsets of the edatansitions are fired.

Stochastic preemptive time Petri nets (SpTPNs) [24] isereis time model with a maximal step semantics, where
both time ticks and instantaneous parallel firings of maxitramsition sets are possible, but the transition steps in
LDTSIPNSs are not obliged to be maximal. The transition delieyspTPNs are governed by static general discrete
distributions, associated with the transitions, whiletth@sitions of LDTSIPNs are only associated with probsbsi
used later to calculate the step probabilities after ong(froim tangible markings) or zero (from vanishing markings
delay. Further, LDTSIPNSs have just geometrically distr#alior deterministic zero delays in the markings. Moreover,
the discrete time tick and concurrent transition firing asated in sSpTPNs as féikrent events while firing every
(possibly empty) set of stochastic transitions in LDTSIREguires one unit time delay. SpTPNs are essentially
a modification and extension of unlabeled LWDTSPNSs with toldal facilities, such as inhibitor arcs, priorities,
resources, preemptions, schedulers etc. However, the girisuch an expressiveness of spTPNs is that the model is
rather intricate and dicult to analyze.

Note also that guards in DTDSPNs and DDSPNSs, inhibitor ardgpaiorities in DTDSPNs, DDSPNs and spTPNs,
as well as the maximal step semantics of LWDTSPNs and spTRiks all these models Turing powerful, resulting
in undecidability of many important behavioural propestie
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First, we present a formal definition of LDTSIPNSs.

Definition 4.1. A labeled discrete time stochastic and immediate Petri nBT&IPN)is a tuple
N = (Pn, Tn, Wi, Qn, £y, My), where

e Py andTy = TsywTiy are finite sets oplacesandstochastic and immediate transitigmespectively, such that
PyUTN #0andPy N Ty =0;

e Wy @ (Pn X Tn) U (Tn X Py) — Nis a function providing theveights of arcbetween places and transitions;

e Q) : Ty — (0; 1)U Ny is thetransition probability and weighfunction associating stochastic transitions with
probabilities and immediate ones with weights;

e [\ : Ty — Listhetransition labelingfunction assigning multiactions to transitions;
e My € Nfif1 is theinitial marking.

The graphical representation of LDTSIPNs is like that fanstard labeled PNs, but with probabilities or weights
written near the corresponding transitions. Square bokastonal thickness depict stochastic transitions, andehos
with thick borders represent immediate transitions. Indase the probabilities or the weights are not given in the
picture, they are considered to be of no importance in theesponding examples, such as those used to describe the
stationary behaviour. The weights of arcs are depicted thi¢hn. The names of places and transitions are depicted
near them when needed.

Now we consider the semantics of LDTSIPNS.

LetN be an LDTSIPN ande Ty, U € Nm. Theprecondition"t and thepostconditiont of t are the multisets of
places defined astj(p) = Win(p,t) and ¢*)(p) = Wi(t, p). Theprecondition*U and thepostcondition U of U are
the multisets of places definedds = 3, *tandU*® = Y., t°. Note that forU =  we have’d = 0 = 0°.

LetN be an LDTSIPN and/, M € N7».

Immediate transitions have a priority over stochastic othess, immediate transitions always fire first, if they can.
Suppose that all stochastic transitions have priority Oahiuhmediate ones have priority 1. A transitibre Ty is
enabledn M if *t € M and one of the following holds:

1. teTiyor
2.YueTy, 'UCM = ueTx.

In other words, a transition is enabled in a marking if it haguegh tokens in its input places (i.e. in the places from
its precondition) and it is immediate one, otherwise, wttdéa stochastic one, there exists no immediate transition
with enough tokens in its input places. LEhaM) be the set ofll transitions enabled in M By definition, it
follows thatEnaM) C Tiy or Ena(M) C Tsy. A set of transitiond) € EnaM) is enabledin a markingM if
*U ¢ M. Firings of transitions are atomic operations, and trémsstmay fire concurrently in steps. We assume that
all transitions participating in a step shouldfdr, hence, only the sets (not multisets) of transitions nray fihus,
we do not allow self-concurrency, i.e. firing of transitiangarallel to themselves. This restriction is introduced t
avoid some technical fliculties while calculating probabilities for multisets ofnsitions as we shall see after the
following formal definitions. Moreover, we do not need to simter self-concurrency, since denotational semantics of
expressions will be defined via dtsi-boxes which are safe &IPNs (hence, no self-concurrency is possible).

The markingM is tangible denoted bytang(M), if Ena(M) € Tsy, in particular, ifEna(M) = 0. Otherwise, the
markingM is vanishing denoted bywanisi{M), and in this cas&naM) C Tiy andEna(M) # 0. If tang(M) then a
stochastic transitioh e Ena(M) fires with probabilityQy(t) when no other stochastic transitions conflicting with it
are enabled.

LetU ¢ EnaM), U # 0 and*U C M. Theprobability that the set of stochastic transitions U is rgddr firing
in M or theweight of the set of immediate transitions U which is readyifang in M is

[Ton®- [] @-n(w). tangm);
_ teU ueEna(M)\U
PR(U.M) = Do, vanisi(M).

teU
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In the cas&J = () andtang(M) we define

{ [] @-on), Enam)=o;
PF(Q), M) = ueEna(M)
1, EnaM) = 0.

LetU ¢ EnaM), U # 0 and*U C M or U = 0 andtang(M). BesidedJ, some other sets of transitions may be
ready for firing inM, hence, a kind of conditioning or normalization is needeckticulate the firing probability. The

concurrent firing of the transitions frol changes the markingl to M = M —*U + U*, denoted byM E)P M, where
P = PT(U, M) is theprobability that the set of transitions U fires in tefined as

PF(U, M)
> PR(V.M)

{V]*'VEM)

Note that in the case = 0 andtang{M) we haveM = M.

The advantage of our two-stage approach to definition of tbbability that a set of transitions fires is that the
resulting probability formul@T(U, M) is valid both for (sets of) stochastic and immediate témss. It allows one
to unify the notation used later while constructing the dational semantics and analyzing performance.

Note that for all markings of an LDTSIPN, the sum of outgoing probabilities is equal to 1. More foryal
VM e priﬁ, 2urucmy PT(U, M) = 1. This obviously follows from the definition d*T(U, M) and guarantees that it
defines a probability distribution.

We write M > M if 32, M 3, M andM — M if 3U, M 3 M.

The probability to move from M td/ by firing any set of transitionis

PT(U, M) =

PM(M, M) = Z PT(U, M).
UIME )

SincePM(M, M) is the probability forany (including the empty one) transition set to change marhihtp M,

we use summation in the definition. Note tidfl Nfiﬁ, Z:M‘\MHM‘} PM(M, M) — Z:M‘\MHM‘} Z(U\M—UM\W] PT(U, M) =
ZIUI'UQM] PT(U, M) = 1.

Definition 4.2. Let N be an LDTSIPN. Theeachability sebf N, denoted byRS(N), is the minimal set of markings
such that

e My € RS(N),
e if M € RS(N) andM — M thenM € RS(N).

Definition 4.3. Let N be an LDTSIPN. Theeachability graphof N is a (labeled probabilistic) transition system
RG(N) = (SN, Ln, TN, SN), where

o the set ofstatesis Sy = RS(N);

e the set ofabelsis Ly = 2™ x (0; 1];

o the set otransitionsis Ty = {(M, (U,?), M) | M, M € RS(N), M S, M};
e theinitial stateis sy = My.

The set ofall tangible markings from R&) is denoted byRSr(N), and the set oéll vanishing markings from
RS(N) is denoted byrRSy(N). Obviously,RS(N) = RSy (N) w RSy(N).
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4.2. Algebra of dtsi-boxes

Now we introduce discrete time stochastic and immediate Pexes and the algebraic operations to define a net
representation of dtsiPBC expressions.

Definition 4.4. A discrete time stochastic and immediate Petri box (dtsi}ia tupleN = (Pn, Tn, Wy, An), Where
e Py andTy are finite sets oplacesandtransitions respectively, such th&ty U Ty # 0 andPy N Ty = 0;
e Wy @ (Pn X Tn) U (Tn x Py) — Nis a function providing theveights of arcdbetween places and transitions;
e Ay is theplace and transition labelinéunction such that

— Anlp, : Pn — {&,i,x} (it specifiesentry, internalandexit places, respectively);
— Anlty : Tn = {o | 0 € 257£ x ST L} (it associates transitions with thelabeling relationson activities).

Moreover,Vt € Ty, °t # 0 # t*. In addition, for the set oéntryplaces ofN, defined asN = {p € Py | An(p) = e},
and for the set oéxit places ofN, defined adN° = {p € Py | An(p) = X}, the following condition holds®N # 0 #
NO, .(ON) — @ — (NO)..

A dtsi-box isplain if Vt € Tn, An(t) € STL, i.e. An(t) is a constant relabeling that will be defined later so
that it can be identified with an activity. In case of the canstrelabeling, the shorthand notation (by the activity)
for An(t) will be used. Amarked plain dtsi-boxs a pair (N, My), whereN is a plain dtsi-box andy € Nf’if1 is

its marking. We shall use the following notatioN: = (N,°N) andN = (N, N°). Note that a marked plain dtsi-box
(PN, Tn, Wi, AN, M) could be interpreted as the LDTSIPRY, Ty, Wi, Qn, £n, M), where function®2y and Ly
are defined as follows/t € Ty, Qn(t) = Q(ANn(t)) andLn(t) = L(An(t)) (remember tha® denotes the probability or
weight part of an activity while denotes its multiaction part). Behaviour of the marked-btsies follows from the
firing rule of LDTSIPNSs. A plain dtsi-bo is n-boundedn € N) if N is so, i.e.¥YM € RS(N), Vp € Py, M(p) < n,
and it issafeif it is 1-bounded. A plain dtsi-boX is cleanif YM € R§(N), °NC M = M =°NandN°c M =

M = N°, i.e. if there are tokens in all its entry (exit) places therother places have tokens.

The structure of the plain dtsi-box corresponding to a st@tipression is constructed like in PBC [17, 16], i.e.
we use simultaneous refinement and relabeling meta-opéregorefinement) in addition to theperator dtsi-boxes
corresponding to the algebraic operations of dtsiPBC aatlifang transformational transition relabelings. Operat
dtsi-boxes specify-ary functions from plain dtsi-boxes to plain dtsi-boxe®(lnave 1< n < 3 in dtsiPBC). Thus,
as we shall see in Theorem 4.1, the resulting plain dtsi-baxe safe and clean. In the definition of the denotational
semantics, we shall apply standard constructions usedd@r. Bet® denoteoperator boxandu denotetransition
namefrom PBC setting.

The relabeling relations ¢ 2574 x S7.£ are defined as follows:

o 0id = {({(a, K)}, (2, K)) | (@, k) € ST L} is theidentity relabelingkeeping the interface as it is;

O = 1(0, (a, «))} is theconstant relabelinghat can be identified witho «) € S7L itself;
orn = (e, 1)} (f(@). ) | (@, k) € STLY;
osa = {({(@.k)}, (@.x)) | (a,k) € STL, a,a ¢ a;

Osy a IS the least relabeling relation containing such that if I, (@, «)), (E, (8, 1)) € 0sy a, a € @, &€ Bthen

— (T+E,(a®afB.k- ) €0y a, if k, 1€ (0;1);
- (T+E (@®af.k+ 1) €0sya if k, 1 € Nxq.
The plain dtsi-boxedl, ), Ny, Wherep € (0;1) andl € N;1, and operator dtsi-boxes are presented in Figure
3. The label of internal places is usually omitted.

In the case of the iteration, a decision that we must takeeisditection of the operator box that we shall use for it,
since we have two proposals in plain PBC for that purpose [@6F of them provides us with a safe version with six
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transitions in the operator box, but there is also a simp@esian, which has only three transitions. In general, in PBC
with the latter version we may generate 2-bounded nets,hwnidy occurs when a parallel behavior appears at the
highest level of the body of the iteration. Neverthelesgiun case, and due to the syntactical restriction introduced
for regular terms, this particular situation cannot ocsorthat the net obtained will be always safe.

To construct the semantic function that associates a plairbdx with every static expression of dtsiPBC, we
introduce theenumeratiorfunctionEnu: Ty — Num which associates the numberings with transitions of anplai
dtsi-boxN in accordance with those of activities. In the case of symeization, the function associates with the
resulting new transition the concatenation of the paresitleel numberings of the transitions it comes from.

Now we define the enumeration functi@mufor every operator of dtsiPBC. L&0Xxsi(E) = (Pe, Te, We, Ag)
be the plain dtsi-box corresponding to a static expressiandEnu: : Te — Numbe the enumeration function for
Boxytsi(E). We shall use the analogous notation for static expres$iandK.

e Boxsi(E o F) = O,(Boxisi(E), Boxisi(F)), o € {;,[].ll}. Since we do not introduce new transitions, we
preserve the initial numbering:

_ | Ene(t), teTg;
Em(t)_{ Enu(t), teTg.

e Boxis(E[f]) = Orr(Boxisi(E)). Since we only replace the labels of some multiactions Hjjection, we
preserve the initial numbering:

Enut) = Enwe(t), t € Te.

e Boxsi(E rs a) = Os a(Boxytsi(E)). Since we remove all transitions labeled with multiaoti@ontaininga or
4, this does not change the numbering of the remaining tiansit

Enut) = Ene(t), te Te, a,a¢ L(Ae(1)).

o Boxisi(E sy @) = Osy a(Boxtsi(E)). Note that¥v,w € Tg, such thatAg(v) = (a,«), Ae(w) = (8, 1) and
a € a, ace B, the new transitiot resulting from synchronization efandw has the label(t) = (@ &, 8, « - 1),
if tis a stochastic transition, &x(t) = (@ @3 B, k + 4), if tis an immediate one, and the numbering
Enut) = (Enue(v))(Enue(w)). Thus, the enumeration function is defined as
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Enut) = Enue(t), te Tg;
71 (Enue(V))(Enue(w)), tresults from synchronization efandw.

According to the definition odsy a, the synchronization is only possible when all the traosgiin the set are
stochastic or when all of them are immediate. If we syncla®itie same set of transitions irffdrent orders,
we obtain several resulting transitions with the same laipel probability or weight, but with the @erent
numberings having the same content. Then, we only consisieigée transition from the resulting ones in the
plain dtsi-box to avoid introducing redundant transitions

For example, if the transitionsandu are generated by synchronizimgandw in different orders, we have
A(t) = (@ @4 B, « - 1) = A(u) for stochastic transitions ok(t) = (@ @4 8, « + 1) = A(u) for immediate ones,
but Enut) = (Enue(v))(Enue(w)) # (Enue(w))(Enue(v)) = Enuu), whereasCont{Enut)) = Con(Enuv)) U
ContEnuw)) = Cont(Enu(u)). Then only one transition(or, symmetricallyu) will appear inBoxsi(E sy a).

o Boxysi([E * F * K]) = Or..](Boxisi(E), Boxtsi(F), Boxisi(K)). Since we do not introduce new transitions, we
preserve the initial numbering:

Enu(t), teTg;

Enut) ={ Enu(t), teTg;
Enu(t), teTk.

Now we can formally define the denotational semantics as ahworphism.

Definition 4.5. Let (o, «) € STL, a € ActandE, F, K € RegS tatExprThedenotational semantiosf dtsiPBC is a
mappingBoxyisi from RegS tatE xpmto the domain of plain dtsi-boxes defined as follows:

1. Boxsi((@, «).) = Nia.),s

2. Boxtsi(E o F) = ©,(Boxitsi(E), Boxgsi(F)), o € {;, 1. II};

3. Boxitsi(E[f]) = Op;(Boxitsi(E));

4. Boxitsi(E 0 @) = @ca(Boxusi(E)), © € irs,syl;

5. Boxs([E * F * K]) = ®[**](BO)@tsi(E)’ Boxitsi(F), Boxtsi(K)).

The dtsi-boxes of dynamic expressions can be defined asFeelE € RegS tatE xpriet Boxysi(E) = Boxysi(E)
andBoxsi(E) = Boxutsi(E).

Note that this definition is compositional in the sense tfat,any arbitrary dynamic expression, we may de-
compose it in some inner dynamic and static expressionsytiarh we may apply the definition, thus obtaining the
corresponding plain dtsi-boxes, which can be joined adogrtb the term structure (by definition &oxys), the
resulting plain box being marked in the places that were stk the argument nets.

Theorem 4.1. For any static expression,EBoxys(E) is safe and clean.

Proor. The structure of the net is obtained as in PBC [17, 16], caingiboth refinement and relabeling. Conse-
guently, the dtsi-boxes thus obtained will be safe and clean O

Let ~ denote isomorphism between transition systems and re#ithgbaphs that binds their initial states. Note
that the names of transitions of the dtsi-box correspontiragstatic expression could be identified with the enumer-
ated activities of the latter.

Theorem 4.2. For any static expression E,

TS(E) ~ RG(Boxs(E)).
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Figure 4: The marked dtsi-bdX = Boxsi(E) for E = [({a}, p) * (({b}. x); ((({c), 1); ({d}, O))[I(({e}, m); ({ ), 4)))) * Stop] and its reachability graph.

Proor. As for the qualitative (functional) behaviour, we have siaene isomorphism as in PBC [17, 16].

The quantitative behaviour is the same by the following oeas First, the activities of an expression have the
probability or weight parts coinciding with the probahég or weights of the transitions belonging to the correspon
ing dtsi-box. Second, we use analogous probability or wefighctions to construct the corresponding transition
systems and reachability graphs. O

Example 4.1. Let E be from Example 3.6. In Figure 4, the marked dtsi-box Roxis(E) and its reachability graph
RG(N) are presented. It is easy to see that(Epand RGEN) are isomorphic.

The following example demonstrates that without the sytitaiestriction on regularity of expressions the corre-
sponding marked dtsi-boxes may be not safe.

Example 4.2. Let E = [(({a}, £) * (({b}, D)II({c}, 3)) = ({d}, £)]. In Figure 5, the marked dtsi-box N Boxysi(E)

and its reachability graph R(N) are presented. In the markin@, 1, 1, 2, 0, 0) there are2 tokens in the place 4
Symmetrically, in the markin, 1, 1, 0, 2, 0) there are2 tokens in the placegp Thus, allowing concurrency in the
second argument of iteration in the expressBrcan lead to non-safeness of the corresponding markedodisi-
N, though, it is2-bounded in the worst case [16]. The origin of the problemhigttN has a self-loop with two
subnets which can function independently. Therefore, we Hacided to consider regular expressions only, since the
alternative, which is a safe version of the iteration operawith six arguments in the corresponding dtsi-box, like
that from [16], is rather cumbersome and has too intricatérPeet interpretation. Our motivation was to keep the
algebraic and Petri net specifications as simple as possible

5. Performance evaluation

In this section we demonstrate how Markov chains corresipgrtd the expressions and dtsi-boxes can be con-
structed and then used for performance evaluation.
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Figure 5: The marked dtsi-baX = Boxysi(E) for E = [(({a), ) * (({b}, 3)lI({c}, 1)) = ({d}, $)] and its reachability graph.

5.1. Analysis of the underlying SMC

For a dynamic expressida, a discrete random variable is associated with every tégthtes € DR (G). The
variable captures a residence time in the state. One capiiatstaying in a state at the next discrete time moment as
a failure and leaving it as a success of some trial series.dasy to see that the random variables are geometrically
distributed with the parameter-1IP M(s, s), since the probability to stay imfor k— 1 time moments and leave it at the
momenk > 1isPM(s, 9)1(1-PM(s 9)) (the residence time isin this case, and this formula defines the probability
mass function (PMF) of residence timesh Hence, the probability distribution function (PDF) okigence time in
sis 1- PM(s, 9! (k > 1) (the probability that the residence timesis less thark). The mean value formula for the
geometrical distribution allows us to calculate the aversgjourn time irs as Clearly, the average sojourn
time in a vanishing state is zero. Le€ DR(G).

Theaverage sojourn time in the statéss

1
1-PM(s,9) "

—sa—, se DRy (G);
_ ] TPMGs '
SXs) { 0, se DRy(G).

Theaverage sojourn time vectorf G, denoted bysJ, has the elemenB)s), s < DR(G).
Thesojourn time variance in the statds

M) . se DRr(G);
— 1-PM(s,9))?
VAR®) ‘{ 0. P S e DR(G).

Thesojourn time variance vectaf G, denoted by/AR has the element$ARs), s< DR(G).

To evaluate performance of the system specified by a dynatpiessiornG, we should investigate the stochastic
process associated with it. The process is the underlyinG 84, 56], denoted bMQG), which can be analyzed
by extracting from it the embedded (absorbing) discrete tMarkov chain (EDTMC) corresponding @&, denoted
by EDTMC(G). The construction of the latter is analogous to that apliethe context of generalized stochastic
PNs (GSPNs) in [67, 5, 6], and also in the framework of digctishe deterministic and stochastic PNs (DTDSPNSs)
in [92], as well as within discrete deterministic and statitaPNs (DDSPNs) [91]EDTMC(G) only describes the
state changes @M{G) while ignoring its time characteristics. Thus, to constihe EDTMC, we should abstract
from all time aspects of behaviour of the SMC, i.e. from thpgm time in its states. The (local) sojourn time in
every state of the EDTMC is equal to one discrete time unis Well-known that every SMC is fully described by the
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EDTMC and the state sojourn time distributions (the lattar be specified by the vector of PDFs of residence time
in the states) [43].

Let G be a dynamic expression as® € DR(G). The transition systeri S(G) can have self-loops going from a
state to itself which have a non-zero probability. Obviguie current state remains unchanged in this case.
Lets — s. Theprobability to stay in s due to & > 1) self-loopss

PM(s, 9)*.

Lets — Sands # S Theprobability to move from s t8 by executing any set of activities after possible selp$i®

PM(s 3 S0 PM(s 9 = foeds, s s,
PM*(s 8 = = 1-PM(s9) . = SW(s)PM(s §), where
&9 { PM(s, 9), otherwise; UIPM(S 9
1 .
TBv=g, S— S
={ IT-PM@s)’ '
SUS) { 1, otherwise;,

HereSL(s) is theself-loops abstraction factor in the stateTheself-loops abstraction vectaf G, denoted bysL,
has the elementSL(s), s € DR(G). The valuek = 0 in the summation above corresponds to the case when no self-

loops occur. Note thats € DRy (G), SK(s) = ﬁ(s,s) = SJ9), hencey¥s € DRy (G), PM*(s, 8 = SIs)PM(s, 9),

since we always have the empty loop (which is a self-lm)pg s from every tangible state Empty loops are not
possible from vanishing states, hengs, € DRy(G), PM*(s, %) = %, when there are non-empty self-loops
(produced by iteration) frors, or PM*(s, §) = PM(s, §), when there are no self-loops frosn

Note that after abstraction from the probabilities of tiiass which do not change the states, the remaining
transition probabilities are normalized. In order to cédoel transition probabilitie®T(Y, s), we had to normalize
PF(T,s). Then, to obtain transition probabilities of the statexaging step$ M*(s, §), we now have to normalize
PM(s, 8). Thus, we have a two-stage normalization as a result.

Notice thatPM*(s, §) defines a probability distribution, sinéts € DR(G), such thatsis not a terminal state, i.e.
there are transitions tofikerent states after possible self-loops from it, we have
Sigs-s 55 PM'(89) = 1559 Dissos 5 PM(S. §) = 1pyeg(1 - PM(s 9) = 1.

