University of Castilla-La Mancha

A

A publication of the

Department of Computer Science

Bisimulation equivalence for functional and
performance analysis of concurrent stochastically

timed systems in dtsiPBC
by
[gor V. Tarasyuk Hermenegilda Macia Valentin Valero

Technical Report ~ #DIAB-18-05-1 May 2018

DEPARTAMENTO DE SISTEMAS INFORMATICOS
ESCUELA SUPERIOR DE INGENIERIA INFORMATICA
UNIVERSIDAD DE CASTILLA-LA MANCHA
Campus Universitario s/n
Albacete - 02071 - Spain
Phone +34.967.599200, Fax +34.967.599224

Bisimulation equivalence for functional and performanoalgsis
of concurrent stochastically timed systems in dtsiPBC

Igor V. TarasyuR1?*, Hermenegilda Macl?, Valentin Valer§*

aA.P. Ershov Institute of Informatics Systems, SiberiamBneof the Russian Academy of Sciences, 6, Acad. Lavremti®3p090 Novosibirsk,
Russian Federation
bHigh School of Computer Science Engineering, Universitgasitilla - La Mancha, Avda. de Espafia 02071 Albacete, Spain

Abstract

We propose an extension with immediate multiactions ofrdtectime stochastic Petri box calculus (dtsPBC), pre-
sented by I.V. Tarasyuk. The resulting algebra dtsiPBC iseréte time analogue of stochastic Petri box calculus
(sPBC) with immediate multiactions, proposed by H. Madayalero and others within a continuous time domain.
In this version of dtsiPBC, we use positive reals (insteathefpreviously used positive integers) as the weights of
immediate multiactions to provide more flexibility in spieation. The step operational semantics is constructed via
labeled probabilistic transition systems. The denotaiieemantics is defined on the basis of a subclass of labeled
discrete time stochastic Petri nets with immediate traorsst The consistency of the both semantics is demonstrated
In order to evaluate performance, the corresponding searkd chains and (reduced) discrete time Markov chains
are analyzed. We define step stochastic bisimulation elgmiga of expressions and prove that it can be applied to
reduce their transition systems and underlying semi-Madtmins while preserving the functionality and perfor-
mance characteristics. We explain how this equivalencemefyto simplify performance analysis of the algebraic
processes. In a case study, a method of modeling, perfoeraratuation and behaviour preserving reduction of
concurrent systems is outlined and applied to the sharedomyesystem. We also determine the main advantages of
dtsiPBC by comparing it with other well-known or similar S®A

Keywords: stochastic process algebra, Petri box calculus, disdrete immediate multiaction, performance
evaluation, stochastic equivalence
2000 MSC:60J10, 60J20, 60K15, 68Q55, 68Q60, 68Q85

1. Introduction

Algebraic process calculi like CSP [50], ACP [8] and CCS [@4& a well-known formal model for the specifi-
cation of computing systems and analysis of their behaviousuch process algebras (PAs), systems and processes
are specified by formulas, and verification of their progsris accomplished at a syntactic level via equivalences,
axioms and inference rules. In the last decades, stoctegtosions of PAs were proposed, such as MTIPP [47],
PEPA [49] and EMPA [14, 13, 9]. Stochastic process alget®&&§) do not just specify actions which can occur as
usual process algebras (qualitative features), but trecéste some quantitative parameters with actions (cpagiaé
characteristics).

*Corresponding author. Tek:7 3833306360; fax:+7 3833323494.
Email addressesitar@iis.nsk.su (Igor V. Tarasyuk) Hermenegilda.Macia@uclm.es (Hermenegilda Macia),
Valentin.Valero®@uclm.es (Valentin Valero)
URL:http://itar.iis.nsk.su (Igor V. Tarasyuk)http://www.dsi.uclm.es/personal/ValentinValero (Valentin Valero)
partially supported by the Spanish Ministry of Science ambVation and the European Union FEDER Funds with the coatedl Project
DArDOS entitled “Formal development and analysis of comgstems in distributed contexts: foundations, tools guglieations”, UCLM
subproject “Formal analysis and applications of Web ses/&nd electronic contracts”, under Grant TIN2015-658352¢R.
2partially supported by Deutsche ForschungsgemeinsdbBf5) under grant BE 12¢74-1.

1.1. Petri box calculus

PAs specify concurrent systems in a compositional way viexgmessive formal syntax. On the other hand, Petri
nets (PNs) provide a graphical representation of suchmgséad capture explicit asynchrony in their behaviour. To
combine advantages of both models, a semantics of algdbraitlas in terms of PNs has been defined. Petri box
calculus (PBC) [15, 17, 16] is a flexible and expressive pge@dgebra developed as a tool for specification of the
PNs structure and their interrelations. Its goal was algpepose a compositional semantics for high level construct
of concurrent programming languages in terms of elemeréaly. Formulas of PBC are combined not from single
(visible or invisible) actions and variables, like in CC8t from multisets of elementary actions and their conjugjate
called multiactionslfasic formulag The empty multiset of actions is interpreted as the siteualtiaction specifying
some invisible activity. In contrast to CCS, synchroniaatis separated from parallelismancurrent construcjs
Synchronization is a unary multi-way stepwise operatioseblaon communication of actions and their conjugates.
This extends the CCS approach with conjugate matchingdaBghchronization in PBC is asynchronous, unlike that
in Synchronous CCS (SCCS) [74]. Other operations are seguamd choicesequential construc)s The calculus
includes also restriction and relabelirgpétraction construcjs To specify infinite processes, refinement, recursion
and iteration operations were adddudefarchical construcfs Thus, unlike CCS, PBC has an additional iteration
construction to specify infinite behaviour when the sentaintierpretation in finite PNs is possible. PBC has a step
operational semantics in terms of labeled transition systéased on the rules of structural operational semantics
(SOS) [82]. The operational semantics of PBC is of step tgimee its SOS rules have transitions with (multi)sets of
activities, corresponding to simultaneous executiongtivities (steps). Note that we do not reason in terms of a big
step (natural) [54] or small-step (structural) [82] opema&l semantics here, and that PBC (and all its extensiobps to
mentioned further) have a small-step operational sem@mtithat terminology. A denotational semantics of PBC was
proposed via a subclass of PNs equipped with an interface@mldered up to isomorphism, called Petri boxes. For
more detailed comparison of PBC with other process algeindshe reasoning about importance of non-interleaving
semantics see [15, 16]. In the last years, several extensibRBC with a deterministic, a nondeterministic or a
stochastic model of time were presented.

1.2. Time extensions of Petri box calculus

To specify systems with time constraints, such as real tips¢ems, deterministic (fixed) or nondeterministic
(interval) time delays are used. A time extension of PBC witmondeterministic time model, called time Petri box
calculus (tPBC), was proposed in [58]. IntPBC, timing imf@tion is added by associating time intervals (the earliest
and the latest firing time) with instantanecargions Its denotational semantics was defined in terms of a subclas
of labeled time Petri nets (LtPNs), based on tPNs [73] an@daime Petri boxes (ct-boxes). tPBC has a step time
operational semantics in terms of labeled transition syste

Another time enrichment of PBC, called Timed Petri box chis TPBC), was defined in [70], it accommo-
dates a deterministic model of time. In contrast to tPBC,tiactions of TPBC are not instantaneous, but have time
durations. Additionally, in TPBC there exist no “illegal’uttiaction occurrences, unlike tPBC. The complexity of
“illegal” occurrences mechanism was one of the main inter#tito construct TPBC though this calculus appeared to
be more complicated than tPBC. The denotational semarftitBBC was defined in terms of a subclass of labeled
Timed Petri nets (LTPNSs), based on TPNs [85] and called TiRetti boxes (T-boxes). TPBC has a step timed oper-
ational semantics in terms of labeled transition systenwte khat tPBC and TPBC filer in ways they capture time
information, and they are not in competition but complenezmh other.

The third time extension of PBC, called arc time Petri boxcehis (atPBC), was constructed in [80], and it
implements a nondeterministic time. In atPBC, multiactiane associated with time delay intervals. Its denotaktiona
semantics was defined on a subclass of labeled arc time B&trjatPNs), where time restrictions are associated with
the arcs, called arc time Petri boxes (at-boxes). atPBCGegess a step time operational semantics in terms of labeled
transition systems. Further, all the calculi tPBC, TPBC atRBC apply the discrete time approach, but only tPBC
and atPBC have immediate (multi)actions.

1.3. Stochastic extensions of Petri box calculus

The set of states for the systems with deterministic or ntardenistic delays often diers drastically from that
for the timeless systems, hence, the analysis results fimed systems may be not valid for the time ones. To

2

solve this problem, stochastic delays are considered,hndrie the random variables with a (discrete or continuous)
probability distribution. If the random variables govergidelays have an infinite support then the corresponding SPA
can exhibit all the same behaviour as its underlying untifd&dA stochastic extension of PBC, called stochastic
Petri box calculus (sPBC), was proposed in [65]. In sPBC tiaatlons have stochastic delays that follow negative
exponential distribution. Each multiaction is equippethve rate that is a parameter of the corresponding expotentia
distribution. The instantaneous execution of a stochastitiaction is possible only after the corresponding s&stic

time delay. Just a finite part of PBC was initially used for gh@chastic enrichment, i.e. in its former version sPBC
has neither refinement nor recursion nor iteration oparatid he calculus has an interleaving operational semantics
defined via transition systems labeled with multiactiordtaeir rates. Its denotational semantics was defined insterm
of a subclass of labeled continuous time stochastic PNs 8FINS), based on CTSPNs [71, 5] and called stochastic
Petri boxes (s-boxes). In [62], the iteration operator wdded to sSPBC. In sPBC with iteration, performance of the
processes is evaluated by analyzing their underlying noatis time Markov chains (CTMCSs). In [63], a number of
new equivalence relations were proposed for regular tefreBBC with iteration to choose later a suitable candidate
for a congruence. sPBC with iteration was enriched furthiéh wnmediate multiactions having zero time delay in
[64]. We call such an sPBC extension generalized sPBC or @sPB interleaving operational semantics of gsPBC
was constructed via transition systems labeled with s&ighar immediate multiactions together with their rates or
probabilities. A denotational semantics of gsPBC was ddfina a subclass of labeled generalized stochastic PNs
(LGSPNSs), based on GSPNs [71, 5, 6] and called generalipetiastic Petri boxes (gs-boxes). The performance
analysis in gsPBC is based on the underlying semi-MarkoinsH&MCs).

PBC has a step operational semantics, whereas sPBC hagdeaving one. Remember that in step semantics,
parallel executions of activities (steps) are permittedenin interleaving semantics, we can execute only singte ac
tivities. Hence, a stochastic extension of PBC with a stepaseics is needed to keep the concurrency degree of
behavioural analysis at the same level as in PBC. As merdionf6, 77], in contrast to continuous time approach
(used in sPBC), discrete time approach allows for constrgehodels of common clock systems and clocked de-
vices. In such models, multiple transition firings (or exteaus of multiple activities) at time moments (ticks of the
central clock) are possible, resulting in a step semankittsreover, employment of discrete stochastic time fills the
gap between the models with deterministic (fixed) time dekayd those with continuous stochastic time delays. As
argued in [1], arbitrary delay distributions are much easidandle in a discrete time domain. In [68, 69, 66], disEret
stochastic time was preferred to enable simultaneousatiquirof multiple delays. In [88, 90], a discrete time stagha
tic extension dtsPBC of finite PBC was presented. In dtsPB&Erasidence time in the process states is geometrically
distributed. A step operational semantics of dtsPBC wastcocted via labeled probabilistic transition systems. It
denotational semantics was defined in terms of a subclasbeldd discrete time stochastic PNs (LDTSPNSs), based
on DTSPNs [76, 77] and called discrete time stochastic Beés (dts-boxes). A variety of stochastic equivalences
were proposed to identify stochastic processes with sirbéhaviour which are elierentiated by the semantic equiv-
alence. The interrelations of all the introduced equiveésnvere studied. In [89, 91], we constructed an enrichment
of dtsPBC with the iteration operator used to specify inéiitocesses. The performance evaluation in dtsPBC with
iteration is accomplished via the underlying discrete ttarkov chains (DTMCSs) of the algebraic processes. Since
dtsPBC has a discrete time semantics and geometricallybdittd sojourn time in the process states, unlike sSPBC
with continuous time semantics and exponentially distedudelays, the calculi apply two féérent approaches to
the stochastic extension of PBC, in spite of some similafttheir syntax and semantics inherited from PBC. The
main advantage of dtsPBC is that concurrency is treatedrilRBC having step semantics, whereas in sPBC paral-
lelism is simulated by interleaving, obliging one to cotltéee information on causal independence of activities teefo
constructing the semantics. In [92, 93], we presented tiension dtsiPBC of the latter calculus with immediate
multiactions. Immediate multiactions increase the spaatifin capability: they can model logical conditions, prob
abilistic branching, instantaneous probabilistic chsiaad activities whose durations are negligible in comparis
with those of others. They are also used to specify urgeitities and the ones not relevant for performance eval-
uation. Thus, immediate multiactions can be consideredkirstbof instantaneous dynamic state adjustment and, in
many cases, they result in a simpler and more clear systeresentation.