We decided to consider self-loops followed only by a stdtenging step just for convenience. Alternatively,
we could take a state-changing step followed by self-loops state-changing step preceded and followed by self-
loops. In all these three cases our sequence beglasdends with the loops which do not change states. At the
same time, the overall probabilities of the evolutions cifed since self-loops have positive probabilities. To avoid
inconsistency of definitions and too complex descriptioacansider sequences ending with a state-changing step. It
resembles in some sense a construction of branching biioni[38] taking self-loops instead of silent transitions

Definition 5.1. LetG be a dynamic expression. Teenbedded (absorbing) discrete time Markov chain (EDTMIC)
G, denoted bfEDTMC(G), has the state spa@R(G), the initial state 5], and the transitions —¢ §, if s — Sand
s # § whereP = PM*(s, 9).

The underlying SMCof G, denoted bySMJG), has the EDTMCEDTMC(G) and the sojourn time in every
se DRy (G) is geometrically distributed with the parameter PM(s, s) while the sojourn time in everge DRy(G)
is equal to zero.

EDTMCs and underlying SMCs of static expressions can beefis well. FOE € RegS tatE xpriet
EDTMC(E) = EDTMCQ(E) andSMQE) = SMQE).

Let G be a dynamic expression. The eleméﬁi‘gs(l <i,j < n=|DR(G)|) of the (one-step) transition probability
matrix (TPM)P* for EDTMC(G) are defined as

pr | PM(s,8), s s, 5#s;
0, otherwise

The transientk-step k € N) PMF y*[K] = (¥*[K]|(S), - - -, ¥*[K](s,)) for EDTMC(G) is calculated as

Y[kl = y*[0](P)",
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wherey*[0] = (¥*[0](s1), - - ., ¥*[0](s)) is the initial PMF defined as

* N\ — 1’ S = [G]z!
y10l(s) = { 0, otherwise
Note also that/*[k + 1] = y*[K]P* (k € N).
The steady-state PMF* = (¢*(s1), ..., ¥*(sn)) for EDTMC(G) is a solution of the equation system

(P -1)=0
{ lﬂ*lT -1 5
wherel is the identity matrix of orden andO is a row vector oh values 0 1 is that ofn values 1.

Note that the vectap* exists and is unique, EDTMC(G) is ergodic. TheleDTMC(G) has a single steady state,
and we have” = limy_,q y*[K].

The steady-state PMF for the underlying semi-Markov cl&QG) is calculated via multiplication of every
Yv*(s) (1 < i < n) by the average sojourn tinf&Xs) in the states, after which we normalize the resulting values.
Remember that for a vanishing state DRy (G) we haveSJs) = 0.

Thus, the steady-state PMi—= (¢(s1), . . ., ¢(sh)) for SMQG) is

V(S)SAS) g ¢ pR(G).
o(s) =1 D v (s)Sds)
j=1
O], S € DR\/(G)

Thus, to calculate, we apply abstracting from self-loops to g&tand theny*, followed by weighting bySJand
normalization EDTMC(G) has no self-loops, unlikeMQG), hence, the behaviour D TMC(G) stabilizes quicker
than that ofSMQG) (if each of them has a single steady state), siithas only zero elements at the main diagonal.

Example 5.1. Let E be from Example 3.6. In Figure 6, the underlying SMC @B)Gs presented. The average
sojourn times in the states of the underlying SMC are writtext to them in bold font.
The average sojourn time vectorBfis

The sojourn time variance vector Bfis

1-p 1—y 1-0 1-
VAR:( P 27X 29 ¢).

p2 ’ X2 2 ’ ¢2
The TPM for EDTMGE) is

01 0 O 0
0 01 O 0
PP=[0 0 0 L =
010 O 0
010 O 0
The steady-state PMF for EDTME) is
(o 11 I m
v="33307m 30+ m

The steady-state PMF* weighted by SJ is

1 | m
(0’@0’ 30(1 + m)” 3g(1 + m))'
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Figure 6: The underlying SMC & for E = [({a}, p) * (({b}, x); ((({c}. 1); ({d}, O)I(({e}, m); ({ f}, #)))) * Stop].

It remains to normalize the steady-state weighted PMF biglittig it by the sum of its components

061 + m) + y (ol + 6m)
3y0s(l + m)

lﬁ*SJT —
Thus, the steady-state PMF for SKE} is

1
= 0¢(1 + m) + x (ol + 6m)
In the case E m andéd = ¢ we have

%) (0, 84(1 + m), O, y¢l, x6m).

1
- —— (0,2 )
@ 2()(Jrg)(O, 6,0, x,x)

Let G be a dynamic expression as@ € DR(G), S,S ¢ DR(G). The following standargerformance indices
(measuresgan be calculated based on the steady-state £bF SMQG) and the average sojourn time vecgrof
G[74, 32,52].

e Theaverage recurrence (return) time in the statéttee number of discrete time units required for thisﬁ@.
e Thefraction of residence time in the statéssy(s).

e Thefraction of residence time in the set of state®iSheprobability of the event determined by a condition
that is true for all states from & Y .5 ¢(9).

e Therelative fraction of residence time in the set of states $ veispect to that irS is %ﬁg.

e Therate of leaving the stateis %.

e Thesteady-state probability to perform a step with an activityx) is 3. spr) $(S) X ri@.xer; PT(Y, S).

e The probability of the event determined by a reward function rte statess . s.pre) ¢(9r(s), wherevs
DR(G), 0<r(s) < 1.

Let N = (Pn, Tn, Wh, Qn, £y, M) be a LDTSIPN andM, M € NPV, Then the average sojourn ting&(M),

the sojourn time varianc¢ARM), the probabilitiesPM*(M, M), the transition relatiotM —y M, the EDTMC
EDTMC(N), the underlying SMGGMQN) and the steady-state PMF for it are defined like the cormedipg notions
for dynamic expressions.
As we have mentioned earlier, every marked plain dtsi-baid:be interpreted as the LDTSIPN. Therefore, we
can evaluate performance with the LDTSIPNs correspondimigsi-boxes and then transfer the results to the latter.
Let ~ denote isomorphism between SMCs that binds their initetest where two SMCs are isomorphic if their
EDTMCs are so and the sojourn times in the isomorphic stdtded=DTMCs are identically distributed.
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Figure 7: The underlying SMC dfl = Boxusi(E) for E = [({al, p) * (({b}, x); ((({c}, 1); ({d}, e))[(({e}, m); ({ T}, 4)))) * Stop].

Proposition 5.1. For any static expression E,

SMQE) = SMQBOxis{(E)).

Proor. By Theorem 4.2 and definitions of underlying SMCs for dynaexpressions and LDTSIPNs taking into
account the following. First, for the associated SMCs, terage sojourn time in the states is the same, since it is
defined via the analogous probability functions. Seconel tithnsition probabilities of the associated SMCs are the
sums of those belonging to transition systems or reactagitaphs. O

Example 5.2. Let E be from Example 3.6. In Figure 7, the underlying SMC @N)G@s presented. Clearly, SME)
and SMEN) are isomorphic. Thus, both the transient and steady-stst€$for SMEN) and SMGE) coincide.

5.2. Analysis of the DTMC

Let us consider an alternative solution method, studyimgDAMCs of expressions based on the state change
probabilitiesP M(s, §).

Definition 5.2. LetG be a dynamic expression. THiscrete time Markov chain (DTM®@Y G, denoted byp TMC(G),
has the state spa@R(G), the initial state ¢]. and the transitions —¢ §, where = PM(s, §).

DTMCs of static expressions can be defined as well. FFarRegS tatE xpret DTMC(E) = DTMC(E).

One can see th&DTMC(G) is constructed frorDTMC(G) as follows. For each state BTMC(G), we remove
a possible self-loop associated with it and then normaliseprobabilities of the remaining transitions from the
state. ThusEDTMC(G) and DTMC(G) differ only by existence of self-loops and magnitudes of the gindiies
of the remaining transitions. HendeDTMC(G) andDTMC(G) have the same communication classes of states and
EDTMC(G) is irreducible ff DTMC(G) is so. Since botiEDTMC(G) and DTMC(G) are finite, they are positive
recurrent. Thus, in case of irreducibility, each of them aasingle stationary PMF. Note thEDTMC(G) andor
DTMC(G) may be periodic, thus having a unique stationary distidimytbut no steady-state (limiting) one. For
example, it may happen thBDTMC(G) is periodic whileDTMC(G) is aperiodic due to self-loops associated with
some states of the latter. The stateSBQG) are classified usingDTMC(G), henceSMQG) is irreducible (positive
recurrent, aperiodicfi EDTMC(G) is so.

Let G be a dynamic expression. The elemefits(1 < i, j < n = [DR(G)|) of (one-step) transition probability
matrix (TPM)P for DTMC(G) are defined as

p _ | PM(s;s), s —s;
70, otherwise

The steady-state PMFfor DTMC(G) is defined like the corresponding notion 8DTMC(G).
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Let us determine a relationship between steady-state PMBESTMC(G) andEDTMC(G). The following theorem
proposes the equation that relates the mentioned steatdyPSVIFs.

First, we introduce some helpful notation. For a veeter (vy, ..., V), let Diag(v) be a diagonal matrix of order
n with the element®iag;j(v) (1 <1, j < n) defined as

R " N I .
D|ag.,(v)_{ 0, otherwise (<ij=<n).

Theorem 5.1. Let G be a dynamic expression and SL be its self-loops alistragector. Then the steady-state PMFs
W for DTMC(G) andy* for EDTMC(G) are related as followsYs € DR(G),
¥ (9SUs)
PIRACEC)

8DR(G)

() =

Proor. Let PSLbe a vector with the elements

_ | PM(s ), s—s
PSU(s) = { 0, otherwise

By definition of PM*(s, §), we haveP* = Diag(SD(P — Diag(PSD). Further,
Y*(P = 1) =0andy P = y".
After replacement oP* by Diag(SL)(P — Diag(PSL) we obtain

y*Diag(Sh(P — Diag(PSL) = y* andy*Diag(SOP = ¢*(Diag(SLDiag(PSL + I).
Note thatvs € DR(G), we have

SUYPM(s ) + 1 = E’M(S,s) +1=— lL__ so5
p 1= 1-PM(s9) 1-PM(s9) = .
SKPSL(s) + { Sl(s)-0+1=1, otherwise; SUs)

Hence,Diag(SUDiag(PSL + | = Diag(SL). Thus,

Y Diag(SLOP = y*Diag(SD.
Then forv = y*Diag(SL) we have

vP =vandv(P-1)=0.

In order to calculatey on the basis of, we must normalize it by dividing its elements by their suince we
should havey1" = 1 as a result:

1 .
v = " Diag(SL).

1
Vit~ Y Diag(SD
Thus, the elements @f are calculated as follow§'s € DR(G),
¥ (9)SUs)
Yspree) ¥ (9SLS)

It is easy to check that is a solution of the equation system

U(s) =

y(P-1)=0
ylm =1 ’
hence, it is indeed the steady-state PMFDBGIMC(G). O
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The following proposition relates the steady-state PMEStdQG) andDTMC(G).

Proposition 5.2. Let G be a dynamic expressiop be the steady-state PMF for SNI®) and ¢ be the steady-state
PMF for DTMC(G). ThenVs € DR(G),

— MY scDR(©G):
o) = geE;(G)‘”@
0, se DRy(G).

Proor. Let s € DRy (G). Remember thats € DRy (G), SL(s) = SJs) andVs € DRy(G), SJs) = 0. Then, by
Theorem 5.1, we have

*(9)SL(s) o o
l/’(S) _ Z?EDi(G) ACEC _ lﬁ*(S)SL(S) ) ZéeDR(G) lﬁ*(S)SL(S) B

Ysor @) V(D) deDRT(G)(M) ~ Yeore) ¥ (ASUY)  Yspric ¥ (SLB)

Yeoro) ¥ (DSLS)

wISUS  __ wre9SAy  __ w9SKY g
Zsorr@ ¥ (OSUS ~ Zeor@ ¥ (95T Lsorg W' ESIH

O

Thus, to calculate, one can only apply normalization to some elements @obrresponding to the tangible states),
instead of abstracting from self-loops to ¢g&tand theny*, followed by weighting bySJand normalization. Hence,
usingDTMC(G) instead ofEDTMC(G) allows one to avoid multistage analysis, but the paymemit is more time-
consuming numerical and more complex analytical caloutedif y with respect tay*. The reason is thd@TMC(G)
has self-loops, unlikEDTMC(G), hence, the behaviour & TMC(G) stabilizes slower than that #DTMCG) (if
each of them has a single steady state) Riglmore dense matrix thadei, sinceP may additionally have non-zero
elements at the main diagonal. Nevertheless, Propositlis ¥ery important, since the relationship betweemnd
y it discovers will be used in Proposition 5.3 to relate thadtestate PMFs foBMJG) and the reduceBTMC(G),
as well as in Section 8 to prove preservation of the statiphahaviour by a stochastic equivalence.

Example 5.3. Let E be from Example 3.6. In Figure 8, the DTMC DT{ELis presented.
The TPM for DTMQE) is

he

H

S 20 I ™
>

OO0 oXx O

0
0
1

¥

m

oifoo

[
1

V)
1l
OO oo |

o |
=

|
-

The steady-state PMF for DTME) is

1
= 961+ )0+ m) + (@l + om)
Remember that DRE) = {s1, $, &, S5} and DR/(E) = {ss}. Hence,

(1 + m) + x (ol + 6mM)
(1 + x)(I + M) + x (ol + 6m)

4 (0, 6¢(1 + M), x0(1 + M), x¢l, xy6m).

DL U = u(s1) + Y() + Ysa) + Y(ss) =

&DR; (E)

By Proposition 5.2, we have
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Figure 8: The DTMC o for E = [({a), p) * (({b}, x); (((tc}, 1); ({d}, O)1(({e), m); (1), 4)))) * Stop]

_ 0 (1) (I+m)+x (gl +6m) _
¢(s1) =0- (-}¢(Al/+m)+)((q/§vl+6’m) =0,
9(1+m) 0d(Ltx)(I+m)-+x(gl+om) _ fg(1+m)

(P(SQ) = (L) (+m)tx (@I+0m) ~ — 6p(1+m)+y(pl+6m) — Op(I+m)+x (ol +6m) °
¢(ss) =0,
(s4) = P . 0oL )(I+m)+x(pl+6m) _ x¢l
¥ T 0p(L+x)(1+m)+x (ol +6m) O (1+m)+x (¢l +6m) — Ogp(I+m)+x (ol +6m) °
_ xom 0(1+x)(1+m)+x (gl +6m) _ xom
90(55) = ) I+m) e @+om)  ~ 0p(+m)+y(pl+om) — Op(I+m)+x (ol +6m) *

Thus, the steady-state PMF for SNE} is

1
~ 0¢(1 + m) + (ol + 6m)
This coincides with the result obtained in Example 5.1 withuse ofy* and SJ.

%) (0, 8¢(1 + m), O, x|, x6m).

5.3. Analysis of the reduced DTMC

Let us now consider the method from [32, 68, 5, 7, 6] that elatés vanishing states from the EMC (EDTMC,
in our terminology) corresponding to the underlying SMC eéry GSPNN. The TPM for the resultingeduced
EDTMC (REDTMC) has smaller size than that for the EDTMC. Thetinod demonstrates that there exists a transfor-
mation of the underlying SMC dfl into a CTMC, whose states are the tangible markings.ofhis CTMC, which is
essentially theeducedunderlying SMC (RSMC) oN, is constructed on the basis of the REDTMC. The CTMC can
then be directly solved to get both the transient and thelgtetate PMFs over the tangible markings\bfin [32], the
program and computational complexities of sucteiminationmethod, based on the REDTMC, were evaluated and
compared with those of thereservatiormethod that does not eliminate vanishing states and basgtedtDTMC.
The preservation method for GSPNs corresponds in dtsiPBi@tanalysis of the underlying SMCs of expressions.

The elimination method for GSPNs can be easily transfewettsiPBC, hence, for every dynamic expression
G, we can find a DTMC (since the sojourn time in the tangibleestdtom DR(G) is discrete and geometrically
distributed) with the states froBRr (G), which can be directly solved to find the transient and thady-state PMFs
over the tangible states. We shall demonstrate that suetitecedDTMC (RDTMC) of G, denoted byRDTMQG),
can be constructed fro@MTMC(G), using the method analogous to that designed in [68, 5, if, tBle framework of
GSPNs to transform EDTMC into REDTMC. Since the sojourn tim#he vanishing states is zero, the state changes
of RDTMQG) occur in the moments of the global discrete time associattdSMQG), unlike those cEDTMC(G),
which happen only when the current state changes to slifiseentone, irrespective of the global time. Therefore, in
our case, we can skip the stages of constructing the REDTM&; dénoted byREDTMGG), from EDTMC(G), and
recovering RSMC of5, denoted byRSMQG), (which is the sought-for DTMC) frolREDTMQG), since we have
RSMQG) = RDTMQG).
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Let G be a dynamic expression aRde the TPM foDTMC(G). We reorder the states froBR(G) such that the
first rows and columns d? will correspond to the states froBRy(G) and the last ones will correspond to the states
from DRy (G). Let|DR(G)| = nand|DR(G)| = m. The resulting matrix can be decomposed as follows:

C D
p- ( c b ) |
The elements of then- m) x (n—m) submatrixC are the probabilities to move from vanishing to vanishirages,
and those of then(— m) x msubmatrixD are the probabilities to move from vanishing to tangibléestaThe elements
of themx (n — m) submatrixE are the probabilities to move from tangible to vanishingestaand those of thmx m

submatrixF are the probabilities to move from tangible to tangibleestat
The TPMP° for RDTMQG) is them x m matrix, calculated as

P° = F + EGD,

where the elements of the matare the probabilities to move from vanishing to vanishiragest in any number of
state changes, without traversal of the tangible states.

If there are no loops among vanishing states then for anyshiarg state there exists a value N such that every
sequence of state changes that starts in a vanishing stétis &onger tharl should reach a tangible state. Thus,
A eNVk>I1Ck=0andyy,Ck = ZL:o Ck. If there are loops among vanishing states then all suchslaop
supposed to be of “transient” rather than “absorbing” tygiace the latter is treated as a specification error to be
corrected, like in [68, 6]. We have earlier required tBAMQG) has a single closed communication (which is also
ergodic) class of states. Remember that a communicaties ofstates is their equivalence class w.r.t. communicatio
relation, i.e. a maximal subset of communicating statesorounication class of states is closed if only the states
belonging to it are accessible from every its state. Thedicgrdass cannot consist of vanishing states only to avoid
“absorbing” loops among them, hence, it contains tangitdées as well. Thus, any sequence of vanishing state
changes that starts in the ergodic class will reach a tamgiisite at some time moment. All the states that do not
belong to the ergodic class should be transient. Hence, emyesice of vanishing state changes that starts in a
transient vanishing state will some time reach either asteant tangible state or a state from the ergodic class [56].
In the latter case, a tangible state will be reached as welrgued above. Thus, every sequence of vanishing state
changes irBMQG) that starts in a vanishing state will exit the set of all wimg states in the future. This implies
that the probabilities to move from vanishing to vanishitajes ink € N state changes, without traversal of tangible
states, will lead to 0 whek tends toco. Then we have lip,., CX = lim_.(I — (I = C))* = 0, hencel — Cis a
non-singular matrix, i.e. its determinant is not equal toozeThus, the inverse matrix ¢f— C exists and may be
expressed by a Neumann seriesis,(I — (I - C))¥ = 32, C* = (I - C)~L. Therefore,

G- i ok = Sheo CKs dleN, v|1< >, C¥=0, noloops among vanishing states;
& (1-0)% limg,., Ck=0, loops among vanishing states;

where0Q is the square matrix consisting only of zeros ariglthe identity matrix, both of order— m.
For1<i,j<mand 1<k | <n-m,letF; be the elements of the matrx Sy be those oE, Gy be those oz
and®D,; be those oD. By definition, the elemem@fj of the matrixP° are calculated as

=}

n-m n-m n-m n-m
EkGuDij = Fij + Z&k Z GuDij = Fij + ) Dy Z&kah
P k=1

=1

Pﬂ':?‘ij‘*‘

—M N—m
k= 1
i.e. #5 (1 <1i,j <m)is the total probability to move from the tangible statéo the tangible stats; in any number
of steps, without traversal of tangible states, but poggibing through vanishing states.

Let s, 5 € DRr(G) such thats = s, 8 = s;. Theprobability to move from s t& in any number of steps, without
traversal of tangible stateis

1l=

PM’(s,§) = 7.
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Definition 5.3. Let G be a dynamic expression an@]l. € DRy(G). Thereduced discrete time Markov chain
(RDTMC)of G, denoted bRDTM{G), has the state spaf¥Rr(G), the initial state 5] and the transitions < §,
whereP = PM°(s, 9).

RDTMCs of static expressions can be defined as well FFerRegS tatE xpdet RDTMQE) = RDTMQE).

Let us now try to defin&RSMQG) as a “restriction” ofSMG) to its tangible states. Since the sojourn time in
the tangible states @MQG) is discrete and geometrically distributed, we can seeR&NGG) is a DTMC with
the state spacBRr(G), the initial state §]. and the transitions whose probabilities collect all thas€EMJG) to
move from the tangible to the tangible states, directly dirigctly, namely, by going through its vanishing statesyonl
Thus,RSMGG) has the transitions <y §, where = PM°(s, §), hence, we geRSMCEG) = RDTMJG).

One can see th&®DTMQG) is constructed fronDTMC(G) as follows. All vanishing states and all transitions
to, from and between them are removed. All transitions betwangible states are preserved. The probabilities of
transitions between tangible states may become greatememdransitions between tangible states may be added,
both iff there exist moves between these tangible states in any mwohbteps, going through vanishing states only.
Thus, for each sequence of transitions between two tangthtes inDTMC(G) there exists a (possibly shorter,
since the eventual passed through vanishing states areveeingequence between the same statdDiTMQG)
and vice versa. IDTMC(G) is irreducible then all its states (including tangible sheommunicate, hence, all states
of RDTMQG) communicate as well and it is irreducible. Since bBXRAMC(G) and RDTMQG) are finite, they
are positive recurrent. Thus, in case of irreducibility@FMC(G), each of them has a single stationary PMF. Note
that DTMC(G) andor RDTMQG) may be periodic, thus having a unique stationary distidoytout no steady-state
(limiting) one. For example, it may happen tRAREMC(G) is aperiodic whileRDTMQG) is periodic due to removing
vanishing states from the former.

Let DRy (G) = {sy, ..., Sm} and [G]~ € DRy (G). Then the transienk{step,k € N) PMF
VLKl = (°IKI(S1), - - - ¥°[Kl(Sw) for RDTMQG) is calculated as

y°[Kl = w°[0](P°),
wherey°[0] = (y°[0](Sp), - - -, ¥°[0](Sm)) is the initial PMF defined as

. 1 s=I[Cly
¥°[0](s) ={ 0, otherwise

Note also that°[k + 1] = ¢°[K]P°® (k € N).
The steady-state PMF® = (¥°(s1), . - ., ¥°(Sm)) for RDTMQG) is a solution of the equation system

P -1)=0
{ lﬂolT -1 )
wherel is the identity matrix of ordem and0 is a row vector omvalues 0 1is that ofmvalues 1.

Note that the vectap® exists and is unique, RDTMQG) is ergodic. ThelRDTMQG) has a single steady state,
and we have/® = limy_,. ¥°[K].