1.4. Equivalence relations
A notion of equivalence is important in theory of computiygtems. Equivalences are applied both to compare
behaviour of systems and reduce their structure. There igla diversity of behavioural equivalences, and their

3

interrelations are well explored in the literature. Thetdawwn and widely used one is bisimulation. Typically,
the mentioned equivalences take into account only funatifmualitative) but not performance (quantitative) aspec
Additionally, the equivalences are usually interleavimgs, i.e. they interpret concurrency as sequential nondete
minism. Interleaving equivalences permit to imitate plata&xecution of actions via all possible occurrence segegen
(interleavings) of them. Step equivalences require imsg#@ulating such a parallel execution by simultaneous oc-
currence (step) of all the involved actions. To respect tjtaive features of behaviour, probabilistic equivalesic
have additional requirement on execution probabilitieso Bquivalent processes must be able to execute the same
sequences of actions, and for every such sequence, itstiseptobabilities within both processes should coincide.
In case of probabilistic bisimulation equivalence, théestérom which similar future behaviours start are groupéal i
equivalence classes that form elements of the aggregatedsgtace. From every two bisimilar states, the same ac-
tions can be executed, and the subsequent states resutingkecution of an action belong to the same equivalence
class. In addition, for both states, the cumulative prdiisgs to move to the same equivalence class by executing
the same action coincide. Afeérent kind of quantitative relations is called Markoviameglences, which take rate
(the parameter of exponential distribution that govermetdelays) instead of probability. Note that the probabilis
tic equivalences can be seen as discrete time analogues dMalkovian ones, since the latter are defined as the
continuous time relations.

Interleaving probabilistic weak trace equivalence wasoithiced in [31] on labeled probabilistic transition sys-
tems. Interleaving probabilistic strong bisimulation mgience was proposed in [61] on the same model. Interlgavin
Markovian strong bisimulation equivalence was constaiategl47] for MTIPP, in [49] for PEPA and in [14, 13, 9]
for EMPA. Interleaving probabilistic equivalences werdiked for probabilistic processes in [53, 40]. Some variants
of interleaving Markovian weak bisimulation equivalencereszconsidered in [26] on Markovian process algebras, in
[27] on labeled CTSPNs and in [28] on labeled GSPNSs. In[1],déomparison of interleaving Markovian trace, test,
strong and weak bisimulation equivalences was carried ogeguential and concurrent Markovian process calculi.
Nevertheless, no appropriate equivalence notion was difiimeoncurrent SPAs. The non-interleaving bisimulation
equivalence in GSMPA [20, 19] uses ST-semantics for actatigles while in & [84] it is based on a sophisticated
labeling.

1.5. Our contributions

In this paper, we present dtsPBC with iteration extendek imitnediate multiactions, calletiscrete time stochas-
tic and immediate Petri box calculygtsiPBC), which is a discrete time analog of sPBC. The datédculus has
iteration and immediate multiactions within the contextaofontinuous time domain. In the current version of dt-
siPBC, we use positive reals (instead of positive integesed in the previous versions) as the weights of immediate
multiactions, to allow for more flexibile and convenient sifieation of systems. The step operational semantics is
constructed with the use of labeled probabilistic transiystems. The denotational semantics is defined in terms of
a subclass of labeled discrete time stochastic and imneslNs$ (LDTSPNs with immediate transitions, LDTSIPNS),
based on the extension of DTSPNs with transition labelirdjianmediate transitions, called dtsi-boxes. LDTSIPNs
possess some features of discrete time deterministic antasttic PNs (DTDSPNSs) [99] and discrete deterministic
and stochastic PNs (DDSPNs) [98], but in LDTSIPNs simultarsgransition firings are possible while in DTDSPNs
and DDSPNs only firings of single transitions are allowede Thnsistency of both semantics is demonstrated. The
corresponding stochastic process, the underlying SMQyristecucted and investigated, with the purpose of perfor-
mance evaluation, which is the same for both semantics. ditiad, the alternative solution methods are developed,
based on the underlying DTMC and its reduction (RDTMC) byn@iating vanishing states. Further, we propose step
stochastic bisimulation equivalence allowing one to idgmtigebraic processes with similar behaviour that are-how
ever diferentiated by the semantics of the calculus. We examinethe¢lations of the proposed relation with other
equivalences of the algebra. We describe how step stochésitnulation equivalence can be used to reduce transition
systems of expressions and their underlying SMCs whilegpvésg the qualitative and the quantitative charactessti
We prove that the mentioned equivalence guarantees igeftie stationary behaviour and the residence time prop-
erties in the equivalence classes. This implies coincidefperformance indices based on steady-state probasiliti
of the modeled stochastic systems. The equivalences pisgdle property can be used to reduce the state space
of a system and thus simplify its performance evaluatioratvigh usually a complex problem due to the state space
explosion. We present a case study of a system with two psoceand a common shared memory explaining how
to model concurrent systems within the calculus and analyzie performance, as well as in which way to reduce

4

the systems while preserving their performance indicesnaaking simpler the performance evaluation. Finally, we
consider diferences and similarities between dtsiPBC and other SPAst&ardine the advantages of our calculus.
We discuss the SPAs approaches to the analytical solutimcucrency interpretation and application area.

The first results on this subject can be found in [92]. Coniogrdifferences from our previous journal papers
about dtsiPBC [93, 94, 95], the present text is much moreilddtand many new results have been added. In
particular, all the used notions (such as numbering, fonstcollecting executable activities, probability fuocis)
are formally defined and completely explained with exampies operational and denotational semantics are given
in full detail (the inaction, action rules, LDTSPNs and dtsixes are extensively described and discussed); compact
illustrative examples (of standard and alternative sofutinethods) are presented; keeping properties of original
Markov chains (irreducibility, positive recurrence anatdpdicity) in their embedded and state-aggregated vessio
is studied. The main new contribution of the paper, stepststic bisimulation equivalence of the process expression
is introduced and checked for stationary behaviour pregenvin the equivalence classes; quotienting the tramsiti
systems, SMCs and DTMCs by the equivalence, as well as thiingssimplification of performance evaluation, are
considered. As an application example, the standard aretglered variants of the shared memory system, quotients
of their behaviour (represented by the transition syste®hCs and DTMCs) by the equivalence and reductions
of the quotients by removing vanishing states are con#&djthe generalized probabilities of the reduced quotient
DTMC are treated as parameters to be adjusted for perforergtanization. In the enhanced related work overview,
strong points of dtsiPBC with respect to other SPAs are tistiedn the discussion, analytical solution, concurrency
interpretation, application area and general advantaigétsi®BC are explained.