The zero sojourn time in the vanishing states guarantetththatate changes BDTMQG) occur in the moments
of the global discrete time associated wWBMQG), i.e. every such state change occurs after one time uraydel
Hence, the sojourn time in the tangible states is the sanRDIGMAG) andSMJG). The state change probabilities
of RDTM(QG) are those to move from tangible to tangible states in anybmrrof steps, without traversal of the
tangible states. TherefolDTMQG) andSMQG) have the same transient behaviour over the tangible states
the transient analysis &MQG) is possible to accomplish usifRPTMQG).

The following proposition relates the steady-state PMESIQG) andRDTMQG). It proves that the steady-
state probabilities of the tangible states coincide fonthe

Proposition 5.3. Let G be a dynamic expressiapbe the steady-state PMF for SNI&) andy° be the steady-state
PMF for RDTMQG). ThenVs € DR(G),

_ | v°(9), seDRy(G);
#(S) = { 0, se DR\T,(G).
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Proor. To make the proof more clear, we use the following unifiedatioh. | denotes the identity matrices of any
size.0 denotes square matrices and row vectors of any size andhlefigalues 01 denotes square matrices and row
vectors of any size and length of values 1.

Let P be the reordered TPM f®@TMC(G) andy be the steady-state PMF fDITMC(G), i.e. ¢ is a solution of the
equation system

y(P-1)=0
pl' =1 ’
Let IDR(G)| = nand|DR(G)| = m. The decomposeld, P — | andy are

C D C-1 D
P:(E F),P—I:( E F_I)andw=(wv,wr),

whereyy = (Y1,...,¥n-m) iS the subvector ofy with the steady-state probabilities of vanishing stated yan =
(Yn-ms1, - - ., ¥n) is that with the steady-state probabilities of tangibégess.
Then the equation system fgris decomposed as follows:

w(C-1)+ytE=0
ywD+yr(F-1)=0 .
lﬁvlT +lﬁT1T =1

Further, letP® be the TPM foRDTMQG). Theny° is a solution of the equation system

pe(P -1)=0

Yyl =1 ’
We have

P° = F + EGD,

where the matrixG can have two dferent forms, depending on whether the loops among vanisieétes exist, hence,
we consider the two following cases.

1. There exisho loops among vanishing statée havedl € N, Yk > I, CX = 0andG = ,_,C*.
Let us right-multiply the first equation of the decomposedaipn system fog by G:

Uv(CG — G) + yrEG = 0.
Taking into account tha® = 3| _, CX, we get
| |
yv| D CreCH-CO- ) CH+yrEG = 0.
=] k=1
SinceC'*! = 0andC? = I, we obtain

—yv + Y7EG = 0andyy = y7EG.

Let us substitutg with yTEG in the second equation of the decomposed equation system for

YTEGD +y7(F — 1) = O andyr(F + EGD - 1) = 0.

SinceF + EGD = P°, we have

yr(P -1)=0.

35



2. There existoops among vanishing staté#/e have lim_,., CK = 0andG = (I - C)™%.
Let us right-multiply the first equation of the decomposedagipn system fog by G:

—yy(l — C)G + y1EG = 0.
Taking into account tha® = (I — C)~%, we get

—yv +YTEG = 0andyy = ¥TEG.
Let us substitutg with y+EG in the second equation of the decomposed equation system for

l,DTEGD + l,DT(F - |) = OandxpT(F +EGD - |) =0.
SinceF + EGD = P°, we have

yr(P°-1)=0.
The third equationyy1™ + 11" = 1 of the decomposed equation systemgamplies that ifyy has nonzero
elements then the sum of the elementgpis less than one. We normalize by dividing its elements by their sum:

ve Ly
Yrll
It is easy to check thatis a solution of the equation system
v(P°-1)=0
{ viT =1 ’
hence, it is the steady-state PMF RDTMQG) and we have

1
W =V= U
1T

Yt
Note thatVs € DRy (G), ¢1(S) = ¥(S). Then the elements @f are calculated as follow$'s € DRy (G),
V(S = Yr(9) _ ¥(9) .
Ysor@) ¥T(®  Xsoric) ¥(d
By Proposition 5.2¥s € DRy (G), ¢(s) = %.
Thereforeys € DRy (G),
S <
9= -y,

~ Ysorie ¥
O

Thus, to calculate, one can just take all the elements/dfas the steady-state probabilities of the tangible states,
instead of abstracting from self-loops to g&tand theny*, followed by weighting bySJand normalization. Hence,
usingRDTMQG) instead ofEDTMC(G) allows one to avoid such a multistage analysis, but cootitryP® also
requires somefdorts, including calculating matrix powers or inverse neds. Note thaRDTMQG) has self-loops,
unlike EDTMC(G), hence, the behaviour ®@DTMJG) may stabilize slower than that #DTMC(G) (if each of
them has a single steady state). On the other h@hds smaller and denser matrix th&, sinceP° has additional
non-zero elements not only at the main diagonal, but alsoyroathem outside it. Therefore, mostly, we have less
time-consuming numerical calculation ¢f with respect tay*. At the same time, the complexity of the analytical
calculation ofy° with respect tay* depends on the model structure, such as the number of vagistates and loops
among them, but usually it is lower, since the matrix sizeiotidn plays an important role in many cases. Hence, for
the system models with many immediate activities we nowrfalve a significant simplification of the solution. At
the abstraction level of SMCs, the elimination of vanishétates decreases their impact to the solution complexity
while allowing immediate activities to specify a compresibie logical structure of systems at the higher level of
transition systems.
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Example 5.4. Let E be from Example 3.6. Remember thatr(i:i ={s, S, %, S} and DR/(E) = {s3}. We reorder
the states from DEE), by moving the vanishing states to the first positions, dsvst s, s1, S, 4, Ss.
The reordered TPM for DTM(E) is

_m

o

|
0 0 T+m I+m
0 1-p »p 0 0
Pr =l x 0 1—X 0 0
0 O 0 1-60 O
0 O 1) 0 1-¢
The result of the decomposifg are the matrices
0 1-p »p 0 0
_ 3 I m | x _ 0 1-y 0 0
C_O,D_(0,0,—|+m,—+m),E_ 0 ,F= 0 o 1.0 0o
0 0 @ 0 1-¢

SinceC! = 0, we haverk > 0, CK = 0, hence, k= 0 and there are no loops among vanishing states. Then

G:ZI:Ckzcozl.

k=0
Further, the TPM for RDTM(E) is

1-p »p 0 0

. _ _ B T R

P°=F+EGD=F+EID =F+ED= 0 9 1+_9 6

0 @ 0 1-¢
In Figure 9, the reduced DTMC RDTME) is presented. The steady-state PMF for RD TS

o _ 1
01+ m) + (¢l + 6m) (0, 61 + m), xgl, xom).

Note thaty® = (y°(s1), ¥°(S2), ¥°(s4), ¥°(ss)). By Proposition 5.3, we have

¢(s1) =0,
)
@(S2) = F5rmy @

¢(s3) =0,
_ ¢l
o(S0) = Gmpnaram
om
©(S5) = gyt

Thus, the steady-state PMF for SKE} is

1
= 060 + m) + (ol + 6m) (0,6(1 + m), 0, g, yom).

This coincides with the result obtained in Example 5.1 withuse ofy* and SJ.

¥

Example 5.5. In Figure 10, the reduced underlying SMC RS(#Tis depicted. The average sojourn times in the
states of the reduced underlying SMC are written next to tirebold font. In spite of the equality RSNE) =
RDTMQE), the graphical representation of RSNE) differs from that of RDTM(E), since the former is based on
the REDTMGE), where each state is decorated with fiusitiveaverage sojourn time of RSME) in it. REDTMQE)

is constructed from EDTM(E) in the similar way as RDTM(E) is obtained from DTM(E). By construction, the
residence time in each state of RSMELis geometrically distributed. Hence, the associated pat@mof geometrical
distribution is uniquely recovered from the average sojotime in the state.
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RDTMC (E)

1-6 1-¢

Figure 9: The reduced DTMC @& for E = [({a}, p) * (({b}, x); ((({c}, 1); ({d}, 6)[I(({e}, m); ({ ), #)))) * Stop].

RSMC(E)

X|= o=

Figure 10: The reduced SMC &for E = [({a}, p) * (({b}, x); ((({c}, 1); ({d}, (L&}, m); ({ F}, #)))) * Stop]

Note that our reduction of the underlying SMC by eliminatitsgvanishing states, resulting in the reduced DTMC,
resembles the reduction from [63] by removing instantasestates of stochastically discontinuous Markov reward
chains. The latter are “limits” of continuous time Markoadis with state rewards and fast transitions when the rates
(speeds) of these transitions tend to infinity, making themmeédiate. By analogy with that work, we would consider
DTMCs extended with instantaneous states instead of SM@sgeiometrically distributed or zero sojourn time in
the states. However, within dtsiPBC, we have decided to$AK€Es as the underlying stochastic process to be able in
the perspective to consider not only geometrically disted and zero residence time in the states, but arbitrany fixe
time delays as well.

6. Stochastic equivalences

Consider the expressioiis= ({a}, 3) andE’ = ({a}, $)a[I({a}, 3)2, for whichE # E’, sinceT S(E) has only one
transition from the initial to the final state (with probétyil%) while TS(E’) has two such ones (with probabiliti%}a
On the other hand, all the mentioned transitions are laliBtegttivities with the same multiaction pgag. Moreover,
the overall probabilities of the mentioned transitiond&(E) and T S(E’) coincide:3 = 7 + 1. Further,TS(E) (as
well asTS(E’)) has one empty loop transition from the initial state telftsvith probability% and one empty loop
transition from the final state to itself with probability The empty loop transitions are labeled by the empty set of
activities. For calculating the transition probabilit@sT S(E’), takep = y = % in Example 3.5. Then you will see that
the probability parts; and 3 of the activities {a}, 3)1 and (a}, 1), are “splitted” among probabilitie§ and J of the
corresponding transitions and the probabigtgaf the empty loop transition. Unlikes, most of the probabilistic and
stochastic equivalences proposed in the literature doifferéntiate between the processes such as those specified by
E andE’. In Figure 11(a), the marked dtsi-boxes correspondingealymamic expressiors andE’ are presented,

i.e. N = Boxysi(E) andN’ = Boxgsi(E).

Since the semantic equivaleneg is too discriminating in many cases, we need weaker equigal@otions.
These equivalences should possess the following necgasmgrties. First, any two equivalent processes must have
the same sequences of multisets of multiactions, whichteerultiaction parts of the activities executed in steps
starting from the initial states of the processes. Secavdevery such sequence, its execution probabilities within
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both processes must coincide. Third, the desired equivealgimould preserve the branching structure of computations
i.e. the points of choice of an external observer betweegrakgxtensions of a particular computation should be taken
into account. In this section, we define one such notion: stieghastic bisimulation equivalence.

6.1. Step stochastic bisimulation equivalence

Bisimulation equivalences respect the particular poihthoice in the behavior of a system. To define stochastic
bisimulation equivalences, we have to consider a bisiraras arequivalenceaelation that partitions the states of
the union of the transition system§S(G) and T S(G’) of two dynamic expressions andG’ to be compared. For
G andG’ to be bisimulation equivalent, the initial stat€3]] and [G’]. of their transition systems should be related
by a bisimulation having the following transfer property:two states are related then in each of them the same
multisets of multiactions can occur, leading with the ideadtoverall probability from each of the two statesthe
same equivalence clagsr every such multiset.

Thus, we follow the approaches of [51, 58, 45, 47, 14, 10, b}, we implement step semantics instead of
interleaving one considered in these papers. Recall addavilnuse the generative probabilistic transition systéikes,
in [51], in contrast to the reactive model, treated in [58J ave take transition probabilities instead of transitiates
from [45, 47, 14, 10, 11]. Thus, step stochastic bisimufaéquivalence that we define further is (in the probabilistic
sense) comparable only with interleaving probabilistgiroulation one from [51], and our equivalence is obviously
stronger.

In the definition below, we considef(Y) € N for T € N£, i.e. (possibly empty) multisets of multiactions.
The multiactions can be empty as well. In this cag€Y’) contains the elemengs but it is not empty itself.

Let G be a dynamic expression afid C DR(G). Then, for anys € DR(G) andA € Nﬁn, we write s Ap H,
whereP = PMa(s, H) is theoverall probability to move from s into the set of staféwia steps with the multiaction
part Adefined as

PMa(s H) = > PT(Y, 9).
(T[FEH, sH8 L(T)=A)

We write s A Hif AP, s ip H. Further, we writes - H if A, s A H, whereP = PM(s, H) is theoverall
probability to move from s into the set of stafésvia any stepslefined as

PM(sH)= > PT(Y,s).
{TF8H, s>
To introduce a stochastic bisimulation between dynamicesgionss andG’, we should consider the “compos-
ite” set of stateDR(G) U DR(G’), since we have to identify the probabilities to come frorg Bmo equivalent states
into the same “composite” equivalence class (with respetite stochastic bisimulation). Note that, @k G’, transi-
tions starting from the states BIR(G) (or DR(G’)) always lead to those from the same set, SDB¥G)NDR(G’) = 0,
and this allows us to “mix” the sets of states in the definitdstochastic bisimulation.

Definition 6.1. Let G andG’ be dynamic expressions. AgguivalencaelationR ¢ (DR(G) U DR(G))? is astep
stochastic bisimulatiobetweerG andG’, denoted byR : G G/, if:

1. ([Gl+,[G']~) € R.

2. (s1.%) €R = YH € (DR(G) U DR(G'))/x, VA e N

fin’

S]_Ap?‘{ =4 Sgé)pq’{

Two dynamic expressiors andG’ arestep stochastic bisimulation equivaledénoted byco G, if IR : G G-

The following proposition states that every step stochadsiimulation binds tangible states only with tangible
ones and the same is valid for vanishing states.
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Proposition 6.1. Let G and G be dynamic expressions aftt G G’. Then

R C (DRy(G) U DRr(G'))? w (DRy(G) U DRy(G'))2.

Proor. By definition of transition systems of expressions, forrgtangible state, there is an empty loop from it, and
no empty loop transitions are possible from vanishing state
Further,R preserves empty loops. To verify this fact, first take 0 in its definition to get/(s;, ) € R,

YH € (DR(G) U DR(G"))/%, S1 gp H o s gp H, and then observe that the empty loop transition from a state
leads only to the same state. O

Let Rs{G,G") = U{R | R : G, G’} be theunion of all step stochastic bisimulatiobetweenG andG’. The
following proposition proves th&ks{G, G') is also arequivalencandRs{G,G’) : G G'.

Proposition 6.2. Let G and G be dynamic expressions and- G’. ThenRs{G, G’) is the largest step stochastic
bisimulation between G and'G

Proor. See Appendix A.1l. O

In [3], an algorithm for strong probabilistic bisimulatiam probabilistic labeled transition systems (a reformula-
tion of probabilistic automata) was proposed with time ctexrity O(n’m), wheren is the number od states anis
the number of transitions. In [4], a decision algorithm fsoag probabilistic bisimulation on generative probagtit
labeled transition systems was constructed with time cerifylO(mlogn) and space complexi®(m+ n). In [30],
a polynomial algorithm for strong probabilistic bisimutat on probabilistic automata was presented. The mentioned
algorithms for interleaving probabilistic bisimulatioguivalence can be adapted for, using the method from [50],
applied to get the decidability results for step bisimwaatequivalence. The method takes into account that transiti
systems in interleaving and step semanti¢g&donly by that in the latter (which is our case) they may haiditeonal
transitions corresponding to parallel execution of atitigi

6.2. Interrelations of the stochastic equivalences
Now we compare the discrimination power of the stochastitvedences.

Theorem 6.1. For dynamic expressions G and @e followingstrictimplications hold:
GxG = G=sG = Go G

Proor. Let us check the validity of the implications.

e Theimplication=is= © . is proved as follows. Leg : G =s G'. Thenitis easy to see th&t: G G’, where
R =1{(s8(9) | s€ DRG)}.

e The implication==s is valid, since the transition system of a dynamic formuldefined based on its struc-
tural equivalence class.

Let us see that that the implications are strict, i.e. themrgones do not work, by the following counterexamples.

(a) LetE = ({a}, 3) andE’ = ({a}, 1)1[I({a}, 3)2. ThenEeo F’, butE # E’, sinceT S(E) has only one transition
from the initial to the final state whil& S(E’) has two such ones.

(b) LetE = ({a}, 3); ({&}, 3) andE’ = (({a}, 2); (&), 3)) sy a. ThenE = E, butE # E’, sinceE andE’ cannot be
reached from each other by applying inaction rules. O

Example 6.1. In Figure 11, the marked dtsi-boxes corresponding to theadyin expressions from equivalence exam-
ples of Theorem 6.1 are presented, i.e=NBoxysi(E) and N' = Boxysi(E’) for each picture (a)—(b).
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Figure 11: Dtsi-boxes of the dynamic expressions from edence examples of Theorem 6.1.

7. Reduction modulo equivalences

The equivalences which we proposed can be used to reduséitarsystems and SMCs of expressions (reacha-
bility graphs and SMCs of dtsi-boxes). Reductions of grapked models, like transition systems, reachability ggaph
and SMCs, result in those with less states (the graph nodés)goal of the reduction is to decrease the number of
states in the semantic representation of the modeled systdimpreserving its important qualitative and quantitati
properties. Thus, the reduction allows one to simplify tebdvioural and performance analysis of systems.

An autobisimulatioris a bisimulation between an expression and itself. For ahoexpressio®s and a step
stochastic autobisimulation ont: G G, let K € DR(G)/¢ andsy, s, € K. We have/K e DR(G)/#, YA€ Nﬁn,

S —Aw K o S fw K. The previous equality is valid for adi, s, € K, hence, we can rewrite it & fw 7?, where
P = PMa(K, K) = PMa(s1, K) = PMa(s, K).

We write K at K if IP, K —A>¢> K andK — K if A, K at K. The similar arguments allow us to write
K —p K, whereP = PM(K, K) = PM(s1, K) = PM(s2, K).

By Proposition 6.1R < (DRy(G))? w (DRy(G))?. Hence YK € DR(G)/x, all states froniK are tangible, when
% € DRy (G)/«, or all of them are vanishing, whei§ € DRy(G)/x.

Theaverage sojourn time in the equivalence class (with resigeg] of statesk is

1 .
e K € DRr(G)/x;
— 1-PM(K, %)
S\}R(q() { 0, K e DRv(G)/R.
The average sojourn time vector for the equivalence classeth (@spect taR) of statesof G, denoted byS Xk,
has the elemenSk(K), K € DR(G)/x.
Thesojourn time variance in the equivalence class (with respeR) of stateskK is

VARK(K) = { @iy K € DRr(O)/x;
0, K e DRv(G)/qg.
Thesojourn time variance vector for the equivalence classdh (@spect toR) of statesof G, denoted byARg,
has the elementAR(K), K € DR(G)/x.
Let RsG) = UIR | R : GG} be theunion of all step stochastic autobisimulatiomsG. By Proposition 6.2,
Rs{G) is the largest step stochastic autobisimulatiorGorBased on the equivalence classes with respeRt4(©s),
the quotient (by- ) transition systems and the quotient (&y,) underlying SMCs of expressions can be defined.
The mentioned equivalence classes become the quotiess.sTdie average sojourn time in a quotient state is that in
the corresponding equivalence class. Every quotientitrandetween two such composite states represents af step
(having the same multiaction part in case of the transiti@besn quotient) from the first state to the second one.
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Figure 12: The quotient transition systemFofor F = [({a}, p) * (({b}, x); ((({c}, 1); ({d}, ) (({c}, m); ({d}, 6)))) * Stop]

Definition 7.1. Let G be a dynamic expression. Theotient (by< ) (labeled probabilistic) transition systeof G
isaquadrupld S, (G) = (So_, Lo . To, ., So ), Where

e So_ = DR(G)/zo);

o Lo =N x(0;1];

o o, = (5, (A PMAK, %)), K) | K, K € DRG)/uic) K - K;

e So_ = [[Clilro)-

The transition €, (A, P), 7~() € To,, Will be written ask Ap x.
The quotient (by~ ) transition systems of static expressions can be definechskor E € RegS tatExpriet

TS, (E)=TSo_(B).

Example 7.1. Consider an abstraction F of the static expression E fromripie 3.6, withc=e, d = f, 6 = ¢, i.e.

F = [({a}, p) = (({b}, x); (((ch 1); ({d}, ) I(({c}, m); ({d}, 6)))) * Stop].

Then DF{E) = {S1, S, S, &4, S5} is obtained from DIEE) via substitution of the symbols €, ¢ by ¢ d, 6,
respectively, in the specifications of the correspondiatgstfrom the latter set. We have P[R) = {s;, 2, &4, S5} an
DRy(F) = {ss}. Further, DRF)/x_g) = (K1, K2, K, Ka), whereKy = {s1}, K = (S}, Kz = {3}, Ka = {su, S5}. We
also have DR(E)/RSS(E) = (K1, Ko, K4} and DR/(E)/RSS(E) = {K3).

In Figure 12, the quotient transition system gsgf) is presented.

Thequotient (by— ) average sojourn time vectof G is defined aSl, = Sk.c)-
Thequotient (bye ) sojourn time variance vectaf G is defined a¥ AR, __ = VAR (g)-

Let X — K andkK # K. Theprobability to move fron¥ to K by executing any set of activities after possible
self-loopss

PM(K, K) Zio PM(K, KX = LRG0, K — K

PM(K, 7?), otherwise

The valuek = 0 in the summation above corresponds to the case when ntoepB-occur. Note that’K €
DRr(G)/z4c), PMY(K,K) = SL_(K)PM(K,K), since we always have the empty loop (which is a self-loop)
K 5 K from every equivalence class of tangible stak&sEmpty loops are not possible from equivalence classes
of vanishing states, hencé € DRy(G)/.(c). PM*(?(;‘I?) = %, when there are non-empty self-loops
(produced by iteration) frork', or PM*(K, K) = PM(K, K), when there are no self-loops frok.
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Figure 13: The quotient underlying SMC Bffor F = [({a}, p) = ({b}, x); ((({c}, 1); ({d}, O))[(({c}, m); ({d}, 6)))) * Stop]

Definition 7.2. Let G be a dynamic expression. Theotient (by- ) EDTMCof G, denoted bffDTMC,, (G), has
the state spacBR(G)/x.4c), the initial state [5]+]r.(c) and the transition& —» K, if K > K andk # K, where
P = PM(K, K).

The quotient (by< ) underlying SMCof G, denoted bySMC,,_(G), has the EDTMCEDTMC,,_(G) and the
sojourn time in everyK € DRy (G)/zc) is geometrically distributed with the paramete#PM(?( ‘K) while the
sojourn time in every € DRy(G)/z.qc) is equal to zero.

The quotient (by-.) underlying SMCs of static expressions can be defined as Welt E ¢ RegStatExprlet
SMG,_(E) = SMG,, (E)

The steady- -state PMis, forEDTMC,_(G) andy., for SMC,_(G) are defined like the corresponding notions
y* for EDTMC(G) ande for S SMQG) respectlvely

Example 7.2. Let F be from Example 7.1. In Figure 13, the quotient undagysMC SMQSS(E) is presented.

The quotients of both transition systems and underlying Ssli€@ the minimal reductions of these objects modulo
step stochastic bisimulations. The quotients can be usachaify analysis of system properties which are preserved
by &, since less states should be examined for it. Such reducteshod resembles that from [2] based on place
bisimulation equivalence for PNs, excepting that the farmethod merges states, while the latter one merges places.

Moreover, the algorithms exist to construct the quotieftsamsition systems by an equivalence (like bisimulation
one) [76] and those of (discrete or continuous time) Markoaies by ordinary lumping [34]. The algorithms have
time complexityO(mlogn) and space complexit®(m + n), wheren is the number of states amdis the number
of transitions. As mentioned in [90], the algorithm from [&&n be easily adjusted to produce quotients of labeled
probabilistic transition systems by the probabilisticitiglation equivalence. In [90], the symbolic partition refi
ment algorithm on state space of CTMCs was proposed. Theithlgocan be straightforwardly accommodated to
DTMCs, interactive MCs, Markov reward models, Markov damsisprocesses, Kripke structures and labeled prob-
abilistic transition systems. Such a symbolic lumping usesnory dficiently due to compact representation of the
state space partition. The symbolic lumping is tinfiécéent, since fast algorithm of the partition representatiad
refinement is applied. In [35], a polynomial-time algoritfion minimizing behaviour of probabilistic automata by
probabilistic bisimulation equivalence was outlined tfestults in the canonical quotient structures. One coulgtada
the above algorithms for our framework of transition systefreduced) DTMCs and SMCs.

Let us also consider quotient (by.) DTMCs of expressions based on the state change probedii(%, ‘]~().

Definition 7.3. Let G be a dynamic expression. Tlgeotient (by< ) DTMC of G, denoted byDTMC,,_(G), has
the state spadBR(G)/x.4c), the initial state [{5]+]z.qc) and the transition& —p %K, wherep = PM(%K, 7~().

The quotient (by=.) DTMCs of static expressions can be defined as well. FFarRegS tatE xpriet
DTMC,,_(E) = DTMC,_(E).
The steady-state PMF., for DTMC,,_(G) is defined like the corresponding notigrfor DTMC(G).
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Figure 14: The quotient DTMC o for F = [({a}, p) * (({b}, x); (((tc}, 1); ({d}, O)(({c), m); ({d}, 6)))) * Stop]

RDTMC 4 (F)

Figure 15: The reduced quotient DTMC Bffor F = [({a}, p) = (({b}, x); (((ch, D; ({d), O)(({c), m); ({d}, 8)))) * Stop]

Example 7.3. Let F be from Example 7.1. In Figure 14, the quotient DTMC D'IL_MSO?) is presented.

Eliminating equivalence classes (with respecRtg(G)) of vanishing states from the quotient (by,) DTMCs
of expressions results in the reductions of such DTMCs.

Definition 7.4. Thereduced quotient (by>,) DTMC of G, RDTMG,_(G), is defined likeRDTMJG) in Section 5,
but it is constructed frol®@TMC,,_(G) instead oDTMC(G).

The reduced quotient (by> ) DTMCs of static expressions can be defined as well. Far RegS tatExprlet
RDTMG,_(E) = RDTMC,_(E).
The steady-state PMFZ, for RDTMG,_(G) is defined like the corresponding notigh for RDTMQG).

Example 7.4. Let F be from Example 7.1. In Figure 15, the reduced quotiefVIQ of RDTMC:SS(E) is presented.

Obviously, the relationships between the steady-state RMF andzﬁH o Po, andy._, as well asp, _ and
Yo, are the same as those determined between their “non- qtlolmsmns in Theorem 5. 1, Proposmon 5.2 and
Proposmon 5.3, respectively.

In Figure 16, the cube of interrelations w.r.t. the relatioanstructed from” is depicted for both standard and
guotient transition systems and Markov chains (SMCs, DT RDTMCS) of expressions. Note that the relations
betweenSMC and SMC,, , betweenDTMC andDTMC,, , as well as betweeRDTMC andRDTMC,,_, can be
obtained using the foIIowmg corresponding | tranS|t|ondi|mns defined by analogy with those already introduced:
PM*(K, 7() based orPM*(s, §), thenPM(XK, 7() based oPM(s, 9), as well aPM°* (K, 7() based oPM°(s, §). In
a similar way, the relations betwe&VCandRDTMG as well as betweeBMC,,  andRDTMG,_, can be obtained
using the following corresponding transition functio®¥°(s, §), based orPM*(s §), through PM )°(s, §), as well
asPM°(‘K,7(), based orP M* (‘](,7(), through PM*)°(K, ‘K).

The comprehensive quotient and reduction example will begted in Section 9.
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DTMC 5 >RDTMC, __
DTMC ~|~ RDTMC ‘

TSHSS% SMC,
e

TS — SMC

Figure 16: The cube of interrelations for standard and gabtransition systems and Markov chains of expressions

In [25], the ordinary, exact and strict lumpability relai®on finite DTMCs are explored. It is investigated which
properties of transient and stationary behaviour of DTMf&speserved by aggregation w.r.t. the three mentioned
kinds of lumping and their approximate “nearly” versionsisiproven that irreducibility is preserved by aggregation
w.r.t. any partition (or equivalence relation) on the staiEDTMCs. Since only finite DTMCs are considered (with a
finite number of states), these all are positive recurreggragation can only decrease the number of states, hence,
the aggregated DTMCs are also finite and positive recurrsnmeeserved by every aggregation. It is known [81, 56]
that irreducible and positive recurrent DTMCs have a sirsgggionary PMF. Note that the original and aggregated
DTMCs may be periodic, thus having a unique stationaryitlistion, but no steady-state (limiting) one. For example,
it may happen that the original DTMC is aperiodic while thgregated DTMC is periodic due to merging some states
of the former. Thus, both finite irreducible DTMCs and thebiigary aggregates have a single stationary PMF. Then
the relationship between stationary probabilities of DTdi&hd their aggregates w.r.t. ordinary, exact and strict
lumpability is established in [25]. In particular, it is sk that for every DTMC aggregated by ordinary lumpability,
the stationary probability of each aggregate state is a dumecstationary probabilities of all its constituent state
from the original DTMC. The information about individuahsibnary probabilities of the original DTMC is lost after
such a summation, but in many cases, the stationary prdatef the aggregated DTMC are enough to calculate
performance measures of the high-level model, from whiehattiginal DTMC is extracted. As mentioned in [25],
in some practical applications, the aggregated DTMC carxbaaed directly from the high-level model. Thus, the
aggregation techniques based on lumping are of practiqgaditance, since they allow one to reduce the state space
of the modeled systems, hence, the computational costgdbrating their performance.

Let G be a dynamic expression. By definition ef_, the relationRss(G) on T S(G) induces ordinary lumping
on SMQQG), i.e. if the states of S(G) are related byRs{(G) then the same states 8MQG) are related by ordinary
lumping. The quotient (maximal aggregate BMQG) by such an induced ordinary lumpingS#C.,_(G). Since we
consider only finite SMCs, all of them are positive recurrand irreducibility ofSMQG) will imply |rredu0|b|l|ty of
SMGC,_(G). Then a unique quotient stationary PMFIMC.,_(G) can be calculated from a unique original stationary
PMF ofSMQG) by summing some elements of the Iatter as described in &isjilar arguments demonstrate that
the same results hold f@TMC(G) andDTMC,,_(G), as well as foRDTMQG) andRDTMC,,_(G).

8. Stationary behaviour

Let us examine how the proposed equivalences can be usednioace the behaviour of stochastic processes
in their steady states. We shall consider only formulasifpgeg stochastic processes with infinite behavior, i.e.
expressions with the iteration operator. Note that thaiten operator does not guarantee infiniteness of behaviour
since there can exist a deadlock (blocking) within the baldg §econd argument) of iteration when the corresponding
subprocess does not reach its final state by some reasonsirticufar, if the body of iteration contains ttstop
expression, then the iteration will be “broken”. On the othand, the iteration body can be left after a finite number
of its repeated executions and then the iteration ternindt started. To avoid executing any activities after the
iteration body, we tak&top as the termination argument of iteration.

Like in the framework of SMCs, in LDTSIPNs the most commonteyss for performance analysis arodic
(irreducible, positive recurrent and aperiodic) ones. émgodic LDTSIPNS, the steady-state marking probabilities
exist and can be determined. In [72, 73], the followingfisient (but not necessary) conditions for ergodicity of
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DTSPNs are statedivenesgqfor each transition and any reachable marking there exssaence of markings from
it leading to the marking enabling that transitiobpundednesfor any reachable marking the number of tokens in
every place is not greater than some fixed number)reomieterminisnithe transition probabilities are strictly less
than 1).

Consider dtsi-box of a dynamic expressi@ére [E = F « Stop] specifying a process for which we assume that it
has no deadlocks while (repetitive) running the b&dgf the iteration operator. If, starting inf[« F = Stop]]~ and
ending in [[E = F « Stop]] », only tangible states are passed through then the thredieityacconditions are satisfied:
the subnet corresponding to the looping of the iteratioryldods live, safe (1-bounded) and nondeterministic (since
all markings of the subnet are tangible and non-terminalptiobabilities of transitions from them are strictly |esart
1). Hence, according to [72, 73], for the dtsi-box, its uglag SMC, restricted to the markings of the mentioned
subnet, is ergodic. The isomorphism between SMCs of exijoresand those of the corresponding dtsi-boxes, which
is stated by Proposition 5.1, guarantees 8iIMQG) is ergodic, if restricted to the states betwedh {[F * Stop]] -
and [[E = F = Stop]] ~.

The ergodicity conditions above are not necessary, i.eretbrist dynamic expressions with vanishing states
traversed while executing their iteration bodies, such tihe properly restricted underlying SMCs are nevertheless
ergodic, as Example 5.1 demonstrated. However, it has bemmnsin [7] that even live, safe and nondeterministic
DTSPNSs (as well as live and safe CTSPNs and GSPNs) may bergodie

In this section, we consider only the process expressiotis tat their underlying SMCs contain exactly one
closed communication class of states, and this class statsddbe ergodic to ensure uniqueness of the stationary
distribution, which is also the limiting one. The states befonging to that class do not disturb the uniqueness, since
the closed communication class is single, hence, theyaliransient. Then for each transient state, the steady-stat
probability to be in it is zero while the steady-state prdligtio enter into the ergodic class starting from that stist
equal to one.

8.1. Steady state, residence time and equivalences

The following proposition demonstrates that, for two dymaeaxpressions related By _, the steady-state prob-
abilities to enter into an equivalence class coincide. Gameatso interpret the result stating that the mean recuerenc
time for an equivalence class is the same for both expression

Proposition 8.1. Let G, G’ be dynamic expressions with: G G’ andg be the steady-state PMF for SNIG), ¢’
be the steady-state PMF for SNI®). ThenVH € (DR(G) U DR(G’))/x,

D= > g

scHNDR(G) seHNDR(G')

Proor. See Appendix A.2. O

Let G be a dynamic expression agdoe the steady-state PMF f&MQG), ¢., be the steady-state PMF for
SMG,_(G). By Proposition 8.1, we havéH € DR(G)/z.c), ¢o. (H) = Zeen cp(S) Thus, for every equivalence
classH e DR(G)/r.c), the value ofp., _corresponding tg{ is the sum of all values af corresponding to the states
from . Hence, usingMC,_(G) instead ofSMQG) simplifies the analytical solution, since we have lessestdtut
constructing the TPM foEDTMC (G), denoted byP, , also requires somdferts, including determinin®s«G)
and calculating the probabilities to move from one equmamclass to other. The behaviour BDTMC,,_(G)
stabilizes quicker than that @DTMC(G) (if each of them has a single steady state), sﬂﬁjge is denser matrix
thanP* (the TPM forEDTMC(G)) due to the fact that the former matrix is smaller and theditions between the
equivalence classes “include” all the transitions betwberstates belonging to these equivalence classes.

By Proposition 8.1¢> _ preserves the quantitative properties of the stationamptieur (the level of SMCs). Now
we intend to demonstrate that the qualitative properti¢sestationary behaviour based on the multiaction labels ar
preserved as well (the level of transition systems).

Definition 8.1. A derived step tracef a dynamic expressio® is a chain = A;---Ay € (me) , Wwhereds €
DR(G), SE St L sh, L(T5) = Ai (1 <i < n). Then theprobability to execute the derived step tr&&e sis
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PT(S,§) = > ﬁ PT(Ti,S.1).

T e =1
(Y1 Yols=So3 512, £(1)=A (1<in)} '

The following theorem demonstrates that, for two dynamigregsions related by
ities to enter into an equivalence class and start a derbegdisace from it coincide.

the steady-state probabil-

Sy

Theorem 8.1. Let G, G’ be dynamic expressions wigh: G« G’ andy be the steady-state PMF for SNI&), ¢’ be
the steady-state PMF for SMG’) andX be a derived step trace of G and.GhenvH € (DR(G) U DR(G"))/«,

D eIPTE.9= > FS)PTES).

seHNDR(G) SeHNDR(G')

Proor. See Appendix A.3. O

We now present a result not concerning the steady-statapildles, but revealing very important properties of
residence time in the equivalence classes. The followinggsition demonstrates that, for two dynamic expressions
related by, the sojourn time averages in an equivalence class coirasdeell as the sojourn time variances in it.

Proposition 8.2. Let G, G’ be dynamic expressions with: G G'. ThenVH € (DR(G) U DR(G'))/x,
Sknor@)2(H N DR(G)) = Sknpre)2(H N DR(G)),
VAR re@)2(H N DR(G)) = VAR pre)2(H N DR(G)).
Proor. See Appendix A.4. O
Example 8.1. Let
E = [({a}. 3) * (({b}, 3); (e}, )all({c). 3)2)) * Stop],
E’ = [(fa), 3) = ((({b}, 3); (fch, 5)0(({b}, 3)2; ({c), 3)2)) * Stop].

We haveEo  E'.
DR(E) consists of the equivalence classes

st = [[({a), 3) = (1o}, 3); ((feh, Dall({ch, £)2)) = Stop]] .
s = [[({ah 1) = (b}, 2); ((ch, a0({c), 1)2)) * Stop]]~,
ss = [[({a}, 3) = (({b}, 3); (({c}, $)aMl({ch, 3)2)) * Stop]] -

DR(E’) consists of the equivalence classes

s, = [[(fa), 3) = (b}, 3)1; (fe), 3)1)O(((BY, 3)2; (fc), 3)2)) = Stop]],
s, = [[({a}, 3) = (b}, 3)1: ({e, 3)1)O(({BY, 3)2; (fch, 3)2)) = Stop]]-,
sg=[[({a} 1) % (b}, )1: ek, B0N(({b, )z ((c), 2)2)) * Stopl]-.

= [[(fa}, 3) * (((tb}, $)1; (fch, $)1)0(({b), 3)2; (e}, 3)2)) * Stop]]~.

The steady-state PMEzsfor SMQE) and¢’ for SMQEE’) are
11\ , 111
90—(0,5,5),‘,0 —(O,E,Z,Z).
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O,

Figure 17:< . preserves steady-state behaviour and sojourn time piepérithe equivalence classes.

Consider the equivalence class (with respecRtgE, E")) H = {ss, s, S;}. One can see that the steady-state
probabilities for H coincide: Yo yore #(S) = ¢() = 3 = 3+ 3 = (%) +¢'(8) = Zecrnore) ¢ (S)-
LetX = {{c}}. The steady-state probabilities to enter into the equwabeclassH and start the derived step
trace = from it coincide as well:p(ss)(PT({({c}, 3)1}, s5) + PT({({c}, 3)2}. Ss)) = %(;11 + %1) =1-1.141.1-
¢'(SPT(({(ch )} ) + ¢/ (S)PT(((Ch 3)2). 5y).

Further, the sojourn tlme averages in the equwalence ciyssommde S} S(EE)Q(DR(E))Z((H N DR(G))

1 _ 9 _ — — —
S‘JRSS(E E’)ﬂ(DR(E))Z( S)) = 1- PM( Msh) ~ T-PM(sss) 1—— =2= —% -1 PM(% s) T 1- F’M( .s) — 1-PM((s;, S’l S0 T
Sk e ror@(S S)) = Sk, € orey:(H N DRG)).
Finally, the sojourn t|me variances in the equivalence sla&coincide: VAI?g EBnorER(H NDR(G)) =

PM(S3.55) 3 PM(s, 8,) PM(s,s)

PMUsolisa)  _ - _
VAR B nor@2(S8)) = @rmsi il = TrMEa = @I ~ 27 @iy - TPME P T TPMESY T

2
PM((S,.5{%8) _
m - VARRSS(EE)n(DR(E))Z( 53 A h = VARRSS(EE)m(DR(E))Z (H N DR(G)).
In Figure 17, the marked dtsi-boxes corresponding to theadyin expressions above are presented, i.e.
N = Boxtsi(E) and N = Boxgisi(E”).

8.2. Preservation of performance and simplification of itglgsis

Many performance indices are based on the steady-statalglities to enter into a set of similar states or, after
coming in it, to start a derived step trace from this set. Tihglarity of states is usually captured by an equivalence
relation, hence, the sets are often the equivalence cla8seposition 8.1, Theorem 8.1 and Proposition 8.2 guar-
antee coincidence of the mentioned indices for the exgmesselated by-»_. Thus,< . (hence, all the stronger
equivalences we have considered) preserves performastaobfastic systems modeled by expressions of dtsiPBC.

In addition, it is easier to evaluate performance using arCSiith less states, since in this case the size of the
transition probability matrix will be smaller, and we shatilve systems of less equations to calculate steady-state
probabilities. The reasoning above validates the follgwirethod of performance analysis simplification.

1. The investigated system is specified by a static expressidtsiPBC.

2. The transition system of the expression is constructed.

3. After treating the transition system for self-similgyit step stochastic autobisimulation equivalence for the
expression is determined.

4. The quotient underlying SMC is constructed from the qgrdttransition system.
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Figure 18: Equivalence-based simplification of perforneaeealuation.

5. Stationary probabilities and performance indices aleuzted using the SMC.

The limitation of the method above is its applicability oritythe expressions such that their underlying SMCs
contain exactly one closed communication class of statekitds class should also be ergodic to ensure uniqueness
of the stationary distribution. If an SMC contains sevetabed communication classes of states that are all ergodic
then several stationary distributions may exist, whichetepon the initial PMF. There is an analytical method to
determine stationary probabilities for SMCs of this kindaaedl [56]. Note that the underlying SMC of every process
expression has only one initial PMF (that at the time momgnhénce, the stationary distribution will be unique in
this case too. The general steady-state probabilitieharedalculated as the sum of the stationary probabilitiedl of
the ergodic classes of states, weighted by the probabititienter into these classes, starting from the initiatstat
passing through some transient states. It is worth appljiegnethod only to the systems with similar subprocesses.

Before calculating stationary probabilities, we can fartheduce the quotient underlying SMC, using the algo-
rithm from [68, 5, 6] that eliminates vanishing states frdra torresponding EDTMC and thereby decreases the size
of its TPM. For SMCs reduction we can also apply an analoguketieterministic barrier partitioning method from
[41] for semi-Markov processes (SMPs), which allows onestidgrm quicker the first passage-time analysis. Another
option is the method of stochastic state classes from [49)éneralized SMPs (GSMPs) reduction, allowing one to
simplify transient performance analysis (based on thestegat probabilities of being in the states of GSMPs).

Alternatively, the results at the end of Section 7 allow usitaplify the steps 4 and 5 of the method above
by constructing the reduced quotient DTMC (instead of thetignt underlying SMC) from the quotient transition
system, followed by calculating the stationary probaiktitof the quotient underlying SMC using this DTMC, and
then obtaining the performance indices. We first merge thévalgnt states in transition systems and only then
eliminate the vanishing states in Markov chains. The reé&strat transition systems, being a higher-level formalism
than Markov chains, describe both functional (qualitgtased performance (quantitative) aspects of behaviourewhil
Markov chains represent only performance ones. Thus, mditimig vanishing states first would destroy the functional
behaviour (which is respected by the equivalence used faienting), since the steps withftBrent multiaction parts
may lead to or start from fferent vanishing states.

Figure 18 presents the main stages of the standard andaiteraquivalence-based simplification of performance
evaluation described above.

9. Shared memory system

In this section with a case study of the shared memory systershaw how steady-state distribution can be used
for performance evaluation. The example also illustrdiesnethod of performance analysis simplification above.

9.1. The standard system

Consider a model of two processors accessing a common sin@radry described in [68, 5, 6] in the continuous
time setting on GSPNs. We shall analyze this shared memetgrsyin the discrete time stochastic setting of dtsiPBC,
where concurrent execution of activities is possible, e/hib two transitions of a GSPN may fire simultaneously (in
parallel). The model works as follows. After activation bétsystem (turning the computer on), two processors are
active, and the common memory is available. Each processoragjuest an access to the memory after which the
instantaneous decision is made. When the decision is mdaeadur of a processor, it starts acquisition of the memory
and the other processor should wait until the former one éadasemory operations, and the system returns to the
state with both active processors and the available comneanary. The diagram of the system is depicted in Figure
19.
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Figure 19: The diagram of the shared memory system.

Let us explain the meaning of actions from the syntax of d@&iRexpressions which will specify the system
modules. The actiom corresponds to the system activation. The actignd < i < 2) represent the common
memory request of processiorThe instantaneous actiodscorrespond to the decision on the memory allocation in
favour of the processadr The actionsm; represent the common memory access of procésJdre other actions are
used for communication purposes only via synchronizationl, we abstract from them later using restriction. For
a,...,an € Act(ne N), we shall abbreviatesy a; --- syanrsa;--- rsa, to sr(as,...,an).

The static expression of the first processor is

1 1 1
Ea = [({xa}, E)  (({ra), 5); ({d1, y1}, 1); (fmy, z1}, 5)) * Stop].

The static expression of the second processor is

1 1 1
Ez = [({%}, 5) « (({r2), E); ({d2, y2}, 1); (fmg, 22}, E)) * Stop].

The static expression of the shared memory is

E3 = [((@ 5. %), 3) » (531 1) (70, )53} 1); (7). 5)) » Stopl.

The static expression of the shared memory system with teogsisors is

E = (E1llE2lIEs) sr (X1, X2, Y1, Y2, 1, 2Z2).

Let us illustrate anféect of synchronization. As result of the synchronizatiomohediate multiactiong¢;, vi}, 1)
and (¥}, 1) we obtain {d;},2) (1 < i < 2). The synchronization of stochastic multiactiofisi(z}, 1) and (Z}, 3)
produces{my}, 3) (1 < i < 2). The result of synchronization ofa( X1, %3}, 3) with ({x1}, 3) is (&, %3}, 2), and that
of synchronization of {f, %1, %}, 3) with ({x2}, 3) is ({a, X3}, 1). After applying synchronization tod, %}, ) and
({x2}, 3), as well as toffa, X1}, 1) and (xa}, 3), we obtain the same activitya}, 3).