If we compare dtsiPBC with the classical SPAs MTIPP, PEPAENKPA, the first main dference between them
comes from PBC, since dtsiPBC is based on this calculus:lggbaaic operations and a notion of multiaction are
inherited from PBC. The second mainférence is discrete probabilities of activities induced gy discrete time
approach, whereas action rates are used in the standard@RA®ntinuous time. As a consequence, dtsiPBC has a
non-interleaving step operational semantics. This is imtrest to the classical SPAs, where concurrency is modeled
by interleaving because of the continuous probabilityritigtions of action delays and the race condition applied
when several actions can be executed in a state. The thim aifférence is immediate multiactions. There are no
instantaneous activities in MTIPP and PEPA while the imragdactions in EMPA can haveftérent priority levels.

All immediate multiactions in dtsiPBC have the same priokével, with the intention to simplify the specification
and analysis, since weights (assigned also to immediatnadh EMPA) are enough to denote preferences among
immediate multiactions and to produce the conformable gbdistic behaviours. The salient point of dtsiPBC is a
combination of immediate multiactions, discrete stodbdshe and step semantics in an SPA.

Thus, the main contributions of the paper are the following.

e Powerful and expressive discrete time SPA with immediatigities called dtsiPBC in its final form.

Step operational semantics of dtsiPBC in terms of labeledatilistic transition systems.

Petri net denotational semantics of dtsiPBC based on désttnee stochastic and immediate Petri nets.

Performance analysis via underlying semi-Markov chairts(a@duced) discrete time Markov chains.

Stochastic equivalence used for behaviour-preservingptexh that simplifies the performance evaluation.

Extended case study illustrating how to apply the obtaihedtetical results in practice.

1.6. Structure of the paper

The paper is organized as follows. In Section 2, the syntak®fextended calculus dtsiPBC is presented. In
Section 3, we construct the operational semantics of thebadgn terms of labeled probabilistic transition systeins.
Section 4, we propose the denotational semantics basedulitkass of LDTSIPNSs. In Section 5, the corresponding
stochastic process is defined and analyzed. Step stochastiaulation equivalence is defined and investigated in
Section 6. In Section 7, we explain how to reduce transitimiesns and underlying SMCs of process expressions
modulo the equivalence. In Section 8, the introduced edgprive is applied to the stationary behaviour comparison to
verify the performance preservation. In Section 9, a sharethory system is presented as a case study. Hezelice
between dtsiPBC and other well-known or similar SPAs is mered in Section 10. The advantages of dtsiPBC are
explained in Section 11. Finally, Section 12 summarizesealalts obtained and outlines the research perspectives.

5

2. Syntax

In this section, we propose the syntax of dtsiPBC. First, @mll a definition of multiset that is an extension of
the set notion by allowing several identical elements.

Definition 2.1. Let X be a set. A finitenultiset (bag) MoverX is a mappingM : X — N such that{x € X | M(X) >
0}| < o0, i.e. it can contain a finite number of elements only.

We denote theet of all finite multisetsver a seiX by N¥_. Let M, M’ € Nf_. Thecardinality of M is defined
as|M| = Y yex M(X). We writex € M if M(x) > 0 andM € M’ if Yx e X, M(X) < M’(x). We define M1 + M’)(X) =
M(X) + M’(x) and M — M’")(X) = max0, M(x) — M’(x)}. When¥x € X, M(X) < 1, M can be interpreted as a proper
set and denoted byl C X. Theset of all subsets (powerset) X is denoted by 2.

Let Act = {a,b,...} be the set oklementary actio/n\sThenﬂEt = (& b,...} is the set ofconjugated actions
(conjugatessuch thal™+ aanda = a. LetA = ActU Actbe the set ofill actions and£ = Nfi‘n be the set o#ll
multiactions Note thatd € £, this corresponds to an internal move, i.e. the executiarafiltiaction that contains
no visible action names. Thaphabetof @ € £ is defined asA(a) = {x € A | a(X) > 0O}.

A stochastic multiactions a pair ¢, p), wherea € £ andp € (0;1) is theprobability of the multiactiona.
This probability is interpreted as that of independent akiea of the stochastic multiaction at the next discreteetim
moment. Such probabilities are used to calculate thosedout& (possibly empty) sets of stochastic multiactions
after one time unit delay. The probabilities of stochastidtiractions are required not to be equal to 1 to avoid extra
model complexity, since in this case one should assign vagmt weights, needed to make a choice when several
stochastic multiactions with probability 1 can be executedh a state. The diculty is that when the stochastic
multiactions with probability 1 occur in a step (parallekewtion), all other with the less probabilities do not. listh
case, some problems appear with conflicts resolving. See7[/éor the discussion on SPNs. This decision also
allows us to avoid technical filiculties related to conditioning events with probabilitynother reason is that not
allowing probability 1 for stochastic multiactions excagla potential source of periodicity (hence, non-ergogiait
the underlying SMCs of the algebraic expressions. On therdtand, there is no sense to allow zero probabilities of
multiactions, since they would never be performed in thigecd etSL be the set oéll stochastic multiactions

An immediate multiactiofis a pair @,), wherea € £ and is thd € R.o = (0; +0) positive real-valuedveight
of the multiactione. This weight is interpreted as a measure of importance (usgenterest) or a bonus reward
associated with execution of the immediate multiactiomatdurrent discrete time moment. Such weights are used to
calculate the probabilities to execute sets of immediatiiactions instantly. Immediate multiactions have a ptior
over stochastic ones. One can assume that allimmediat&@otidhs have priority 1, whereas all stochastic ones have
priority 0. This means that in a state where both kinds of iacfions can occur, immediate multiactions always occur
before stochastic ones. Stochastic and immediate mudtieectannot participate together in some step (concurrent
execution), i.e. the steps consisting only of immediatetiaactions or those including only stochastic multiactians
allowed. LetZ £ be the set o&ll immediate multiactions

Note that the same multiactiene £ may have dferent probabilities and weights in the same specificatian. A
activity is a stochastic or an immediate multiaction. ItL = SL U 7L be the set o#ll activities Thealphabet
of a multiset of activitiesy' € N32£ is defined asA(Y) = UggerA(e). For an activity &,) € STL, we define
its multiaction partas £(«, k) = « and itsprobability or weight partasQ(a, k) = « if « € (0;1); orQ(a, k) = | if
k =1, | € R.o. Themultiaction partof a multiset of activitiest € N9’ £ is defined asL(T) = ¥, ger @

Activities are combined into formulas (process expressiduy the following operationsequential execution
choice[], parallelism||, relabeling[f] of actions,restrictionrs over a single actiorsynchronizatiorsy on an action
and its conjugate, aniteration[= «] with three arguments: initialization, body and termioati

Sequential execution and choice have a standard intetiprethike in other process algebras, but parallelism does
not include synchronization, unlike the correspondingrafien in CCS [74].

Relabeling functions : A — A are bijections preserving conjugates, i¥x € A, f(X) = f(X). Relabeling
is extended to multiactions in the usual way: foe £, we definef(a) = Y, f(X). Relabeling is extended to the
multisets of activities as follows: for € N9'£, we definef (1) = ¥ ,.0er (f(@), 4).

Restriction over an elementary actiar Actmeans that, for a given expression, any process behaviataining
aor its conjugateis not allowed.

Leta,B € L be two multiactions such that for some elementary acienActwe havea € « andae 8, ord e «
anda € 8. Then, synchronization ef andg by a is defined as @, 8 = y, where

a(X)+p(X)—1, x=aorx=4§
() = { a(X) + B(X) otherwise

In other words, we require that®, 8 = a + 8 — {a, &}, i.e. we remove one exemplarafind one exemplar & from
the multiset sumw + B3, since the synchronization afandd produced). Activities are synchronized with the use of
their multiaction parts, i.e. the synchronization &pf two activities, whose multiaction partssandg possess the
properties mentioned above, results in the activity withrtfultiaction partr &, 8. We may synchronize activities of
the same type only: either both stochastic multiactionsothh bnmediate ones, since immediate multiactions have a
priority over stochastic ones, hence, stochastic and inatesthultiactions cannot be executed together (note aédo th
the execution of immediate multiactions takes no time,kenthat of stochastic ones). Synchronizatiorsayeans
that, for a given expression with a process behaviour coinigiwo concurrent activities that can be synchronized by
a, there exists also the process behaviour thiétidi from the former only in that the two activities are replhby the
result of their synchronization.

In the iteration, the initialization subprocess is exeddiest, then the body is performed zero or more times, and,
finally, the termination subprocess is executed.

Static expressions specify the structure of processes. éAshall see, the expressions correspond to unmarked
LDTSIPNSs (note that LDTSIPNs are marked by definition).

Definition 2.2. Let (o, k) € ST L anda € Act A static expressioof dtsiPBC is defined as

E:= (o« | E;E|E[JE|EIE|E[f]|Ersa| Esyal[E *E «E].

Let StatExprdenote the set dll static expressionsf dtsiPBC.

To make the grammar above unambiguous, one can add paresithake productions with binary operations:
(E; E), (E[]E), (E|IE). However, we prefer the PBC approach and add them to reaatéguities only.

To avoid technical diiculties with the iteration operator, we should not allow aoncurrency at the highest
level of the second argument of iteration. This is not a sevestriction though, since we can always prefix parallel
expressions by an activity with the empty multiaction pdrater on, in Example 4.2, we shall demonstrate that
relaxing the restriction can result in nets which are no¢ safternatively, we can use aftBrent, safe, version of the
iteration operator, but its net translation has six argusie®ee also [16] for discussion on this subject.

Definition 2.3. Let (o, k) € ST L anda € Act A regular static expressioaf dtsiPBC is defined as

E:= (a,x) |E;E|E[JE|E|IE|E[f]|Ersal| Esya]|[E =D« E],
whereD ::= (a,«) | D;E | D[JD | D[f] |Drsa|Dsya|[D=D = E].

Let RegS tatE xpdenote the set d@ll regular static expressionsf dtsiPBC.

Dynamic expressions specify the states of processes. Ataliesge, the expressions correspond to LDTSIPNs
(which are marked by default). Dynamic expressions areimddsrom static ones, by annotating them with upper or
lower bars which specify the active components of the sysiitime current moment of time. The dynamic expression
with upper bar (the overlined on&) denotes thénitial, and that with lower bar (the underlined origenotes the
final state of the process specified by a static expredsioithe underlying static expressioof a dynamic one is
obtained by removing all upper and lower bars from it.

Definition 2.4. Let E € StatExpranda € Act A dynamic expressioof dtsiPBC is defined as

G:= E|E|G.E|E;G|G[E|E[G|GIG|G[f] |Grsa|Gsya|[G*Ex«E]|[E+GxE]|[Ex*ExG].

Let DynExprdenote the set d@dll dynamic expressionsf dtsiPBC.
Note that if the underlying static expression of a dynamie @smot regular, the corresponding LDTSIPN can be
non-safe (though, it is 2-bounded in the worst case [16]).

7

Definition 2.5. A dynamic expression iegularif its underlying static expression is regular.

Let RegDynE xpdenote the set dadll regular dynamic expressiord dtsiPBC.

3. Operational semantics

In this section, we define the step operational semanti@ring of labeled transition systems.

3.1. Inactionrules

The inaction rules for dynamic expressions describe theicsiral transformations in the form & = G which
do not change the states of the specified processes. Thefghake syntactic transformations is to obtain the well-
structured resulting expressions called operative onadich no inaction rules can be further applied. As we shall
see, the application of an inaction rule to a dynamic exjpzagtoes not lead to any discrete time tick or any transition
firing in the corresponding LDTSIPN, hence, its current ntagkemains unchanged.

Thus, an application of every inaction rule does not reqaimg discrete time delay, i.e. the dynamic expression
transformation described by the rule is accomplished itista

First, in Table 1, we define inaction rules for regular dynaexpressions in the form of overlined and underlined
static ones. In this tabl&, F, K € RegS tatExpanda € Act

Table 1: Inaction rules for overlined and underlined regstatic expressions.