DR(E) consists of the equivalence classes

st = [([(xa), 2) * (({red 2); (de, yab, 1); ((mw, 21}, 3)) = Stop]|

[({x2}, 3) = (({r2}, 3); ({d2, y2}, 1); (Mg, 22}, 3)) * Stop]|

[(& %, %), 3) + (52}, 2); (2, D53, 1); (), 1)) « Stop))
S (X1, X2, Y1, Y2, Z1, 22)] ~»

S = [([({Xa}, 3) = ((fra), 3); ({da, ya}, 1); ((my, 22}, 3)) * Stop] |
[({%2}, 2) = (({r2}, 2); ({d2, y2}, 1); (Mg, 22}, 2)) = Stop]|
[(fa, %1, %2}, 5) = (191}, 1); (Z2), $)O({¥2), 1); (Z2), 3))) * Stop])

ST (X1, X2, Y1, Y2, Z1, 22)] ~»
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= [([({xa}, 2) = (({ra}, 3); ({d1, ya), 1); (e, 21}, 2)) = Stop] |
[( X2}, 3) * (({r2}, 3); ({d2, Y2}, 1); (Mg, 22}, 3)) = Stop] ||

[({a, 5, %), 3) = (151}, 1); (Z), )52}, 1); (), 3))) * Stop])
sr (Xl’ X2, Y1, Y2, Z1, ZZ)]:,

s = [([(xa), 3) * ((Arad, 3); ({de, ya), 1); ((mu, z2), 2)) = Stop] |
[({x2}, 2) = ((fr2}, 2); ({d, y23. 1); (IMe, 25}, 2)) = Stop]|
[(fa, %1, %2}, 3) = (191}, 1); (Z2), 3OV} 1); (), 3))) * Stop])
ST (X1, X2, Y1, Y2, Z1, 22)] ~»

ss = [([({xa}, 2) = (({red 2); ({de, yab, 1); ({mw, 2}, 3)) = Stop]|
[({x2}, 3) = (({r2}, 2); ({d2, y2), 1); (Mg, 22}, 2)) = Stop]|

[({a, 5, %, 3) = (151}, 1); ((Z), 2)0((1%2), 1); (), 3))) * Stop])
sr (Xl’ X2, Y1, Y2, Z1, ZZ)]:,

= [([({xa}, 3) * (({ra}, 3); ({dw, ya), 1); ({my, 1}, 3)) = Stop] |l
[( Xa}, 3) # (({r2), 3); ({d2, y2}, 1); (M, 22}, 2))*Stop]||
[(fa, X1, %2}, 3) * (172}, 1); (1), 3)O(({%2), 1); (122}, 3))) = Stop])
st (X1, X2, Y1, Y2, 21, 22)]

7= [([({xa), 3) = (({ra), 3); (1w, ya), 1); ((mu, z2), 2)) * Stop] |
[({x2}, 3) = (({r2}, 3); ({d2, Y2}, 1); (fmp, 22}, 3)) = Stop] ||
[(fa, %1, %2}, 3) = (191}, 1); (Z2), $NO({Y2), 1); ({2}, 3))) * Stop])

S (X1, X2, Y1, Y2, Z1, 22)] ~»

= [([({xa}, 2) = (({re}, 3); ({d1, ya), 1); (1M, 2}, 2)) = Stop] |
[( X}, 2) = (({r2}, 3); ({da, y2}, 1); (1M, 22}, 2)) = Stop] |

[(fa, %2, 52}, 3) = (172}, 1); (), $)O(({¥2) 1); ((Z2), 3))) * Stop])
St (X1, X2, Y1, Y2, Z1, 22)] ~»

So = [([({xa}, 3) * (({ra), 3); (1w, ya), 1); ((mu, z2}, 2)) * Stop]

[({x2}, 3) = (({r2}, 3); ({d2, Y2}, 1); (fmp, 22}, 2)) = Stop] ||
[(fa, %1, %2}, 3) = (191}, 1); (Z2), $)O(({¥2), 1); ({2}, 3))) = Stop])

St (X1, X2, Y1, Y2, Z1, 22)] ~.-

We haveDRr (E) = {s1, S, S5, S7, S8, So} andDRy(E) = {s3, s4, Sg}-
The states are interpreted as followsis the initial states,: the system is activated and the memory is not requested,
s3: the memory is requested by the first processgr,the memory is requested by the second processorthe
memory is allocated to the first processsr,the memory is requested by two processsrsthe memory is allocated
to the second processas, the memory is allocated to the first processor and the memagguested by the second
processorsy: the memory is allocated to the second processor and the mesn@quested by the first processor.

In Figure 20, the transition systeMS(E) is presented. In Figure 21, the underlylng sm/lqﬁ) is de-
picted. Note that, in step semantics, we may execute thewly activities in parallel: {f1}, 2) ({ra}, ) as well
as (1), 3). (e}, 4), and (r2), 3), ((mu), 3).

The average sojourn time vectorBfis

4 8 8
SJ— 8,:—)),0,0, ‘_E)’O’ §7494)

The sojourn time variance vector Bfis
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Figure 20: The transition system of the shared memory system
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Figure 21: The underlying SMC of the shared memory system.



Table 5: Transient and steady-state probabilities for th&MC of the shared memory system.

[k O] 5 [ 10 [ 16 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | o |
I L1] O 0 0 0 0 0 0 0 0 0 0

gl [0 0 | 00754/ 0.0859] 0.0677] 0.0641] 0.0680] 0.0691| 0.0683] 0.0680| 0.0681] 0.0682
y;[K| | 0] 0.2444] 0.2316] 0.1570] 0.1554] 0.1726] 0.1741] 0.1702] 0.1696] 0.1705] 0.1707| 0.1705
y:[K | 0] 0.2333] 0.0982] 0.1516] 0.1859] 0.1758] 0.1672] 0.1690] 0.1711] 0.1708] 0.1703] 0.1705
yi[K] | 0] 0.0444] 0.0323] 0.0179] 0.0202] 0.0237] 0.0234] 0.0226| 0.0226] 0.0228| 0.0228] 0.0227
yi[ 0] 0 [01163]0.1395] 0.1147] 0.1077] 0.1130] 0.1150] 0.1139] 0.1133] 0.1136] 0.1136

4 24 24 5
97725 772 '

VAR= (56,— 0,0, —=,0, 25 121

The TPM forEDTMCE) is

01 0000UO0TO0O
0022101000
000O0T1O0U0UO0O
000O0OOT1O0O

P*:O%O%OOO"—%O
ooooooozé
ot loo0000:3
000 1000UO0UO
001 000O0TUO0U 0O

In Table 5, the transient and the steady-state probabififigk] (i € {1, 2, 3,5, 6, 8}) for the EDTMC of the shared
memory system at the time momehkts {0, 5, 10,...,50} andk = ~ are presented, and in Figure 22, the alteration
diagram (evolution in time) for the transient probabilitis depicted. It is dticient to consider the probabilities for
the states;, 5, S3, S5, S, Ss only, since the corresponding values coincidedprs,, as well as fosss, s7, and forsg, .

The steady-state PMF f@DTMC(E) is

V=" a2 88 88 88' 24 88 34" 24
The steady-state PMF* weighted bySJis
1 3 3 55
(03 ﬂ» Oy 09 ﬂ» Oy ﬂ» ﬁ: ﬁ) .
It remains to normalize the steady-state weighted PMF bigighig it by the sum of its components

(031515151155 5)

17
s _
y*SJ = [T

Thus, the steady-state PMF 8MQE) is

1 3 3 5 5
‘P - (091_7709071_77091_77 1_791_7 .
Otherwise, from T S(E), we can construct the DTMC & DTMC(E), and then calculate using it.
In Figure 23, the DTMMTMC(E) is depicted.
The TPM forDTMC(E) is
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Figure 22: Transient probabilities alteration diagramtfe EDTMC of the shared memory system.

Figure 23: The DTMC of the shared memory system
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Table 6: Transient and steady-state probabilities for th&D of the shared memory system

[k Jo] 5 10 [ 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | o
w[K] || 1| 0.5129| 0.2631| 0.1349| 0.0692| 0.0355| 0.0182| 0.0093| 0.0048| 0.0025| 0.0013 0
o[kl || 0] 0.1161| 0.0829| 0.0657| 0.0569| 0.0524| 0.0501| 0.0489| 0.0483| 0.0479| 0.0478| 0.0476
W3[K] || 0| 0.0472| 0.0677| 0.0782| 0.0836| 0.0864 | 0.0878| 0.0885| 0.0889| 0.0891| 0.0892| 0.0893
¥s[K] || 0] 0.0581| 0.0996| 0.1207| 0.1315| 0.1370| 0.1399| 0.1413| 0.1421| 0.1425| 0.1427| 0.1429
YvelK] || 0| 0.0311| 0.0220| 0.0171| 0.0146| 0.0133| 0.0126| 0.0123| 0.0121| 0.0120| 0.0120| 0.0119
wglK] || 0| 0.0647| 0.1487| 0.1923| 0.2146| 0.2260| 0.2319| 0.2349| 0.2365| 0.2373| 0.2377| 0.2381
1.G
| —0— Y1[K]
0.8 —— Y[K]
—o— Y3lK]
0.6 —a— [k
I —¥— YglK]
0.4~
I —— YglK]
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Figure 24: Transient probabilities alteration diagramtf@ DTMC of the shared memory system
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In Table 6, the transient and the steady-state probabiliti] (i € {1, 2, 3,5, 6, 8}) for the DTMC of the shared
memory system at the time momehkts {0, 5, 10,...,50} andk = c are presented, and in Figure 24, the alteration
diagram (evolution in time) for the transient probabiltis depicted. It is dticient to consider the probabilities for
the states;, 5, S3, S5, S, Ss only, since the corresponding values coincidedprs,, as well as fosss, s7, and forsg, .

The steady-state PMF f@TMC(E) is
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ol 5511155
v=\"215656 784721 21)°
Remember thabRr (E) = {s1, S, Ss. 57, Ss. So} andDRV(E) = {ss, s4, S6}. Hence,
17
Do W9 = ) +use) + u(ss) + U(s) + U(Se) + (o) = 57
seDRy (E)

By Proposition 5.2, we have

@(81)20%20,

o) =75 =1
¢(s3) = 0,
o(s4) =0,
p(s)=3-8=2,
¥(ss) = 0,
p(s)=%1-H=5
p(s) =5+ 8 =2,
W)=% B=%

Thus, the steady-state PMF 8SMQ(E) is

1 3 3 5 5
$= (0’ 179070177 )
This coincides with the result obtained with the usg¢oindSJ
Alternatively , from T S(E), we can construct the reduced DTMCBfRDTMQE), and then calculate using it.
Remember thabRr (E) = {S1, S, S5, S7, S, So} andDRy(E) = {3, &4, Ss}. We reorder the elements BIR(E), by
moving the equivalence classes of vanishing states to 8tgfisitions:ss, s1, S, S1, 2, S5, S7, S8, So-
The reordered TPM foDTMC(E) is

000O0OT1O0O0O O
000O0OOOT1O0O
0 00O0O0OTOZ}1
ooog%oooo
=1 21 010000
ogoo%gogo
1000303032
02 oooo0o0¢20o0
7 00000O00O0O0S3?
The result of the decomposiiyy are the matrices
0 00 g%oooo
11 1 1
00 0 001000 114 019229
C=|/000[D=/00010O0E=f; 8 JLF=| % 835 83
11 8 8 8 8
000 00003 010 00002%0
1 00 0 00O0O0:3:2

SinceC! = 0, we havevk > 0, Ck = 0, hence) = 0 and there are no loops among vanishing states. Then
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Figure 25: The reduced DTMC of the shared memory system

Table 7: Transient and steady-state probabilities for & RC of the shared memory system

| k Jo] 5 | 10 | 156 | 20 | 25 | 30 | 35 | 40 | 45 [ 50 [ o |
y3[K [ 1]05129] 0.2631] 0.1349] 0.0692] 0.0355] 0.0182] 0.0093] 0.0048] 0.0025] 0.0013] 0

y;[Kl || 0]0.1244] 0.0931] 0.0764| 0.0679| 0.0635| 0.0612[ 0.0600| 0.0594| 0.0591| 0.0590| 0.0588
y3[Kl || 0] 0.0863] 0.1307] 0.1530| 0.1644| 0.1703| 0.1733] 0.1748] 0.1756] 0.1760| 0.1763| 0.1765
y2[K || 0]0.0951] 0.1912] 0.2413] 0.2670| 0.2802] 0.2870[ 0.2905| 0.2922] 0.2932] 0.2936] 0.2941

Further, the TPM foRDTMQE) is

I 10000

011111

4 g 4 g 8

o I 2 1 =90

P°=F+EGD=F+EID =F+ED= 5§ § B 8 |
0535 5 93

000120

0010032

In Figure 25, the reduced DTMRDTMQE) is presented.

In Table 7, the transient and the steady-state probabilitigk] (i € {1,2, 3,5}) for the RDTMC of the shared
memory system at the time momehkts {0, 5, 10,...,50} andk = ~ are presented, and in Figure 26, the alteration
diagram (evolution in time) for the transient probabilitis depicted. It is dticient to consider the probabilities for
the states, S, S5, Ss only, since the corresponding values coincidednis;, as well as forsg, So.

The steady-state PMF fRDTMQE) is

cfpl3355
v =10 1717 1717 17)°
Note thaty® = (°(s1), ¥°(S2), ¥°(S5), ¥°(S7), ¥° (Ss), ¥° (Sv)). By Proposition 5.3, we have

e(s) =0, ¢() =1 e(s)=2. es)=2 o(s)=72 o) =75

Thus, the steady-state PMF 8MQE) is
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Figure 26: Transient probabilities alteration diagramtfe RDTMC of the shared memory system

0,0, —,0

(o L 3,355
=M1t )

This coincides with the result obtained with the usg¢oindSJ
We can now calculate the main performance indices.

The average recurrence time in the statavhere no processor requests the memory, calledvibeage system
run-through is ;12 =17.

The common memory is available only in the stadgs;, 4, Ss. The steady-state probability that the memory
is available isp + @3+ @4+ g = 1% +0+0+0= %7 Then the steady-state probability that the memory is used
16

. . ape . . l _
(i.e. not available), called trghared memory utilizatigns 1- 15 = £5.

After activation of the system, we leave the statdor ever, and the common memory is either requested or
allocated in every remaining state, with exceptionsgaf Thus, therate with which the necessity of shared
memory emergesoincides with the rate of leaving, calculated ags = £ - § = &.

The common memory request of the first proces(aqﬁ,(%) is only possible from the statess, s;. In each of
the states, the request probability is the sum of the exattiobabilities for all sets of activities containing
({re}, %). Thesteady-state probability of the shared memory request franfirst processois

@2 Zpvigirn. er) PT(C. 82) + @7 Xpreyy ey PT(Y, 57) = FG+3)+2E+3)=3

In Figure 27, the marked dtsi-boxes corresponding to theahn expressions of two processors, shared memory

and the shared memory system are presentedyiie.Boxsi(Ei) (1 < i < 3) andN = Boxgsi(E).

9.2. The abstract system and its reduction

Let us consider a modification of the shared memory systeim alistraction from identifiers of the processors,

i.e. such that they are indistinguishable. For example, are jast see that a processor requires memory or the
memory is allocated to it but cannot observe which proceissior We call this system the abstract shared memory
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Figure 27: The marked dtsi-boxes of two processors, shasgdary and the shared memory system.

one. To implement the abstraction, we replace the actipdsm (1 < i < 2) in the system specification lwyd, m,
respectively.
The static expression of the first processor is
1 1 1
F1=[({xa}, E) * (({r}, 5); ({d, ya}, 1); ({m, z1), 5)) * Stop).

The static expression of the second processor is

1 1 1
F2 = [({x2}, 5) * (({r}, E); ({d,y2}, 1); ((Im, 22}, é)) * Stop].

The static expression of the shared memory is

Fa = [((@ 5. %), 3) * (931 1) (70, )53} 1); (7). 5)) » Stopl.

The static expression of the abstract shared memory systémtwo processors is

F = (F1llF2llF3) sr (X1, X2, Y1, Y2, 21, Z2).

DR(F) resemble®R(E), andT S(F) is similar toT S(E). We haveSMQ[F) ~ SMQE). Thus, the average sojourn
time vectors oF andE, as well as the TPMs and the steady-state PMFERTMC(F) andEDTMC(E), coincide.

The first, second and third performance indices are the samthé standard and the abstract systems. Let us
consider the following performance index which is specifithte abstract system.

e The common memory request of a process$oy, %) is only possible from the states, ss, 7. In each of the
states, the request probability is the sum of the executioipgbilities for all sets of activities containing, %).
The steady-state probability of the shared memory request faoprocessoris ¢, ZlT\(lrl,%)eT} PT(Y, 5) +

_ 11 1 1 3 (3 1 3 (3 1\ _ 15
@5 Zprbyen PTG S) + 97 S byen PTG = S (3 + 5+ 5)+ (3 +3)+2(3+8) =%
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Figure 28: The quotient transition system of the abstraateshmemory system.

e

The marked dtsi-boxes corresponding to the dynamic expressf the standard and the abstract two processors
and shared memory are similar, as well as the marked dtgshoarresponding to the dynamic expression of the
standard and the abstract shared memory systems.

We haveDR(E)/RSS(E) = {K1, Ko, K3, Ka, Ks, K}, WhereKy = {1} (the initial state) K> = {s;} (the system is
activated and the memory is not requesté® = {s3, 4} (the memory is requested by one processkil) = {Ss, 7}

(the memory is allocated to a processdf}, = {ss} (the memory is requested by two processok&) = {Ss, So} (the
memory is allocated to a processor and the memory is requigtanother processor).

We also havdDRT(F)/RSS(E) = {7(1,7(2,7(4,7(6} andDRV(F)/RSS(E) = {(](3,7(5}.

In Figure 28, the quotient transition systé’rﬁ;ﬁss(f) is presented. In Figure 29, the quotient underlying SMC
SMC:SS(E) is depicted. Note that, in step semantics, we may execatétlowing multiactions in parallel{r}, {r},
as well aqr}, {m}.

The quotient average sojourn time vectoiFois

4 8
SJ =(8,=,0,=,0,4].
dodnd

The quotient sojourn time variance vectorfofs

4 24
VAR =(56,-,0,-——,0,12|.
oo

The TPM forEDTMC,,_(F) is
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In Table 8, the transient and the steady-state probabilitigk] (1 < i < 6) for the quotient EDTMC of the
abstract shared memory system at the time momeat®, 5, 10, .. ., 50} andk = oo are presented, and in Figure 30,
the alteration diagram (evolution in time) for the transigrobabilities is depicted.

The steady-state PMF f&DTMC,,_(F) is

Table 8: Transient and steady-state probabilities for tiaignt EDTMC of the abstract shared memory system.

[k JO[ 5 [ 10 [ 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | « |
v K |[1] O 0 0 0 0 0 0 0 0 0 0

y,'[ 0] 0 |0.0754] 0.0859] 0.0677| 0.0641| 0.0680| 0.0691 | 0.0683| 0.0680| 0.0681 | 0.0682
v,’[K] |[0 | 0.4889] 0.4633| 0.3140| 0.3108| 0.3452| 0.3482| 0.3404| 0.3392| 0.3409| 0.3413| 0.3409
v/, | 0] 04667 0.1964| 0.3031] 0.3719] 0.3517| 0.3344| 0.3380| 0.3422| 0.3417| 0.3407 | 0.3409
y.’[K | 0] 0.0444] 0.0323] 0.0179] 0.0202] 0.0237] 0.0234| 0.0226] 0.0226| 0.0228| 0.0228] 0.0227
y K [[0] 0 |0.2325]0.2791] 0.2294| 0.2154] 0.2260| 0.2299| 0.2277| 0.2267] 0.2271] 0.2273
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Figure 30: Transient probabilities alteration diagramtfer quotient EDTMC of the abstract shared memory system.

o3 181515
Vs aa aa a0 an 22)
The steady-state PMF* weighted bySJ is
1 6 _ 10
(0’ ﬁv 0’ ﬁv 0’ ﬁ) .
It remains to normalize the steady-state weighted PMF bigighig it by the sum of its components

17

g 1T —
Y'SJ =1

Thus, the steady-state PMF 8MC,,_(F) is

1 6 _10
'=(0,=.0,—.0.=).
14 (’17”17”17

Otherwise, fromTS,,_(F), we can construct the quotient DTMC Bf DTMC,,_(F), and then calculatg’ using

In Figure 31, the quotient DTMOTMCﬂSS(E) is depicted.
The TPM forDTMC,_(F) is

I 0000
011010
4 2 4
p_| 000100
- 3 3
035 35 0 3
000 O0O01
0030032

(22}
N
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Figure 31: The quotient DTMC of the abstract shared memaostesy

In Table 9, the transient and the steady-state probabilitigk] (1 < i < 6) for the quotient DTMC of the abstract
shared memory system at the time moméats {0, 5, 10,...,50} andk = o are presented, and in Figure 32, the
alteration diagram (evolution in time) for the transienlpabilities is depicted.

The steady-state PMF f@TMC,,_(F) is

/(o1 52110
v=\%2128 784 21)
Remember thabRr (F)/» & = (K1, Kz, Ka, Ko} andDRy (F) /) = (%3, Ks). Hence,
’ ’ ’ ’ , 17
D W) = WK + 0 () + 0 (Ka) + 0 (Ke) = 57

KeDRy (F) IsF)

By the “quotient” analogue of Proposition 5.2, we have

Table 9: Transient and steady-state probabilities for tiaignt DTMC of the abstract shared memory system

[k O] 5 [ 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 [ 50 | o |
Y[kl ][ 1] 0.5129] 0.2631] 0.1349] 0.0692] 0.0355[ 0.0182[ 0.0093] 0.0048] 0.0025] 0.0013] 0

y,[Kl [0 0.1161] 0.0829] 0.0657| 0.0569] 0.0524] 0.0501] 0.0489| 0.0483] 0.0479| 0.0478| 0.0476
y,[K] [0 0.0944] 0.1353] 0.1564] 0.1672] 0.1727] 0.1756] 0.1770] 0.1778] 0.1782| 0.1784] 0.1786
y,[Kl [0 0.1162] 0.1992] 0.2414] 0.2630] 0.2740] 0.2797| 0.2826| 0.2841] 0.2849 0.2853| 0.2857
y/[Kl [0 0.0311] 0.0220] 0.0171] 0.0146] 0.0133] 0.0126] 0.0123] 0.0121] 0.0120| 0.0120] 0.0119
y.[Kl [0 0.1294] 0.2974] 0.3845| 0.4292] 0.4521| 0.4638] 0.4698] 0.4729] 0.4745| 0.4753] 0.4762
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Figure 32: Transient probabilities alteration diagramtfar quotient DTMC of the abstract shared memory system

¢'(K1)=0-5 =0,
PI) =3 8=1
@' (%K) =
¢'(Ka) = 5
¢'(Ks) =0,
Thus, the steady-state PMF 8MC,,_(F) is
¢-lototald)
This coincides with the result obtained with the usgtfandSJ.

Alternatively, from TS._(F), we can construct the reduced quotient DTMCRfRDTMG,_(F), and then

calculatey’ using it. _ B
Remember thaDRT(F)/RSS(E) = {K1, K2, K4, K5} and DRV(F)/RSS(E) = {K3,Ks}. We reorder the elements of

DR(E)/RSS(E), by moving the equivalence classes of vanishing statesetfirit positionsKs, Ks, K1, Kz, Ka, Ke.
The reordered TPM fobTMC,,_(F) is

o

BRolFNIE O O O
O OO OO
O®IRPNFDIR & o
O®WO O o 1
ORI O O |y o

The result of the decomposiij are the matrices
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Figure 33: The reduced quotient DTMC of the abstract sharemhony system.

Table 10: Transient and steady-state probabilities forédeced quotient DTMC of the abstract shared memory system.

[k O] 5 [ 10 [ 156 | 20 | 25 | 30 | 35 | 40 | 45 [ 50 [ o |
v, "] [[ 1] 0.5129] 0.2631] 0.1349] 0.0692] 0.0355] 0.0182] 0.0093] 0.0048] 0.0025] 0.0013] 0

v,"[K] || 0] 0.1244] 0.0931] 0.0764 0.0679] 0.0635| 0.0612| 0.0600| 0.0594| 0.0591| 0.0590| 0.0588
v, °[K] || 0] 0.1726] 0.2614] 0.3060] 0.3289] 0.3406 0.3466 0.3497| 0.3513] 0.3521] 0.3525] 0.3529
v,°[K] || 0] 0.1901] 0.3824] 0.4826] 0.5341] 0.5605] 0.5740] 0.5810| 0.5845] 0.5863| 0.5872| 0.5882

0 0 g%oo
, (00, (0010 |2 2f_ J]OZ 00O
C‘(oo)’D‘(0001)’E‘%O’F‘oggg
10 0 0 0 :

SinceC’! = 0, we havevk > 0, C’k = 0, hence) = 0 and there are no loops among vanishing states. Then

|
G'=>Cc'=c=]
k=0

Further, the TPM foRDTMGC,,_(F) is

P°=F +EGD =F +EID'=F +ED =

O O Owi~N
O ®IFA[=oml-
ININ N Y e}
Blwolwbi- O

In Figure 33, the reduced quotient DTMRDTMG,,_ (F) is presented.

In Table 10, the transient and the steady-state probalsnh]‘.i’[k] (1 <i < 4) for the reduced quotient DTMC of
the abstract shared memory system at the time monkent®, 5, 10, . . ., 50} andk = « are presented, and in Figure
34, the alteration diagram (evolution in time) for the tiens probabilities is depicted.
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Figure 34: Transient probabilities alteration diagramtfa reduced quotient DTMC of the abstract shared memorgisyst

Then the steady-state PMF fBDTMC,,_(F) is

o fo L 8 10
yo= Y1717 17)°
Note thaty’® = (y/'° (K1), ¥ (K2), ¥'° (Ka), ¥'° (Ke)). By the “quotient” analogue of Proposition 5.3, we have

¢K) =0, ¢(K) =1, ¢(K)=0, ¢(Ka)=75 ¢(Ks)=0, ¢'(Ke)= 13
Thus, the steady-state PMF 8MC.,_(F) is

(1 6 10
¢ _(071_7’071_7’071_7)-

This coincides with the result obtained with the usg6fandSJ.
We can now calculate the main performance indices.

e The average recurrence time in the stitewhere no processor requests the memory, calledtbeage system
run-through is ;1, = =17
2

e The common memory is available only in the stat€sKs, Ks. The steady-state probability that the memory

is available isg), + ¢4 + ¢ = 15 + 0+ 0 = &. Then the steady-state probability that the memory is uised (
16

not available), called thehared memory utilizatioris 1- & = 2.

o After activation of the system, we leave the st&tefor ever, and the common memory is either requested or

allocated in every remaining state, with exceptior#@f Thus, therate with which the necessity of shared
memory emergesoincides with the rate of leavirif,, calculated a:g% =L.3=2

e The common memory request of a procegspis only possible from the staté¢,, K. In each of the states, the
request probability is the sum of the execution probabdifor all multisets of multiactions containifig. The
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steady-state probability of the shared memory request figIrocessois ¢, 3,
PMA(Ks K) = S (3+ 1)+ & (3+3)= &

Riren 1A% - VAT %) +

s
"04ZIA,‘7?HHEA, K, DK 87 8)~ 68

One can see that the performance indices are the same favrti@ate and the quotient abstract shared memory
systems. The coincidence of the first, second and third paeince indices obviously illustrates the results of Propo-
sition 8.1 and Proposition 8.2. The coincidence of the foperformance index is due to Theorem 8.1: one should

just apply its result to the derived step tra¢gs$), {{r},{r}}, {{r}, {m}} of the expressiof and itself, and then sum the
left and right parts of the three resulting equalities.

9.3. The generalized system

Now we obtain the performance indices taking general vaioeall multiaction probabilities and weights. Let
us suppose that all the mentioned stochastic multiactiams the same generalized probabifitg (0; 1), and all the

immediate ones have the same generalized weéighN.;. The resulting specificatiod of the generalized shared
memory system is defined as follows.
The static expression of the first processor is

K1 = [({xa}, p) * (({ra}, p); ({d1, y1},1); (i, 1}, p)) * Stop].
The static expression of the second processor is

Kz = [({x2}, p) * (({r2}, p); ({d2, Y23, 1); (M2, 22}, ) * Stop].
The static expression of the shared memory is

Ks = [({a, X1, X2}, p) = (Y1) 1); () o) O((1Y21, 1); (1221, p))) * Stop].
The static expression of the generalized shared memorgraysith two processors is

K = (K1lIK2l[K3) sr (X1, X2, Y1, Y2, 21, Z2).

We haveDRr(K) = {51, %, %, %, %, %} andDRy(K) = {33, 54, ).
The states are interpreted as followsisthe initial states;* the system is activated and the memory is not requested,
§: the memory is requested by the first processgr,tie memory is requested by the second processorthe
memory is allocated to the first processsr, the memory is requested by two processsrstiie memory is allocated
to the second processas,; the memory is allocated to the first processor and the memagguested by the second
processorsy: the memory is allocated to the second processor and the meésnequested by the first processor.

In Figure 35, the transition systeMS(K) is presented. In Figure 36, the underlying SNMQK) is de-
picted. Note that, in step semantics, we may execute thewily activities in parallel: {f1}, o), ({r2}, p), as well
as (r1), p), (img}, p?), and (ra}, p), ({ma}, p?).

The average sojourn time vectorlkfis

~ 1 1 1 1 11

SJ=|—, ,0,0, ,0, s 55 |-

(p3 p(2-p) p(L+p—p?)" " p(l+p-p?) p? pz)
The sojourn time variance vector Kfis
\7A~R=(1—,03 (L-p) oo A=pPA+p) o L-p)(L+p) 1-p? 1—92)

p® T pP2-p) T PP+ p-p?)? T (L4 p—p?)? pt T pt

The TPM forEDTMC(K) is
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({d1},20),1

s S
(1-p)(1—p?)

Hr2}.p),
p(1—p?)

({m1}.0%).0?

({m1}.p?),
p2(1—p)

H{ri}.0),

{{r1}p}({r2}.0)} 02

TS(K)

S1

({a}.p%).03

({d1}.20), %
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p2(1—p)
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Figure 35: The transition system of the generalized shamdony system.
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Figure 36: The underlying SMC of the generalized shared ngsystem.
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0 1 0O 0 0 0 O 0
0 0 ;—g ;—g 04 0 0 0
0 0 0 0 1 0 0 O 0
0 0 0 0O 0 0 1 o0 0
B+ (1-p) 2 1-p?
P={0 &2 0 £ 0 0 0 g% O
0 0 0 o 0 0 o0 1 :
— 12 —2
0 fii’_;)z 1"';_/32 0 0 0 0 0 li l—pz
0 1 0 0 0 © 0
0 0 1 0O 0 0 0 O 0

The steady-state PMF f&DTMQ(K) is

V" = sz (020230 = ), 2+ p = 30° +p% 2+ p = 30? + p°, 2+ p = 30% + p%, 20%(1 - p),
2+p=30"+p%2-p—p?,2-p—p?).
The steady-state PM§ weighted bySJis

1
2613 971 20 (0.20%(1 - p).0,0,p(2 - p),0,p(2— p),2— p — p>, 2= p — p?).

It remains to normalize the steady-state weighted PMF bigighig it by the sum of its components

2+p-p*-p°

o =T
*SJ = .
VSIS 6 30— 97+ 209)

Thus, the steady-state PMF 8MQK) is

1
2(2+p-p?-p?)
Otherwise, from T S(K), we can construct the DTMC &, DTMC(K), and then calculate Using it.

In Figure 37, the DTMTMC(K) is depicted.
The TPM forDTMC(K) is

= (0.20%(1-p).0,0,p(2- p),0,p(2 - p).2 - p = p*, 2= p = p°).

1-p% P 0 0 0 0 0 0 0

0 (1-p? p-p) p(1-p) 0 o 0 0 0

0 0 0 0 1 0 0 0 0
B 0 0 0 0 0 1 0 0
P=| 0 p1-p) 0 P (1A-p@a-p») 0 0 p(1-p?) 0

0 0 0 0 0 0 0 : :

0 p(1-p P 0 0 0 (I-p)(1-p% 0 p(L-p?)

0 0 0 02 0 0 0 1-p? 0

0 0 02 0 0 0 0 0 1- p?

The steady-state PMF f@TMC(K) is

U = s (0. 20°(1 = p), 072 + p = 307 + p°), p*(2+ p — 30° + %), p(2 - p), 20" (1 - ), p(2 - p),
2-p-p%2-p-p?.

Remember thabRr (K) = {31, %, %, %, %. %} andDRy(K) = {5, &, %}. Hence,
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(1-p)(1—p%) (1-p)(1—p*)

p(1—p%) p(1—p%)

Figure 37: The DTMC of the generalized shared memory system

2+p-p*=p°

D, W8 = 0(E) + U(&) + U(E) + U(E) + I&) +U(&) = 5

&DRy (K)

By Proposition 5.2, we have

B(3%) = 0- 5222 = 0,

2+p—p2—p3
~oay _ _ pPA-p) | 24p+p*-2p* _  p*(1-p)
%) = zp2 2 Top? g = Tepit
#(%) =0,
(%) =0,
~e Yy _ _ p(2=p) 24p+p®-20* _ _ p(2-p)
&%) = 22+p+p2=20%) " 2+p—p?—p® _ 202+p—p?-p°)’
¢(%) =0,
~ray _ _ p(2=p) 24p+p®-20* _ _ p(2-p)
o(8r) = 22+p+p2=20%) "~ 2+p—p2—p® _ 202+p—p?—p°)’
~(~ ) _ 2—p—p? X 2+4p+p?—20* _ 2—p—p?
PS) = 2(2+p+p2-2p%)  24p-p2-p3 T 2(2+p—p?-p3)’
~ 2 p? 2 2_o 4 22
(p(Sg): P—p | 24ptp 20" _ L—p’

2(2+p+p2-2p%)  24p—p2—p3 T 2(2+p—p?-p3)°
Thus, the steady-state PMF 8MQK) is

5 1
Y22+ p-p2-p9)

This coincides with the result obtained with the usgoindSJ _ .
Alternatively, from T S(K), we can construct the reduced DTMCKf RDTMJK), and then calculate (sing

(0.20%(1-p).0.0,p(2- p).0,p(2- p).2 = p = p*. 2= p — p°).

it.

Remember thabRr(K) = {31, %, &, &, %, %} andDRy(K) = {%, &, %}. We reorder the elements BR(K), by
moving the equivalence classes of vanishing states to 8tgbsitions:s;, &, %, 51, %, %, &7, %, %.

The reordered TPM foDTMC(K) is
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Further, the TPM foRDTMQK) is

P =F+EGD=F+EID=F+ED =

1-p° o 0 0 0 0
0 (1-pp p(L-p) p(L-p) 5 5
0  p(1-p) (1-p)2-p?) o’ p(L-p? 0
0 p(1-p) o (1-p)1-p?) 0 p(1-p?)
0 0 0 P2 1-p? 0
0 0 o2 0 0 1-p?

In Figure 38, the reduced DTMRDTMQK) is presented.

Then the steady-state PMF BDTMQK) is
1

v (0.20%(1 - p).pR2 - p).p(2—p).2—p - p*. 2= p — p?).

T 2@+ p-p2-pd

Note that}® = (°(31), °(%), ¥° (%), ¥°(37), ¥° (%), ¥ (%)). By Proposition 5.3, we have

~ ~ 2(1— ~ 2,
BE)=0 H&) =200 (&)= 520

Thus, the steady-state PMF 8MQK) is

(&) = — £2p) B(&) = _ 2-pp° B(&) = _ 2pp?
bE) = e P& =y &= 5t
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0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 o0 0 0 0 :
B 0 0 0 1-p3 p° 0 0 0
Pr=| p(l-p) p(l-p) p* 0  (1-p)? 0 0 0
0 PP 0 0 p(l-p) (1-p)1-p?) 0 p(1-p%
o 0 0 0 p(1-p) 0 (1-p)1-p?) 0 p(1-p?)
0 2 0 0 0 0 0 1- p?
02 0 0 o0 0 0 0 0
The result of the decomposirﬁg are the matrices
0 0 0
00 0 001000 pA=p) p-p) ¢’
6:[000],5:[00010 o],’éz p03 A 8 ,
000 000011 0 2 0
0° 0 0
1-p° o 0 0 0 0
0 (1-p)? 0 0 0 0
E_| 0 Pl-p) (1-p)(1-p?) 0 p(1-p?) 0
0 p*(1-p) 0 (1-p(-p?) 0 p(1-p%
0 0 0 0 1~ p? 0
0 0 0 0 0 1- p?




Figure 38: The reduced DTMC of the generalized shared mesystem

) 1
YT 2@ p-p2 -

This coincides with the result obtained with the usg/ofindSJ
We can now calculate the main performance indices.

(0.20%(1 - p).0,0,p(2- p),0,p(2— p).2— p — p*, 2= p — p?).

e The average recurrence time in the statevhere no processor requests the memory, calledibeage system

} e 1 _ 2p—p°=p°

run-through is %=

e The common memory is available only in the stadg$s, &4, &%. The steady-state probability that the memory

is available isp3 + 3 + @4 + e = Zf;(_iz)[ﬁ +0+0+0= 25(-1,;1),,3' Then the steady-state probability that the
memory is used (i.e. not available), called #tered memory utilizatigris 1— Zf;flf);‘j)p3 = Zf;f’;ff’;.

e After activation of the system, we leave the statdor ever, and the common memory is either requested or
allocated in every remaining state, with exceptionsgf Thus, therate with which the necessity of shared

. . . . ~ 5 2(1— _ 3(1— _
memory emergemoincides with the rate of leavirg, Calculated ag: = > (_i);j)ps ez - f’ZS) _”p)gp’;).

e The common memory request of the first proces8gf, (o) is only possible from the states, 3;. In each of the
states, the request probability is the sum of the executiologbilities for all sets of activities containing{}, p).
Thesteady-state probability of the shared memory request franfirst processois ¢, Z‘T‘(‘rl,,%)d, PT(Y, &)+

~ ~ 2(1—p H(2— »2(2+30—8p? 3
7 X e ey PTG 8) = 2582 (0(1 - p) + p(1 - p)) + 3t (p(L - p?) + p°) = Ciptie),

9.4. The abstract generalized system and its reduction

Let us consider a maodification of the generalized shared mgsystem with abstraction from identifiers of the
processors. We call this system the abstract generaliz@ddimemory one.
The static expression of the first processor is

L1 = [({xa}. p) * (({r}, p); ({d, y1}, 1); ({m, z1}, p)) + Stop].
The static expression of the second processor is

L2 = [({x2}, p) * ((fr}, p); ({d, Y2}, 1); (IM, 22}, p)) + Stop].

The static expression of the shared memory is

Ls = [({a, X1, X2}, p) = ({2}, ); (z}, o))(({Y2), 1); ({22}, p))) = Stop].
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Figure 39: The quotient transition system of the abstraceg®ized shared memory system.

The static expression of the abstract generalized sharatbnyesystem with two processors is

L = (LallL2lIL3) sr (X1, X2, Y1, Y2, Z1, 22).

DR(L) resemble®R(K), andT S(L) is similar toT S(K). We haveSMQL) ~ SMQK). Thus, the average sojourn
time vectors oL andK, as well as the TPMs and the steady-state PMFEBFMC(L) andEDTMC(K), coincide.

The first, second and third performance indices are the sanbd generalized system and its abstract modifica-
tion. Let us consider the following performance index whighgain specific to the abstract system.

e The common memory request of a process$oy, 0) is only possible from the states, 55, ;. In each of the
states, the request probability is the sum of the executiolgbilities for all sets of activities containingy, p).
The steady-state probability of the shared memory request foprocessoris ¢ 3y pery PT(T, $) +

~ ~ ~ ~ 2(1—
@5 2 et PTOC, %) + 67 vy ppery PT(Y, 87) = gfp(_];,zfi),ﬁ (o(1-p) +p(1 - p) +p?) +

2 2 2(2-p)(1+p—p°
2 O = 0%) + 0°) + g S (1 = p) 4 p°) = PR,

We haveDR(E)/Rss(D = (K1, Ko, K, K K, Ks}, WhereKy = {3} (the initial state) Ko = {%) (the system is
activated and the memory is not requestéflg),z {%s, &} (the memory is requested by one processﬁn); {5, 57}
(the memory is allocated to a processdﬁ, = {%} (the memory is requested by two processoﬁ%),: {%, S} (the
memory is allocated to a processor and the memory is regliegtanother processor).

We also havedRr(L)/ iy = (K1, Kz, Ka, Ko} andDRy(L)/ 1y = (K3, Ks).

In Figure 39, the quotient transition systé’nsﬁss([) is presented. In Figure 40, the quotient underlying SMC
SMC:SS(D is depicted. Note that, in step semantics, we may execatétlowing multiactions in parallel{r}, {r},
as well aqr}, {mj}. _

The quotient average sojourn time vectoiFois
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Figure 40: The quotient underlying SMC of the abstract galiead shared memory system.

_ 1 1
Si=(5 250 505
PP p2-p) pl+p-p>) p

The quotient sojourn time variance vectorfofs

1-p> (1-p)  (A-p)(L+p) o 1—p2)
P8 T p2-p)? T p(L+p-p?)* 7 pt

\7KF€=(

The TPM forEDTMC,,_(L) is

0 1 0 0O O 0
2(1-p)
o o L o0 L o0
5|0 0 0 1 0 o0
= H(1-p) )2 1-p?
0 ﬁ l+2>fp2 0 0 l+p£p2
0 0 0 0O O 1
0 0 1 0O O 0
The steady-state PMF f&DTMC,,_(L) is
~ 1
v (0.p(2-30+p%),2+p - 30%+p% 2+ p - 3%+ p% p*(1 - p), 2 = p - p°).

T 6+30-9021+20°
The steady-state PMF* weighted by§J is

1
p?(6+ 3p — 92 + 20)

(07p2(1 - p)7 0»p(2 - p)7 09 2 -p _pz)‘
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Figure 41: The quotient DTMC of the abstract generalizedeshenemory system

It remains to normalize the steady-state weighted PMF bigighg it by the sum of its components

. 2 _ 2 _ 3
784" - , +tp—p Zp |
p*(6 + 3p — 9p? + 20°)

Thus, the steady-state PMF 8MC,,_(L) is

~/

= >———5—3(0.p*(1-p),0,p(2~p),0,2—p — p?).
2+p-p?-p?

Otherwise, from TS,,_(L), we can construct the quotient DTMC bf DTMC,,_(L), and then calculatg’ Using it.
In Figure 41, the quotient DTMOTMCiSS(E) is depicted.
The TPM forDTMC,_(L) is

3

1-p° o 0 0 0 0
0  (1-pP 20(1-p) 0 p° 0
5 0 0 0 1 0 0
0 p(l-p) P (1-pA-p) 0 p(l-p?
0 0 0 0 0 1
0 0 P2 0 0 1-p?

The steady-state PMF f@TMC,,_(L) is

. 1
= (0,0°(1-p), 0?2+ p - 30° + %), p(2 - p), (1 = p), 2 — p — PO).
¥ 2+'sz_zﬁ(,p( p):p (2+p—3p"+p°).p2-p).p"(1-p).2-p—p°)

Remember thabRr (L)/x 1) = {51, K, Ko, Ko andDRy(L)/ ) = {%, Ks). Hence,
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S L
SR = TR+ T Re) + 8 (Ke) 4§ (RK) = o P

= = 2+ p+p?—20%
KeDRr (0)/ ety prp=2p
By the “quotient” analogue of Proposition 5.2, we have

~ 1 2+p+p2—2p%

§(%) = 0- FELE — o,

~rqe — _P(=p)  2+p+p®-20" _ p*(1-p)

L4 (752) T 2tptp?-20" " 2+p—pP—p® _ 2Ztp-p>p>’

¢'(K3) =0,

=1\ — _ P2=p) 24p+p>-20* _ _ p(2-p)

L4 (754) T 2tptpP-20" | 2+p—pP—p® _ 2Ztp-p?p>’

¢'(Ks) = 0,

S — _ 2=p=p? | 24p+p?-2p" _  2-p—p?

O (Ke) = gzt " Zep7g® = Topg? 7

Thus, the steady-state PMF 8MC,,_(L) is

1
¢ 2+p_p2_p3( ’p( p)’ 7)0( ,0)7 5 P ,0)

This coincides with the result obtained with the usézﬁfand§j. _ B

Alternatively, from TS,_(L), we can construct the reduced quotient DTMALpRDTMC,_(L), and then cal-
culateg’ using it.

Remember thaDRT([)/RSS(D = (K1, Ko, K, Ks) and DRV(E)/Rss(E) = {Ks,Ks). We reorder the elements of
DR(D/RSS(E)' by moving the equivalence classes of vanishing statesttirgt positions K, Ks, K1, Ka, Ka, K.

The reordered TPM fobTMC,,_(L) is

0 0 0 0 1 0
0 0 0 0 0 1
P - 0 0 1-p° o 0 0
"1 20(1-p) p* O  (1-p)® 0 0
P’ 0 0 p(l-p) 1-pA-p?) p(L-p?)
p? 0 0 0 0 1-p?
The result of the decomposifRj are the matrices
0 0
= _(00) = _(0010)=_|2(-p) p?
C‘(o 0)’D‘(0001)’E‘ 0° 0|
p° 0
1-p° o 0 0
= 0 (1-p)? 0 , 0 ,
0 p(1-p) L-pA-p?) p(1-p?)
0 0 0 1-p?

SinceC'! = 0, we havevk > 0, C’* = 0, hence| = 0 and there are no loops among vanishing states. Then

|
6/ =ZE/I =6/0= .
k=0

Further, the TPM foRDTMC,,_(L) is
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1-p

Figure 42: The reduced quotient DTMC of the abstract geizexhishared memory system.

1-p° o 0 0
DL LN LB 0 (1_p)2 2p(1—p) p2
P°=F +E'GD =F +E'ID'=F +E'D’' =
0 p(l-p) 1-p-p*+20° p(1-p?
0 0 o2 1-p?

In Figure 42, the reduced quotient DTI\/RDTMC:SS(E) is presented.
Then the steady-state PMF fRDTMC,_(L) is

g = P 0.0%(1-p).p(2-p).2—p - p?).

2+p—p?-
Note thaty’® = (J"°(Ky), "° (%), i (Ka), ¥° (Ks)). By the “quotient” analogue of Proposition 5.3, we have

FI) =0, §(Kr) = z5585 §(Ka)=0. §(Ky)= 72505, §(Ke) =0 #(Ks) = 552

2+p—p2—p3° 2+p—p2—p3° 2+p—p2—p3°

Thus, the steady-state PMF 8MC,,_(L) is

~/

1

=— = (0,0%(1-p),0,0(2-p),0,2—p —p?).
2+p—p2—p3( ,p(1-p),0,p(2-p) p=p°)
This coincides with the result obtained with the usézﬁfand§j.