EF=EF E.FSEF E;F=EF EIF = E[JF

E[F = E[IF ElJF = E[IF E[E = ElF E|F = E|F

ElF = E|F E[f] = E[f] E[f] = E[f] Ersa=Ersa
Ersa=Ersa Esya=Esya Esya=Esya [ExF«K]=[ExF*K]
[ExF+«K]=[ExFxK] [ExFxK]=[Ex*F K] [E*E*KQE*F*K] [E+F«K]=[E=*F K]

Second, in Table 2, we introduce inaction rules for reguaranic expressions in the arbitrary form. In this table,
E,F € RegStatExprG, H,G, H € RegDynExpanda € Act

Table 2: Inaction rules for arbitrary regular dynamic esgiens.

G=G, oc{[} G=G, oc{,[I} G=G H=H G=G
GoE=GoE EocG=EoG G|H = G|H G|H = G|IH G[f] = G[f]

G = G, o€ {rs,sy} G=>G G=>G G=>G
Goa=Goa [G+ExF]=[G+ExF] [ExG+F]=>[E+xG*F] [ExF*G]=[E*FxG]

Definition 3.1. A regular dynamic expressida is operativeif no inaction rule can be applied to it.

Let OpRegDynE xpdenote the set ddll operative regular dynamic expressioofdtsiPBC.
Note that any dynamic expression can be always transfornmtedai (not necessarily unique) operative one by
using the inaction rules. In the following, we consider fegexpressions only and omit the word “regular”.

Definition 3.2. The relatiorr = (= U «)* is astructural equivalencef dynamic expressions in dtsiPBC. Thus, two
dynamic expressions andG’ arestructurally equivalentdenoted byG ~ G/, if they can be reached from each other
by applying the inaction rules in a forward or backward dit

8

3.2. Action and empty loop rules

The action rules are applied when some activities are ezdcWith these rules we capture the prioritization of
immediate multiactions with respect to stochastic ones.alse have the empty loop rule which is used to capture
a delay of one discrete time unit in the same state when no diateemultiactions are executable. In this case, the
empty multiset of activities is executed. The action and tgrigop rules will be used later to determine all multisets
of activities which can be executed from the structural egjence class of every dynamic expression (i.e. from the
state of the corresponding process). This informationttegyavith that about probabilities or weights of the aci@st
to be executed from the current process state will be usealtolate the probabilities of such executions.

The action rules with stochastic (or immediate, otherwisaltiactions describe dynamic expression transforma-

tions in the form ofG > G (orG 4 G) due to execution of non-empty multisét®f stochastic (ot of immediate)
multiactions. The rules represent possible state charfghe specified processes when some non-empty multisets of
stochastic (or immediate) multiactions are executed. Ashadl see, the application of an action rule with stochastic
(or immediate) multiactions to a dynamic expression leadthé corresponding LDTSIPN to a discrete time tick
at which some stochastic transitions fire (or to the insteadas firing of some immediate transitions) and possible
change of the current marking. The current marking remaichanged only if there is a self-loop produced by the
iterative execution of a non-empty multiset, which must be-element, i.e. the single stochastic (or immediate)
multiaction. The reason is the regularity requirement #ilmws no concurrency at the highest level of the second
argument of iteration.

The empty loop rule (applicable only when no immediate raatiobns can be executed from the current state)

describes dynamic expression transformations in the fdr@ 6% G due to execution of the empty multiset of
activities at a discrete time tick. The rule reflects a norezobability to stay in the current state at the next time
moment, which is an essential feature of discrete time ststahprocesses. As we shall see, the application of the
empty loop rule to a dynamic expression leads to a discrete tick in the corresponding LDTSIPN at which no
transitions fire and the current marking is not changed. iBhésnew rule that has no prototype among inaction rules

of PBC, since it represents a time delay, but no notion of txists in PBC. The PBC rul& % G from [17, 16]

in our setting would correspond to the r@e= G that describes staying in the current state when no timesetap
Since we do not need the latter rule to transform dynamicesgions into operative ones and it can even destroy the
definition of operative expressions, we do not introduce itsiPBC.

Thus, an application of every action rule with stochastidtiactions or the empty loop rule requires one discrete
time unit delay, i.e. the execution of a (possibly empty) tisat of stochastic multiactions leading to the dynamic
expression transformation described by the rule is acdsim instantly after one time unit. An application of
every action rule with immediate multiactions does not takg time, i.e. the execution of a (hon-empty) multiset of
immediate multiactions is accomplished instantly at theent moment of time.

Note that expressions of dtsiPBC can contain identicaditiets. To avoid technical dficulties, such as the proper
calculation of the state change probabilities for multiplnsitions, we can always enumerate coinciding actiitie
from left to right in the syntax of expressions. The new atifig resulted from synchronization will be annotated
with concatenation of numberings of the activities they edrom, hence, the numbering should have a tree structure
to reflect the &ect of multiple synchronizations. Now we define the numlgevihich encodes a binary tree with the
leaves labeled by natural numbers.

Definition 3.3. Thenumberingof expressions is defined as= n| (¢t)(c), wheren € N.
Let Numdenote the set all numberingf expressions.

Example 3.1. The numberindl encodes the binary tree depicted in Figure 1(a) with the fabeled byl. The
numbering(1)(2) corresponds to the binary tree depicted in Figure 1(b) withianternal nodes and with two leaves
labeled byl and2. The numbering1)((2)(3)) represents the binary tree depicted in Figure 1(c) with amerinal
node, which is the root for the subtré®)(3), and three leaves labeled ly2 and3.

The new activities resulting from synchronizations iffelient orders should be considered up to permutation of
their numbering. In this way, we shall recognizéelient instances of the same activity. If we compare the ctsite
of different numberings, i.e. the sets of natural numbers in thenshall be able to identify the mentioned instances.

9

() ® .y\ (©
1
2 3

Figure 1: The binary trees encoded with the numberingd(2) and (1)((2)(3)).

Thecontentof a numbering € Numis

(1), te N;
Conty) = { Conf(i1) U Contea), ¢ = (11)(c2).

After the enumeration, the multisets of activities from #xpressions will become the proper sets. Suppose that
the identical activities are enumerated when needed ta@arbiguity. This enumeration is considered to be implicit.

Let X be some set. We denote the Cartesian productX by X2. Let& € X? be an equivalence relation o6
Then theequivalence claséwith respect taS) of an elemenk € X is defined by K]l = {y € X | (x,y) € &}. The
equivalence partitionsX into theset of equivalence classeg= {[X]¢ | X € X}.

Let G be a dynamic expression. The@]L = {H | G ~ H} is the equivalence class & with respect to the
structural equivalences is aninitial dynamic expression, denoted injt(G), if 3E € RegStatExprG € [E]~. G is
afinal dynamic expression, denoted bial(G), if E € RegStatExprG € [E]-.