We can now calculate the main performance indices.

e The average recurrence time in the stitewhere no processor requests the memory, calledvbege system

} o 1 _ 24p—p®—p°
run-through is 5= )

e The common memory is available only in the statés K, Ks. The steady-state probability that the memory

is available isgy + & + ¢ = 25‘_1;2{)/)3 +0+0= Zf;(_;’j),ﬁ. Then the steady-state probability that the memory

is used (i.e. not available), called thleared memory utilizatiqris 1 - zfjflf)}’j)173 = zi;f’;ff’;.
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Figure 43: Steady-state probabilities, ¢,, &; as functions of the parameter

e After activation of the system, we leave the sfﬁ@fo_[ ever, and the common memory is either requested or
allocated in every remaining state, with exceptior#/@f Thus, therate with which the necessity of shared

p ~ 2 3
aADiNCi i i 2 _ _p(1-p) . pC-p) _ p’(1-p)(2-p)
memory emergesoincides with the rate of leavirf,, calculated ass“f—iZ =g AR T =5

e The common memory request of a procegspis only possible from the statdé, K. In each of the states, the
request probability is the sum of the execution probabgifor all multisets of multiactions containifig. The

steady-state probability of the shared memory request ag@rocessois ¢, Z{M?ur:eA, AR PMa(%, K) +

_ - 201 _ 2(9_ _ 2
PMa(Ks, K) = 25555 20(1 - p) + %) + 225 (01— pP) + p°) = B2,

2+p—p%—p’ 2+p—p2—p; 2+p—p2—p3

a2 feien, 5%

One can see that the performance indices are the same footgete and the quotient abstract generalized
shared memory systems. The coincidence of the first, seqahthad performance indices obviously illustrates the
results of Proposition 8.1 and Proposition 8.2. The coiewea® of the fourth performance index is due to Theorem
8.1: one should just apply its result to the derived stepes#c}}, {{r},{r}}, {{r},{m}} of the expressioh and itself,
and then sum the left and right parts of the three resultingktips.

Let us consider what is thdfect of quantitative changes of the parametempon performance of the quotient
abstract generalized shared memory system in its steady ®amember that € (0; 1) is the probability of every
multiaction of the system. The closerdgo 0, the less is the probability to execute some activitiesvary discrete
time tact, hence, the system will most probadtiynd idle The closer i to 1, the greater is the probability to execute
some activities at every discrete time tact, hence, thesyastill most probablyperate

2 2
Sincey], = §; = & = 0, only, = .pr(_lp’{j),ﬁ, &= 722, By = 7=t depend op. In Figure 43, the plots
of 5, &}, & as functions op are depicted. Notice that, however, we do not allow 0 orp = 1.

One can see that,,” ¢, tend to 0 andpg tends to 1 whemw approaches 0. Thus, whenis closer to 0, the
probability that the memory is allocated to a processor aediiemory is requested by another processor increases,
hence, we havemore unsatisfied memory requests

Further,g,,, ¢; tend to 0 and tends to 1 whep approaches 1. Thus, wheris closer to 1, the probability that
the memory is allocated to a processor (and not requesteddifier one) increases, hence, we hi@gs unsatisfied
memory requests

The maximal value 0797 of g, is reached whep = 0.7433. In this case, the probability that the system is
activated and the memory is not requested is maximal, ieentiximal shared memory availability about 8%.

In Figure 44, the plot of the average system run-througleutated a%, as a function op is depicted. One can
see that the run-through tendsstowhenp approaches 0 or 1. Its minimal value.3216 is reached whegn= 0.7433.

To speed up operation of the system, one should take the ptegntloser to 07433.
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Figure 44: Average system run-through as a function of the parameter
2

The first curve in Figure 45 represents the shared memoiyattdn, calculated as1 ¢, — &7, — ¢, as a function
of p. One can see that the utilization tends to 1 both whapproaches 0 and whenapproaches 1. The minimal
value 09203 of the utilization is reached when= 0.7433. Thus, theninimal shared memory utilizatios about
92%. To increase the utilization, one should take the patemeloser to 0 or 1.

The second curve in Figure 45 represents the rate with whizhécessity of shared memory emerges, calculated
as%, as a function op. One can see that the rate tends to 0 both whapproaches 0 and whenapproaches 1.

The maximal value @751 of the rate is reached wher- 0.7743. Thus, thenaximal rate with which the necessity of
shared memory emergé;saboutl%. To decrease the mentioned rate, one should take the pargnoédser to 0 or 1.

The third curve in Figure 45 represents the steady-statehility of the shared memory request from a processor,
calculated agp’zf’z + &ﬁg, Wherefi' = Z{M?Hr}ek RAR) PMA(7~G,7~(), i € {2,4}, as a function op. One can see that
the probability tends to 0 whem approaches 0 and it tends to 1 wheapproaches 1. To increase the mentioned
probability, one should take the parameieioser to 1.

10. Related work

In this section, we consider in detailfirences and similarities between dtsiPBC and other wellwkror similar
SPAs for the purpose of subsequent determining the spedifemgages of dtsiPBC.

10.1. Continuous time and interleaving semantics

Let us compare dtsiPBC with classical SPAs: Markovian TilReatesses for Performance Evaluation (MTIPP)
[45], Performance Evaluation Process Algebra (PEPA) [#d| Extended Markovian Process Algebra (EMPA) [14].

In MTIPP, every activity is a pair consisting of the actiomm(including the symbat for theinternal, invisible
action) and the parameter of exponential distribution efdhtion delay (theate). The operations angrefix choice
parallel composition includingynchronizatioron the specified action set aretursion It is possible to specify pro-
cesses by recursive equations as well. The interleavingsgces is defined on the basis of Markovian (i.e. extended
with the specification of rates) labeled transition systeNwte that we have the interleaving behaviour here because
the exponential PDF is a continuous one, and a simultane@aiion of any two activities has zero probability
according to the properties of continuous distributionEMCTs can be derived from the mentioned transition systems
to analyze performance.

In PEPA, activities are the pairs consisting of action tyfiasluding theunknown unimportant typer) and
activity rates. The rate is either the parameter of expadaletiistribution of the activity duration or it isnspecified
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Figure 45: Some performance indices as functions of thenpetexp.

denoted byt. An activity with unspecified rate ipassiveby its action type. The set of operations inclugesfix
choice cooperation hiding and constants whose meaning is given by the defining eqsatictuding therecursive
ones. The cooperation is accomplished on the set of acti@st{the cooperation set) on which the components must
synchronizer cooperate. If the cooperation set is empty, the cooperajperator turns into thgarallel combinator.
The semantics is interleaving, it is defined via the extemeidabeled transition systems with a possibility to specif
activity rates. Based on the transition systems, the coatia time Markov processes (CTMPs) are generated which
are used for performance evaluation with the help of the elaide continuous time Markov chains (ECTMCs).

In EMPA, each action is a pair consisting of its type and ra&etions can beexternalor internal (denoted by
7) according to types. There are three kinds of actions atugtd rates:timedones with exponentially distributed
durations (essentially, the actions from MTIPP and PERAediateones with priorities and weights (the actions
analogous to immediate transitions of GSPNSs) pasisiveones (similar to passive actions of PEPA). Timed actions
specify activities that are relevant for performance asialyymmediate actions model logical events and the aietvit
that are irrelevant from the performance viewpoint or mwdtdr than others. Passive actions model activities wgaitin
for the synchronization with timed or immediate ones, anpregs nondeterministic choice. The set of operators
consist ofprefix, functionalabstraction functionalrelabeling alternativecomposition angbarallel composition ones.
Parallel composition includes/nchronizatioron the set of action types like in TCSP [48]. The syntax alstuitles
recursivedefinitions given by means of constants. The semanticsesl@aving and based on the labeled transition
systems enriched with the information about action ratest the exponentially timed kernel of the algebra (the
sublanguage including only exponentially timed and pa&ssistions), it is possible to construct CTMCs from the
transition systems of the process terms to analyze the peaftce.

In dtsiPBC, every activity is a pair consisting of the mudtian (not just an action, as in the classical SPAs) as
a first element. The second element is either the probalfiliy the rate, as in the classical SPAS) to execute the
multiaction independently (the activity is called a stostimmultiaction in this case) or the weight expressing how
important is the execution of this multiaction (the actnig called an immediate multiaction in this case). Immeaiat
multiactions in dtsiPBC are similar to immediate actionEMPA, but all the immediate multiactions have the same
priority 1 (with the purpose to execute them always befooelsastic multiactions, all having the same priority 0),
whereas the immediate actions in EMPA can ha¥iedint priority levels. There are no immediate actions in RH |
and PEPA. Immediate actions are available only in IPEPA, [@fiere they are analogous to immediate multiactions in
dtsiPBC, and in a variant of TIPP [40] discussed while cartiing the calculus PM-TIPP in [80], but there immediate
activities are used just to specify probabilistic brangrand they cannot be synchronized.

dtsiPBC has the sequence operation in contrast to the pirediindhe classical SPAs. One can combine arbitrary
expressions with the sequence operator, i.e. it is morebfeexinan the prefix one, where the first argument should
be a single activity. The choice operation in dtsiPBC is agals to that in MTIPP and PEPA, as well as to the
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alternative composition in EMPA, in the sense that the ahddgrobabilistic, but a discrete probability function is
used in dtsiPBC, unlike continuous ones in the classicautial Concurrency and synchronization in dtsiPBC are
different operations (this feature is inherited from PBC), kinthe situation in the classical SPAs where parallel
composition (combinator) has a synchronization capgbiRelabeling in dtsiPBC is analogous to that in EMPA, but
it is additionally extended to conjugated actions. Theriggin operation in dtsiPBC diers from hiding in PEPA
and functional abstraction in EMPA, where the hidden adtiare labeled with a symbol of “silent” actian In
dtsiPBC, restriction by an action means that, for a givemesgion, any process behaviour containing the action or its
conjugate is not allowed. The synchronization on an eleargraction in dtsiPBC collects all the pairs consisting of
this elementary action and its conjugate which are condgiméhe multiactions from the synchronized activities. The
operation produces new activities such that the first el¢wfevery resulting activity is the union of the multiacton
from which all the mentioned pairs of conjugated actionsrareoved. The second element is either the product of
the probabilities of the synchronized stochastic muliens or the sum of the weights of the synchronized immediate
multiactions. This diers from the way synchronization is applied in the classi¢¥\s where it is accomplished over
identical action names, and every resulting activity cstinsi the same action name and the rate calculated via some
expression (including sums, minimums and products) onatesrof the initial activities, such as the apparent rate in
PEPA. dtsiPBC has no recursion operation or recursive diefiisi but it includes the iteration operation to specify
infinite looping behaviour with the explicitly defined startd termination.

dtsiPBC has a discrete time semantics, and residence tithe tangible states is geometrically distributed, unlike
the classical SPAs with continuous time semantics and expt@lly distributed activity delays. As a consequence,
the semantics of dtsiPBC is the step one in contrast to tleeléatving semantics of the classical SPAs. The per-
formance is investigated via the underlying SMCs and (reduy®TMCs extracted from the labeled probabilistic
transition systems associated with expressions of dtsiPB@e classical SPAs, CTMCs are usually used for per-
formance evaluation. In [37], a denotational semanticsE®A&has been proposed via PEPA nets that are high-level
CTSPNs with coloured tokens (coloured CTSPNSs), from whighunderlying CTMCs can be retrieved. In [13, 9], a
denotational semantics of EMPA based on GSPNs has beendldfioe which one can also extract the underlying
SMCs and CTMCs (when both immediate and timed transitioapegsent) or DTMCs (but when there are only im-
mediate transitions). dtsiPBC has a denotational sensintierms of LDTSIPNs from which the underlying SMCs
and (reduced) DTMCs can be derived.

10.2. Continuous time and non-interleaving semantics

Only a few non-interleaving SPAs were considered amongMarkovian ones [54, 21]. The semantics of all
Markovian calculi is interleaving and their action delagsé exponential distribution, which is the only continuous
probability distribution with memoryless (Markovian) prerty.

In [23], Generalized Stochastic Process Algebra (GSPA)imtasduced. It has a true-concurrent denotational
semantics in terms of generalized stochastic event stes{GSESs) with non-Markovian stochastic delays of events
In that paper, no operational semantics or performanceatiah methods for GSPA were presented. Later, in [53],
generalized semi-Markov processes (GSMPs) were extréctiedGSESs to analyze performance.

In [77, 78], generalized Stochasttecalculus (&) with general continuous distributions of activity delayas
defined. It has a proved operational semantics with tramsitiabeled by encodings of their deduction trees. No
well-established underlying performance model for thisign of Sr was described.

In [20, 19], Generalized Semi-Markovian Process AlgebraNBA) was developed with an ST-operational se-
mantics and non-Markovian action delays. The performanadyais in GSMPA is accomplished via GSMPs.

Again, the first fundamental filerence between dtsiPBC and the calculi GSPAa8d GSMPA is that dtsiPBC
is based on PBC, whereas GSPA is an extension of simple Rrédgsbra (PA) from [23], 8 extendsr-calculus
[71] and GSMPA is an enrichment of EMPA. Therefore, both G8R4 GSMPA haverefixing choice(alternative
composition),parallel composition,renaming(relabeling and hiding (abstractior) operations, but only GSMPA
permitsconstantsUnlike dtsiPBC, GSPA has neither iteration or recursioBMEA allows onlyrecursivedefinitions,
whereas 8 additionally has operations to specifyobility. Note also that GSPA,75Sand GSMPA do not specify
instantaneous events or activities while dtsiPBC has imatednultiactions.

The second significantfierence is that geometrically distributed or zero delaysaseciated with process states
in dtsiPBC, unlike generally distributed delays assigreévents in GSPA or to activities imSand GSMPA. As
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a consequence, dtsiPBC has a discrete time operationahtemallowing for concurrent execution of activities

in steps. GSPA has no operational semantics whilea®d GSMPA have continuous time ones. In continuous
time semantics, concurrency is simulated by interleawinge simultaneous occurrence of any two events has zero
probability according to the properties of continuous ptaibty distributions. Therefore, interleaving traneits are
often annotated with an additional information to keep ecwrency data. The transition labels in the operational
semantics of B encode the action causality information and allow one tavddhe enabling relations and the firing
distributions of concurrent transitions from the tramsitsequences. At the same time, abstracting from stochastic
delays leads to the classical early interleaving semaanfigscalculus. The ST-operational semantics of GSMPA is
based on decorated transition systems governed by tamsities with rather complex preconditions. There are two
types of transitions: the choice (action beginning) andtémmination (action ending) ones. The choice transitions
are labeled by weights of single actions chosen for executitile the termination transitions have no labels. Only
single actions can begin, but several actions can end ill@larBhus, the choice transitions happen just sequemntiall
while the termination transitions can happen simultankouss a result, the decorated interleavingtep transition
systems are obtained. dtsiPBC has an SPN-based denotagomantics. In comparison with event structures, PNs
are more expressive and visually tractable formalism, lolepaf finitely specifying an infinite behaviour. Recursion

in GSPA produces infinite GSESs while dtsiPBC has iteratjgaration with a finite SPN semantics. Identification of
infinite GSESs that can be finitely represented in GSPA waé$dea future research.

10.3. Discrete time

In [1], a class of compositional DTSPNs with generally distted discrete time transition delays was proposed,
called dts-nets. The denotational semantics of a stochadinsion (we call it stochastic ACP or SACP) of a subset
of Algebra of Communicating Processes (ACP) [8] can be cootd via dts-nets. There are two types of transitions
in dts-nets: immediate (timeless) ones, with zero delayd,teme ones, whose delays are random variables having
general discrete distributions. The top-down synthesidtefets consists in the substitution of their transitibps
blocks (dts-subnets) corresponding to the sequence,ehmcallelism and iteration operators. It was explained ho
to calculate the throughputtime of dts-nets using the sertiine (defined as holding time or delay) of their transiion
For this, the notions of service distribution for the traiasis and throughput distribution for the building blocksne
defined. Since the throughput time of the parallelism bloeéls walculated as the maximal service time for its two
constituting transitions, the analogue of the step semm&afiproach was implemented.

In [64, 65], an SPA called Theory of Communicating Processi#is discrete stochastic timd CP*sY) was in-
troduced. It has discrete real time (deterministic) dek@ysluding zero time delays) and discrete stochastic time
delays. The algebra generalizes real time processes teistochastic time ones by applying real time properties
to stochastic time and imposing race condition to real tiemantics. TCP!St has an interleaving operational se-
mantics in terms of stochastic transition systems. Theopesdince is analyzed via discrete time probabilistic reward
graphs which are essentially the reward transition systsitisprobabilistic states having finite number of outgo-
ing probabilistic transitions and timed states having glsiroutgoing timed transition. The mentioned graphs can
be transformed by unfolding or geometrization into disetéhe Markov reward chains (DTMRCs) appropriate for
transient or stationary analysis.

The first diference between dtsiPBC and the algebras SACH &#*tis that dtsiPBC is based on PBC, but SACP
andT CPst are the extensions of ACP. SACP has taken from ACP eatyuencechoicg parallelismanditeration
operations, whereas dtsiPBC has additionally relabetiegfriction and synchronization ones, inherited from PBC.
In TCP'S! besides standard actipmefixing alternative parallel compositionencapsulatior{similar to restriction)
andrecursivevariables, there are aldmed delay prefixingdependent delays scopad themaximal time progress
operators, which are new both for ACP and dtsiPBC.

The second dierence is that dtsiPBC, SACP ali€P*s!, all have zero delays, however, discrete time delays in
dtsiPBC are zeros or geometrically distributed and assetiaith process states. The zero delays are possible just
in vanishing states while geometrically distributed dslaye possible only in tangible states. For each tangihte, sta
the parameter of geometric distribution governing the yligldahe state is completely determined by the probabilities
of all stochastic multications executable from it. In SAQRIZ CP'St delays are generally distributed, but they are
assigned to transitions in SACP and separated from actewepting zero delays) iCP'St. Moreover, a special
attention is given to zero delays in SACP and determinigtiaybs inT CPYst. In SACP, immediate (timeless) transitions
with zero delays serve as source and sink transitions oft#isubnets corresponding to the choice, parallelism and

82



Table 11: Classification of stochastic process algebras.

Time Immediate Interleaving semantics Non-interleaving semantics
(multi)actions
Continuous No MTIPP (CTMC),PEPA (CTMP), GSPA (GSMP), 8, GSMPA (GSMP)
sPBC(CTMC)
Yes EMPA (SMC, CTMC),gsPBC(SMC) —
Discrete No — dtsPBC (DTMC)
Yes TCPSY(DTMRC) sACP, dtsiPBC (SMC, DTMC)

iteration operators. |ITCP'S,, zero delays of actions are specified by undelayable actiefixps while positive
deterministic delays of processes are specified with timedydprefixes. Neither formal syntax nor operational
semantics for SACP are defined and it is not explained how tivel®&arkov chains from the algebraic expressions
or the corresponding dts-nets to analyze performancenttistated explicitly, which type of semantics (interlewyi

or step) is accommodated in SACP. In spite of the discrete tipproach, operational semanticsTa Pt is still
interleaving, unlike that of dtsiPBC. In addition, no deat@inal semantics was defined fb€ Pst,

Table 11 summarizes the SPAs comparison above and that &otios 1 (the calculi sSPBC, gsPBC and dtsPBC),
by classifying the SPAs according to the concept of time,pifesence of immediate (multi)actions and the type of
operational semantics. The names of SPAs, whose denabsemantics is based on SPNs, are printed in bold font.
The underlying stochastic process (if defined) is specifigthrentheses near the name of the corresponding SPA.

11. Discussion

Let us now discuss which advantages has dtsiPBC in compasigh the SPAs described in Section 10.

11.1. Analytical solution

An important aspect is the analytical tractability of thedarlying stochastic process, used for performance eval-
uation in SPAs. The underlying CTMCs in MTIPP and PEPA, ad e®ISMCs in EMPA, are treated analytically,
but these continuous time SPAs have interleaving semar@i&PA, & and GSMPA are the continuous time mod-
els, for which a non-interleaving semantics is construcbed for the underlying GSMPs in GSPA and GSMPA,
only simulation and numerical methods are applied, whene@agerformance model for7Sis defined. sACP and
TCPstare the discrete time models with the associated analytiesihods for the throughput calculation in SACP
or for the performance evaluation based on the underlyinyIRTs in TCP*S! but both models have interleaving
semantics. dtsiPBC is a discrete time model with a non{gagng semantics, where analytical methods are applied
to the underlying SMCs. Hence, if an interleaving model iprapriate as a framework for the analytical solution
towards performance evaluation then one has a choice betiveeontinuous time SPAs MTIPP, PEPA, EMPA and
the discrete time ones SACPC St Otherwise, if one needs a non-interleaving model with #s®aiated analytical
methods for performance evaluation and the discrete tirpeoagh is feasible then dtsiPBC is the right choice.

An existence of the analytical solution also permits torpitet quantitative values (rates, probabilities etc.yfro
the system specifications as parameters, which can be edljiosbptimize the system performance, like in dtsPBC,
dtsiPBC and parametric probabilistic transition systeines DTMCs whose transition probabilities may be real-ealu
parameters) [57]. Note that DTMCs whose transition proliieds are parameters were introduced in [33]. CTMCs
with the transition rates treated as parameters were igaéstl in [42]. On the other hand, no parameters in formulas
of SPAs were considered in the literature so far. In dtsiPBCcan easily construct examples with more parameters
than we did in our case study. The performance indices withba interpreted as functions of several variables. The
advantage of our approach is that, unlike of the method f&m wve should not impose to the parameters any special
conditions needed to guarantee that the real values, ieterpas the transition probabilities, always lie in thefiunal
[0; 1]. To be convinced of this fact, just remember that, ashaee demonstrated, the positive probability functions
PF, PT, PM, PM*, PM° define probability distributions, hence, they always nefarobabilities belonging to (0; 1]
for any parameters from (0; 1).
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11.2. Application area

From the application viewpoint, one considers what kind ysftesms are more appropriate to be modeled and
analyzed within SPAs. MTIPP and PEPA are well-suited forithterleaving continuous time systems such that the
activity rates or the average sojourn time in the statesaoevk in advance and exponential distribution approximates
well the activity delay distributions, whereas EMPA can Isedito model the mentioned systems with the activity
delays of diferent duration order or the extended systems, in which pprelbabilistic choices or urgent activities
must be implemented. GSPA and GSMPA fit well for modeling thetimuous time systems with a capability to keep
the activity causality information, and with the known &it§i delay distributions, which cannot be approximated
accurately by exponential distribution, whiler 8an additionally model mobility in such systemBCPstis a good
choice for interleaving discrete time systems with deteistic (fixed) and generalized stochastic delays, whereas
SACP is capable to model non-interleaving systems as wdlit loffers not enough performance analysis methods.
dtsiPBC is consistent for the step discrete time systents that the independent execution probabilities of actsiti
are known and geometrical distribution approximates vigidtate residence time distributions. In addition, dt§€}PB
can model these systems featuring very scattered actiglgyd or even more complex systems with instantaneous
probabilistic choice or urgency, hence, dtsiPBC can beatakea non-interleaving discrete time counterpart of EMPA.

11.3. Concurrency interpretation

One can see that the stochastic process calculi proposéa ilitdrature are based on interleaving, as a rule,
and parallelism is simulated by synchronous or asynchremaecution. As a semantic domain, the interleaving
formalism of transition systems is often used. Therefaregstigation of stochastic extensions for more expressive
and powerful algebraic calculi is an important issue. Theettgpment of step or “true concurrency” (such that
parallelism is considered as a causal independence) SBAsrnigeresting and nontrivial problem, which has attracted
special attention last years. Nevertheless, not so mamyailostochastic models were defined whose underlying
stochastic processes are based on DTMCs. As mentioned]irs[8th models are moreflcult to analyze, since a
lot of events can occur simultaneously in discrete timeesyst(the models have a step semantics) and the probability
of a set of events can be not easily related to the probabiiifye single ones. As observed in [49], even for stochastic
models with generally distributed time delays, some retitins on the concurrency degree were imposed to simplify
their analysis techniques. In particular, the enablingri®n requires that no two generally distributed traiosis
are enabled in any reachable marking. Hence, their acfpdtiods do not intersect and no two such transitions can
fire simultaneously, this results in interleaving semantitthe model.