Definition 3.4. LetG € OpRegDynExprWe define thaet of all non-empty sets of activities which can be potéyntia
executed from Gdenoted byCan(G). Let (o, «) € ST L, E,F € RegStatExprH € OpRegDynExpanda € Act

1. If final(G) thenCan(G) = 0.
2. If G = (@,) thenCan(G) = {{(a, «)}}.
3. If T e Can(G) thenT € CanGo E), T € CanE o G) (o € {;,[]}), T € Can(G||H), T € Can(H||G),
f(T) e Can(G[f]), T € Can(Grs a) (whena,a ¢ A(Y)), T € Can(G sy a), T € Can([G = E * F]),
T e Can[E =G = F]), T € Can(E = F = G]).
4. If T € Can(G) and= € Can(H) thenY + E € Can(G||H).
5. If Y € Can(G sy a) and ¢, «), (8, 1) € T are diferent activities such thate «, & € g, then
(@ (C+{(@®af.«- YN\ {(a,«), (8,)} € CanG sy a), if k<, 1 € (0; 1);
(b) (T +{(a®af. b)) \ {(@.«), (8. 1)} € Can(G sy @) if k = b, A = fim, |, M€ Reo.
When we synchronize the same set of activities ifiedeént orders, we obtain several activities with the
same multiaction and probability or weight parts, but witlietent numberings having the same content.
Then we only consider a single one of the resulting actwitieavoid introducing redundant ones.
For example, the synchronization of stochastic multiaxi@, o)1 and 3,). in different orders generates
the activities & @a 8,0 - X)) and B ®a @.x - p))w). Similarly, the synchronization of immediate
multiactions &, k)1 and {3, im)2 in different orders generates the activitiessg 3, fii+m)(1)2) and
(B ®a @, i))y SinceConi((1)(2)) = {1.2} = Coni(2)(1)), in both cases, only the first activity (or,
symmetrically, the second one) resulting from synchrdiopawill appear in a set fror€an(G sy a).

Note that if Y € Can(G) then by definition ofCan(G), YE C T, E # 0, we haves € CanG).

LetG € OpRegDynExpandCan(G) # 0. Obviously, if there are only stochastic (or only immedjaeiltiactions
in the sets fron€an(G) then these stochastic (or immediate) multiactions carxbelged fronG. Otherwise, besides
stochastic ones, there are also immediate multiactionsdarséts fronCan(G). By the note above, there are non-
empty sets of immediate multiactions @an(G) as well, i.e. 3T € CanG), T € N{If \ {0}. In this case, no
stochastic multiactions can be executed fréneven ifCan(G) contains non-empty sets of stochastic multiactions,
since immediate multiactions have a priority over stodhasies, and should be executed first.

10

Definition 3.5. Let G € OpRegDynE xprTheset of all non-empty sets of activities which can be exeduedGis

_ | can@), (Can(G) € Nyt \ {0)) v (Can(G) € Nt \ (0));
Now() = { Can(G) N NZ£, otherwise

An expressiorG € OpRegDynExpis tangible denoted bytang(G), if NowG) ¢ Nﬁf \ {0}. In particular, we
havetangG), if Now(G) = (. Otherwise, the expressida is vanishing denoted bwanisi{G), and in this case
0 # NowG) ¢ me \ {0}.

fin>

Example 3.2. Let G = ({fal, B[I((b}, k2))Ii((ch, 3) and G = (({a},) (b}, B2))I({c}, 3). Then G~ G, since

G = G” = G for G” = (({a), b)[I({b), B))II({c), 3), but Can(G) = {{({al,)}, {(feh, 3)). (({al, h), (feh,).
Can(@) = {{({b}. h2)}. {({c},). (((b). b). ({c}, 2)1} and NowG) = {{({a}, i)}), NowG') = {{({b}. 52)}). Clearly, we
have vanisfG) and vanisliG’). The executions like that ¢c}, %)} (and all sets including it) from G and’Gnust be
disabled using preconditions in the action rules, since @diate multiactions have a priority over stochastic ones,
hence, the former are always executed first.

LetH = ({a}, b)[I({b ,Z)and H = ({a} hl)[](,2) Then H~ H’, since H=H" = H’ for H” =({a}, k)[]({b}, %),
but Car(H) = Now(H) = {{({a}, b1)}} and CarfH’) = Now(H’) = {{({b ,2) We have vanigl), but tandH’). To
make the action rules correct under structural equivalernibe executions like that gf{b}, %)} from H must be
disabled using preconditions in the action rules, since @diate multiactions have a priority over stochastic ones,
hence, the choices between them are always resolved inrfaf/the former.

Now, in Table 3, we define the action and empty loop rules. isitble, @, p), (B,x) € SL, (a,f1), (B, tm) € 7L
and @,«) € STL. Further, E F € RegStatExprG,H ¢ OpRegDynExprG H € RegDynExprmanda € Act
Moreover, A € N££\ {0}, T” € N2E, 1,0 e NEE\{0), 17 € NfE andY e NI\ {0). The first rule in the table
is the empty loop rul&l. The other rules are the actlon rules describing transdtioms of dynamic expressions,
which are built using particular algebraic operations. éf@annot merge a rule with stochastic multiactions and a rule
with immediate multiactions for some operation then we fetdoupled action rules. In such cases, the names of the
action rules with immediate multiactions have &isu i’. To make presentation more compact, the action rules with
double conclusion are combined from two distinct actioesulith the same premises.

Almost all the rules in Table 3 (exceptifd, P2, P2i, Sy2andSy2i) resemble those of gsPBC [64], but the former
correspond to execution of sets of activities, not of sireglgvities, as in the latter, and our rules have simpler pre-
conditions (if any), since all immediate multiactions isiBBC have the same priority level, unlike those of gsPBC.
The preconditions in ruleBl, C, P1, 12 andI3 are needed to ensure that (possibly empty) sets of stochmastti-
actions are executed only frotangibleoperative dynamic expressions, such that all operativauhym expressions
structurally equivalent to them are tangible as well. Faregle, ifinit(G) in rule C thenG = F for some static
expressiorF andG[|E = F[]E ~ F[] E. Hence, it should be guaranteed tteatg(F[] E), which holds ff tang(E). The
caseE[]G is treated similarly. Further, in rule1, assuming thaiangG), it should be guaranteed thaingG||H) and
tang(H||G), which holds ff tang(H). The preconditions in ruld? andI3 are analogous to that in ru@

RuleEl corresponds to one discrete time unit delay while executingctivities and therefore it has no analogues
among the rules of gsPBC that adopts the continuous time Imode

RulesP2 andP2i have no similar rules in gsPBC, since interleaving semamtfache algebra allows no simul-
taneous execution of activities. On the other haP@andP2i have in PBC the analogous rukAR that is used to
construct step semantics of the calculus, but the formerties correspond to execution of sets of activities, unlike
that of multisets of multiactions in the latter rule. RuR3andP2i cannot be merged, since otherwise simultaneous
execution of stochastic and immediate multiactions woel@lowed.