Stochastic models with discrete time and step semantiesthaollowing important advantage over those having
just an interleaving semantics. The underlying Markov skaif parallel stochastic processes have the additiomal tra
sitions corresponding to the simultaneous execution ofgoent (i.e. non-synchronized) activities. The traosis
of that kind allow one to bypass a lot of intermediate statdsich otherwise should be visited when interleaving
semantics is accommodated. When step semantics is useithitéhmmediate states can be also visited with some
probability (this is an advantage, since some alternayigegesn’s behaviour may start from these states), but this-pro
ability is not greater than the corresponding one in casatefleaving semantics. While in interleaving semantics,
only the empty or singleton (multi)sets of activities candxecuted, in step semantics, generally, the (multi)sets of
activities with more than one element can be executed as Welice, in step semantics, there are more variants of
execution from each state than in the interleaving case faéxecutions probabilities, whose sum should be equal
to 1, are distributed among more possibilities. Therefttre systems with parallel stochastic processes usually hav
smaller average run-through. In case the underlying Madkmains of the processes are ergodic, they will take less
discrete time units to stabilize the behaviour, since thEiks will be denser because of additional non-zero elements
outside the main diagonal. Hence, both the first passagegerformance indices based on the transient probabilities
and the steady-state performance indices based on thenstatiprobabilities can be computed quicker, resulting in
faster quantitative analysis of the systems. On the otheal lgtep semantics, induced by simultaneous firing several
transitions at each step, is natural for Petri nets and almve to exploit full power of the model.

11.4. Advantages of dtsiPBC

Thus, the main advantages of dtsiPBC are the flexible mtitiia¢abels, immediate multiactions, powerful op-
erations, as well as a step operational and a Petri net dem@thsemantics allowing for concurrent execution of
activities (transitions), together with an ability for dytecal and parametric performance evaluation.

84



12. Conclusion

In this paper, we have proposed a discrete time stochasén&rn dtsiPBC of a finite part of PBC enriched
with iteration and immediate multiactions. The calculus ha&oncurrent step operational semantics based on labeled
probabilistic transition systems and a denotational s¢icgim terms of a subclass of LDTSIPNs. A method of per-
formance evaluation in the framework of the calculus hasigesented. Step stochastic bisimulation equivalence
of process expressions has been defined and its interredatiith other equivalences of the calculus have been in-
vestigated. We have explained how to reduce transitioresysiand underlying SMCs of expressions with respect
to the introduced equivalence. We have proved that the omedi equivalence guarantees identity of the stationary
behaviour and the sojourn time properties, and thus presgrgrformance measures. A case study of the shared
memory system has been presented as an example of modeifaynpance evaluation and performance preserving
reduction within the calculus.

The advantage of our framework is twofold. First, one carcgpén it concurrent composition and synchroniza-
tion of (multi)actions, whereas this is not possible in sleal Markov chains. Second, algebraic formulas represent
processes in a more compact way than Petri nets and allowoaygpty syntactic transformations and comparisons.
Process algebras are compositional by definition and tiparadions naturally correspond to operators of program-
ming languages. Hence, it is much easier to construct a eeompbdel in the algebraic setting than in PNs. The com-
plexity of PNs generated for practical models in the literatdemonstrates that it is not straightforward to construc
such PNs directly from the system specifications. dtsiPB@®e suited for the discrete time applications, such as
business processes, neural and transportation netwarkguter and communication systems, whose discrete states
change with a global time tick, as well as for those, in whicé distributed architecture or the concurrency level
should be preserved while modeling and analysis (remenhiaérin step semantics, we have additional transitions
due to concurrent executions).

Future work will consist in constructing a congruence failBC, i.e. the equivalence that withstands application
of all operations of the algebra. The first possible candidga stronger version et __defined via transition systems
equipped with two extra transitiorskip andredo, like those from [60]. We also plan to extend the calculuswit
deterministically timed multiactions having a fixed timdale(including the zero one which is the case of immediate
multiactions) to enhance expressiveness of the calcullitcaextend application area of the associated analysis tech
nigues. The resulting SPA will be a concurrent discrete tim&logue of SM-PEPA [18], whose underlying stochastic
model is a semi-Markov chain. Moreover, recursion couldditeal to dtsiPBC to increase further specification power
of the algebra.

AcknowledgementsThe first author thanks Eike Best for the qualified considenatencouraging discussions and
many valuable advices related to the subject of the paper.
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Appendix A. Proofs

Appendix A.1l. Proof of Proposition 6.2

Like it has been done for strong equivalence in Propositi@rirom [47], we shall prove the following fact about
step stochastic bisimulation. Let us hatee 7, R : G G’ for some index seff. Then the transitive closure of
the union of all relation® = (UjcsR;j)" is also an equivalence aml: G G'.

SinceVj € 7, R;is an equivalence, by definition &, we get thaiR is also an equivalence.

Let] € 7, then, by definition oR, (s1, 52) € R; implies (51, ) € R. HenceVHjk € (DR(G)UDR(G'))/x;, AH €
(DR(G) U DR(G"))/», Hjx € H. MoreoverdJ’, H = Uxeg Hik.

We denoteR(n) = (UjegR;j)". Let (s1, ) € R, then, by definition oiR, In > 0, (s, ) € R(n). We shall prove
thatR : Go G’ by induction om.

It is clear thatvVj € 7, R} : G G impliesVj € J, ([G]s,[G']x) € Rj and we have (].,[G]z) € R by
definition of R.

It remains to prove that(, s;) € R impliesVH e (DR(G) U DR(G'))/z, YA e N4

fin® PMA(SL 7-{) = PMA(&: 7-{)
en=1
In this case, §, %) € R implies3dj € J, (s1,%) € R;. SinceR; : G G, we getVH ¢ (DR(G) U
DR(G'))/#, YA e N

fin?

PMa(s,H) = > PMa(s1, Hj) = ) PMa(2, Hig) = PMa(sz, H).

keg’ keg”’
en—>n+1
Suppose tha¥m < n, (s, ) € R(m) impliesVH € (DR(G) U DR(G"))/x, YA € N& | PMa(s,, H) =
PMa(s2, H).
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Then 61, ) € R(n+1) impliesdj € T, (s1, ) € RjoR(n), i.e. Is3 € (DR(G)UDR(G")), such that$;, s3) € R;
and &, 2) € R(n).

Then, like for the cas@ = 1, we getPMa(si, H) = PMa(ss, H). By the induction hypothesis, we get
PMa(Ss, H) = PMa(sz, H). Thus,YH € (DR(G) U DR(G"))/#, YA€ NE |

PMa(s1, H) = PMa(ss, H) = PMa(s, H).

By definition, Rs{G, G’) is at least as large as the largest step stochastic bidiolbetweenG andG’. It fol-
lows from the proven above th&4G, G’) is an equivalence anls{G,G’) : G G’, hence, it is the largest step
stochastic bisimulation betwe&handG’. O

Appendix A.2. Proof of Proposition 8.1

By Proposition 6.1,DR(G) U DR(G"))/z = ((DRr(G) U DRt (G"))/=) ¥ ((DRy(G) U DRy(G'))/). Hence¥H €
(DR(G) U DR(G"))/«, all states fron¥ are tangible, whef{ € (DRr(G) U DRr(G’))/x, or all of them are vanishing,
whenH € (DRy(G) U DRy(G))/«.

By definition of the steady-state PMFs for SM@s, € DRy(G), ¢(s) = 0 andvs € DRy(G'), ¢’(s) = 0. Thus,
VH € (DRV(G)UDRY(G))/r, Xscrinprc) $(S) = Zsernor, @) $(S) = 0= Xserinpry(@) ¢ (S) = Zsernpre) ¢'(S)-

By Proposition 5.2Ys € DRy (G), ¢(s) = % andVvs € DR (G’), ¢'(S) = % wherey andy’
are the steady-state PMFs I9TMC(G) andDTMC(G’), respectively. Thus{H JHe (DRr(G) U DRy (G))/,

_ _ 6] _ XseHrorr @ ¥(S) _ Xsemnpry(e) ¥(S)
2 serDRG) P(S) = X serinDry () P(S) = XsetnDRr (G) (E@RT(@ w(é)) T Teom@?® T Ti Zeqon@ YO and

, _ , _ W'(s) _ Zeernrr @) ¥ (S) _ Xeennprre) ¥'(S)
Y serrorRG) € (S) = Zserinorr(@) ¢'(S) = Zsernorr (@) (ngDRT(G,W(g«)) R Ty ) il b m— O b

It remains to prove thatH € (DRr(G) U DRr(G'))/», X scrinprr(6) ¥(S) = Lsernprre) ¥’ (S). Since DR(G) U
DR(G"))/% = ((DRr(G) U DRr(G"))/xr) W ((DRy(G) U DR (G"))/&), the previous equality is a consequence of the
following: YH € (DR(G) U DR(G"))/r, X scrnpre) ¥(S) = Zserrpre) ¥'(S)-

Standard proof continuation.

It is sufficient to prove the previous statement for transient PMFg, aimicey = limy_,., y[K] andy’ = limy_. ¥/ [K].
We proceed by induction dn

[ ) k = O
The only nonzero values of the initial PMFs DITMC(G) and DTMC(G’) are ¢[0]([G]~) and y[0]([G']~).
Let Ho be the equivalence class containii@j.{ and [G'].. Then X «q4,pre) ¥I01(s) = ¥[0l([G]:) = 1 =
' [0([G]x) = Xseronpre) ¥ [0](S).

As for other equivalence class&i{ € ((DR(G) U DR(G'))/z) \ Ho, we have} s.4~pree) ¥[01(S) = 0 =
Zsernore) ¥'[0](S).

e k—k+1

LetH € (DR(G) UDR(G'))/x andsy, s, € H. We have/H € (DR(G) UDR(G"))/x, YA€ N£

fin’
N —
S —p H. ThereiorePM(Sa,W) = Z,Tligleﬁ oy DTS = Paeng, 2
Zaeng, PMa(s1, H) = Zacnz, PMa(S2, H) = penz 2

Z(Tﬂgze“ﬁ;szlgz) > -
PM(H, H) = PM(s1, H) = PM(s,, H). Note that transitions from the statesR(G) always lead to those
from the same set, hencés € DR(G), PM(s, H) = PM(s, H N DR(G)). The same is true fdDR(G’).

By induction hypothesisy s.4/npree) YIKI(S) = Xsernpre) ¥’ [KI(S). Further,
Z§e(f~{nDR(G ylk+1](3 = Z§e(f~{nDR(G ZSEDR(G) y[K(9)PM(s, §) = ZseDR(G) Z§E(F{0DR(G) y[K|()PM(s, §) =
Y e or10 VKIS D om0 PM(S 9 = St Zopinpme WIKI(S) Zicinong PSS -

S

2t Lsertnor©) YIKI(S) X finpre) ZlTlsI@) PT(Y, ) = X Xserinoree) ¥l Z(TB%;QDR(G)’ oy PT(T,9) =

A —~
st H &
(s, 558, ceen T 10 S1) =

_ PT(Y,s) =
(T3, 58, L(T)=A) (7. )

PT(T, ) = PM(SZ,?‘?). Since we have the previous equality foralls, € H, we can denote
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2 Lserinor) YIKI(SPM(S, H) = 2 Zserirore) IKI(S)PM(H, H) =
S PM(H, H) Zsernore) YIKI(S) = Zg PM(H, H) Zsernore) ¥ KI(S) =
St Lserinore) ' [K(S)PMH, H) = Ly Sserorore) ¥ [K(S)PM(S, H) =
Yot Lsernor@) ¥ IKI(S) 2y e cinpre), 55 P T S) =
2t Lsernore) ¥ [KI(S) Zgefinore) er\ag ¢S PT(Y,s) =
Z'H Zs’e‘l—{nDR(G’) l// [k](sl) Zgg—mDR ) PM(S/ S/) ZS’EDR(G’) l// [k](sl) ZgEﬂQDR G) PM(S/ S/)
o) Zseri-onen ¥ HSIPMS. $) = Ty sisome) Lecone) ¥/ [K(SIPM(S. §) =
LZsefirore) ¥ Tk + 11(8). 0
Alternative proof continuation.
Thus, we should now prove théfH € (DR(G) U DR(G'))/&, Xiiise+tnpr@) ¥i = Z‘jlgje,HﬁDR(G,)} %.
The steady-state PMF = (1, . . ., yn) for DTMC(G) is a solution of the linear equation system

YP =y
yi =1 -
Then for alli (1 <i < n) we have
{ YA Pivi =i
Z?:llﬂj =1

By definition of#;; (1 <i, j < n) we have
{ 21 PM(sj, s)yj =y
?:1 gj=1
LetH € (DR(G) U DR(G"))/% ands;, s, € H. We have/H e (DR(G) UDR(G))/#, YA€ Nln, S —>¢> H o
A —_— —_—
s, —p H. ThereforePM(s;, H) = :'r\asleH o5 PT(T.s1) = Zaenz 2 PT(Y,s1) =
2Zaenz PMa(sy, H) = Zacnz PMa(sz, H) = ZaeNE X PT(T, s) =

(Y38 558, L(T)=A)

(YE3SeH 558, L(T)=A) PT(T, %) = Zmaggeﬁ 28]
PM(s,, 71). Since we have the previous equality for gll s, € H, we can denotePM((H,(f{) = PM(SL(}?) =
PM(sz, H). Note that transitions from the statesR(G) always lead to those from the same set, hence,
V¥se DR(G), PM(s,H) = PM(s, H n DR(G)). The same is true fdDR(G’).

LetH € (DR(G) U DR(G))/=. We sum the left and right sides of the first equation from gfgtesn above for all

i such thats € ‘H N DR(G). The resulting equation is

ZPM(SJ',S)% = Z i

{ilseHNDR(G)} j=1 {ilseHNDR(G)}

Let us denote the aggregate steady-state PMBIWMC(G) by ¥wnpreG) = 2jisernpra) ¥i- Then for the left-
hand side of the equation above we get

2ilseHNDR(G)) Z?:l PM(sj, s)yj = Z?d ¥i Xiiisernore) PM(S), s) = ?:1 PM(sj, H)yj =
ZfieorEUORG)/x Lijserirore) P MS HY) = e oreuore)yx Liiserinorey PMH H)Yj =
Z(ﬁe(DR(G)UDR(G’))/R PM(H, H) Z: jls;eHNDR(G)) yi= Z(ﬁe(DR(G)UDR(G’))/R PM(H, ﬂﬁpﬁﬁDR(G)'

For the left-hand side of the second equation from the syatsmae, we have

?:1 Y= Z'f(e(DR(G)uDR(G’))/R 2| jls;eHNDR(G)) g = Z'ﬁe(DR(G)uDR(G’))/R YHDRG)-
Thus, the aggregate linear equation systenDfoMC(G) is

{ 2 d1erG)UDRG )/« P MH: H)gipre) = YHnoRE)

Z(ﬁe(DR(G)UDR(G’))/R Yrnore) = 1
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Let us denote the aggregate steady-state PMFOIMC(G’) by (//lHnDR(G,) = Z,j‘gjeﬂnDR(G,)) W) Then, in a
similar way, the aggregate linear equation systenDfoMC(G’) is

{ % frcor@or e PMOHOU G o) = Viioore)
1

Z'HE(DR(G)UDR(G’))/R lp(HnDR(G’)
Let (DR(G) U DR(G))/z = {Hx....,H}. Then the aggregate steady-state PMs.prc) andy, prey (1 <
k < 1) satisfy the same aggregate systenh ofl linear equations withindependent equations ahdnknowns The
aggregate linear equation system has a unique solutiom wisingle aggregate steady-state PMF exists. This is the
case here, since in Section 5 we have demonstratedfisliC(G) has a single steady stat® $ MQ(G) has, and

aggregation preserves this property [25]. HewGgpr) = zp;{mDR(G,) A<k<). O

Appendix A.3. Proof of Theorem 8.1
Let?{ € (DR(G) U DR(G"))/% ands,se€ H. We havevH e (DR(G) U DR(G"))/x, YA e N

A —_—
fln’ S—)p?‘{ =4

s —>p 7{ The previous equality is valid for al, s € H, hence, we can rewrite it a&l —>¢> H and denote

PMa(H, 7{) PMa(s, 7{) PMa(s, 7{) Note that transitions from the statesR(G) always lead to those from
the same set, hencés € DR(G), PMa(s, '7-{) = PMA(a?{ N DR(G)). The same is true fdDR(G’).
LetX = A;--- A, be a derived step trace & andG’. ThenaHy, ..., H, € (DR(G) U DR(G"))/x, Ho 5@1

A; .
H —2>p2 ﬁlpn H,. Now we intend to prove that the sum of probabilities of adl thaths starting in eversy € Ho

and going through the states froM, .. ., H, is equal to the product &y, ..., P

2. [PTCE5-0 = [ ] PMa (1.

T ) =1 i=1
(Tare TolSo—3 350, L(T)=A, S, (1<i<n) | '

We prove this equality by induction on the derived step ttangthn.

.n:l

PT(Yq, =PM ,H1) = PMp, (Ho, H1).
Z{lesOEsl,L(Tl):Al, - ("1, s0) a (S0, H1) I (Ho, H1)

en—-n+1

MLPT(Y), S-1) =
{T1,. Tn Tmls(w Bs, Wsml L(Ti)=A, seH; (1<i<n+1)} H (15, §-2)

™M ™M

n
ks n i= PT TG S-1 PT(T 1,S) =
Wmllsn Ml ts L(Tre1)=Ans1, S$1€Hn, Swe1€Hnea) (L1nmen 'rn\sog..i,sh, L()=A, seH: (1<i<n)) [Tia (i JPT(Cns )

n
he i PT T', ) — e T T s =
Z‘Tl """ T”‘Sogln)s"’ ‘E(Ti):A" SE'I‘{i (lsisn)l l—llil ( I S 1) Z‘Tn+l‘31 4’13‘l+1 L(TI‘I+1) An+1 Sweﬂn S1+1€Hn+1’ ( nel S«l)

n . . —_

L, s, 200)oA, sert (sicny L1I= 1EI(TI’S l)mmj{ Tlﬂ) ’

p,‘\} """ T%?Eﬁsn LOT)A. e, (L<i<) (", si-1) An+1|:(>-|-n«;: hel) =
i (o Hn) 2 L(T)=A. seH, (1<i<n)) (i, 8-1) =

PMa,.. (Hn. Hne1) TTLy PMa (Hio1, H) = TIY PMa, (Hio1, H).
Let s, & . We havePT(A; - - - = " N PT(Y:.s_1) =
et 59, S € Ho. We havePT(A; - - - An, So) m """ - ‘SO_) _}Sn -, s [, PT(Ti,5-1)

T1 Tn oo dLj=12 b YN 9= T A,
{Y1,...,YnlSo—=— S, L(Ti)=Ai, seH; (1<i<n)}

q g T = NPT i, S-1) =
Zrtith Dt 55T iy, 3em asey 1T 1O S

Tn F:l PT(TH §—l) = PT(Al e An» §))
(T1,..., 'Tn\soa 35, L(T)=A, (1<i<n)}

Slnce we have the previous equality for &l ) € Ho, we can denot®T(A; - - - An, Ho) = PT(Ar- - - An, S0) =
PT(A1 - An, S0).

91



By Proposition 8.1 s.4/npr) ¢(S) = Xsernpre) ¢ (S). Now we can complete the proof:
2sernpr@) YSPT(Z, 8) = Xsenrpre) Y(PT(E, H) = PT(E, H) Xsernpree) £(S) =
PT(E, H) Eserrore) ¥’ (S) = Zsernpra) ¢ (SIPT(E, H) = Xsernrore) ¢ (S)PT(E, S). U

Appendix A.4. Proof of Proposition 8.2
Let us present two facts, which will be used in the proof.

1. By Proposition 6.1, IR(G) U DR(G"))/z = ((DRr(G) U DRr(G"))/#) @ ((DRy(G) U DRy(G))/%). Hence,
VH e (DR(G) U DR(G"))/x, all states fron¥ are tangible, whef{ € (DRr(G) U DRr(G’))/, or all of them
are vanishing, whet{ € (DRy(G) U DRy(G"))/%.

2. Let'H € (DR(G) UDR(G"))/% ands;, s, € H. We have/H e (DR(G)UDR(G")) /%, YA€ me, S A@ H o
S —>¢> H. Therefore PM(sy, 7{) = TB_%H o5 PT(Y, 1) = ZAeNﬁn Z‘mgleﬁ’ 055 LO0-A PT(Y,s) =
2AeNE PMa(sy, H) = 2AeNE PMa(s2, H) = AN Z('Y'B§2€“F(, 5%, £(T)=A PT(T, s) =

fin

Zmasﬁ(H o5 PT(T, s5) = PM(sz, H). Since we have the previous equality forgll's, € #, we can denote

PM(H, ?{) PM(si, ?{) PM(s,, ?{) The transitions from the statesDBR(G) always lead to those from the

same set, hencé&s € DR(G), PM(s, H) = PMLS,?‘( N DR(G)). The same is true fdDR(G’). Hence, for all
se HNDR(G), we obtainPM(H, H) = PM(s, H) = PM(s, HNDR(G)) = PM(HNDR(G), HNDR(G)). The
same is true fobR(G’). Finally, PM(+ N DR(G), HNDR(G)) = PM(H, H) = PM(H NDR(G’), H NDR(G)).

Let us now prove the proposition statement for the sojoume tverages.

o Let# e (DRy(G) U DRy(G"))/x.

Then we haveH N DR(G) = H N DRy(G) € DRy(G)/x andH N DR(G’) = H N DRy(G’) € DRy(G')/«x.
By definition of the average sojourn time in an equivalenessbf states, we g&knpre)2(H N DR(G)) =
Sknor@)2 (H N DRy(G)) = 0 = Sknpre)(H N DRY(G')) = Skaore)2(H N DR(G)).

o Let# e (DRr(G) U DR (G))/x.

Then we haveH N DR(G) = H N DRy (G) € DRy (G)/x andH N DR(G’) = H N DRy (G’) € DR (G)/x.

By definition of the average sojourn tlme in an equalenas&"bf states, we gsURm(DR(G))z(H N DR(G)) =
S‘]Rﬁ(DR(G))Z(Hm DRr(G)) = 1—PM(‘HnEiRT(G) “HNDR;(G)) — 1—PM(‘HnDR(G) HNDR@G)) 1—PM(‘H7—{) -

1—PM(HﬁDR(G Y HNDR(G)) ~ 1-PM(HNDR; (G),HNDR1(G)) = Skn(ERG)? (HNDRr(G)) = S‘kﬂ(DR(G’))Z(WmDR(G/))-

Thus,VH € (DR(G) U DR(G/))/-R we haVGSJRQ(DR(G))Z (7‘( N DR(G)) = S\]RQ(DR(G/))Z (7‘( N DR(G/))
The proposition statement for the sojourn time variancesdsed similarly to that for the averages. O
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