RulesSy2 and Sy?2i difter from the corresponding synchronization rules in gsPB@esthe probability or the
weight of synchronization in the former rules and the ratéher weight of synchronization in the latter rules are
calculated in two distinct ways.

Rule Sy2establishes that the synchronization of two stochasti¢iautions is made by taking the product of their
probabilities, since we are considering that both must ofmuthe synchronization to happen, so this corresponds,
in some sense, to the probability of the independent evéatsiection, but the real situation is more complex, since

11

Table 3: Action and empty loop rules.

'I’ —_—
g 2ndS) B(@n) 3 (@,x) s——2>2¢ _
G-G G, E—-G,E,EiG—->EG
.G L G, =init(G) v (init(G) A tang(E)) - GLG oy G L G, tangH)
GE & G[IE, E[IG 5 E[IG GIE 5 G[IE, EIG S EJG GIH 5 G|H, HIG 5 HIG
|~ r ~ A ~ | =]~
P1i . ~G =G — pp G2 G H=H Gn:' :’f' ppi &2 G H=H GHJH j~H
GIH 2 GlIH, HIG & H|IG GIH 23 GIA GIH 2 GIA
cLéG Rseié,a,agﬂ('r) 1 cLG
o] 18 6 Grsa—>Grsa [G+E%F] 5 [G+E *F]
G L G, —init(G) v (init(G) A tang(F)) o GLG
[E+GxF] 5 [ExGxF] [E+GxF] - [ExGxF]
3 G L G, —init(G) v (init(G) A tang(F)) " GLG sy1—© LG
[E+F %G] 5 [E«F «G] [E+F %G] 5 [E*F «G] GsyasGsya
< 2Gsya I +{(ap)1+H B} Gsya, aca, ée[)’ o Gsya 1" +{(@:5))+(B.5m)} Gsya, aca, éE,B
y I +{(a®aB.0x)) = y I"+{(a®aB.h1:m)} =
Gsya—— > Gsya Gsya——— Gsya

these stochastic multiactions can also be executed inlglarblevertheless, when scoping (the combined operation
consisting of synchronization followed by restriction otlee same action [16]) is applied over a parallel executian,
get as final result just the simple product of the probabdsitsince no normalization is needed there. Multiplicaigon
an associative and commutative binary operation that igldligive over addition, i.e. it fulfills all practical coiitibns
imposed on the synchronization operator in [48]. Furthfeppth arguments of multiplication are from (0; 1) then
the result belongs to the same interval, hence, multiptinataturally maintains probabilistic compositionalityour
model. Our approach is similar to the multiplication of saté the synchronized actions in MTIPP [47] in the case
when the rates are less than 1. Moreover, for the probasiitindy of two stochastic multiactions to be synchronized
we havep - y < minf{p, y}, i.e. multiplication meets the performance requiremestirsg that the probability of the
resulting synchronized stochastic multiaction shoulddss than the probabilities of the two ones to be synchronized
While performance evaluation, it is usually supposed thatexecution of two components together require more
system resources and time than the execution of each singleThis resembles tHmunded capacitpssumption
from [48]. Thus, multiplication is easy to handle with andatisfies the algebraic, probabilistic, time and perforcean
requirements. Therefore, we have chosen the product ofrttmpilities for the synchronization. See also [23, 22]
for a discussion about binary operations producing thesi@tsynchronization in the continuous time setting.

In rule Sy2i, we sum the weights of two synchronized immediate multiasj since the weights can be interpreted
as the rewards [87], thus, we collect the rewards. Next, weess that the synchronized execution of immediate
multiactions has more importance than that of every singke @ he weights of immediate multiactions can also be
seen as bonus rewards associated with transitions [12] réitierds are summed during synchronized execution of
immediate multiactions, since in this case all the syncizezhactivities can be seen as participated in the execution
We prefer to collect more rewards, thus, the transitionsiging greater rewards will have a preference and they will
be executed with a greater probability. Since executiomofiediate multiactions takes no time, we prefer to execute
in a step as many synchronized immediate multiactions asiljeso get more significant progress in behaviour.
Under behavioural progress we understand an advance intexgactivities, which does not always imply a progress
in time, as in the case when the activities are immediateiautibns. This aspect will be used later, while evaluating

12

performance via analysis of the embedded discrete time dwarkains (EDTMCSs) of expressions. Since every state
change in EDTMC takes one unit of (local) time, greater adean operation of the EDTMC allows one to calculate
quicker performance indices.

Example 3.3. In the following cases, the weights of immediate multiaxtiare interpreted as bonus rewards to be
summed while synchronous or parallel execution of the inm@chultiactions specifying instantaneous probabitisti
choice.

e A customer in a shop considers which products to purchasaviiget a bonus (pay points) | when he decides
({a}, 1) to buy the product A and, for the decidifi§}, bm) to buy the product B, he will have the bonus m. Thus,
on every decision to buy both products A and B (first A, and tirext B; or first B, then A; or on the decision
{({a},), {&}, bm)} to buy A and B together, in one visit to the shop, i.e. in pafabr on the decisiord, §.m)
to buy a kit with A and B, which corresponds to their synctwedicomposition), the customer will get a bonus
| + m, this is a standard and well-accepted practice.

e A cook in a fast-food restaurant plans his everyday work kompa two-component dinner dish of vegetables
and meat), that consists in the decisi@a}, i) to perform work A (boil vegetables), for which he will get a
payment |, and the decisidf@}, km) to perform work B (fry meat), with the payment m. The works é Bn
are independent, and they can be even done together, siamedle several (at least, two) free rings on the
electric cooker in the kitchen. Then, on every decision téopa both works A and B (first A, then B; or first
B, then A; or on the decisioft{a}, 1), {4}, bm)} to perform A and B in parallel; or on the decisid®, f.m) to do
a work including both A and B, for example, to warm up a froz@mlgined (two-in-one) product (consisting of
vegetables and meat), prepared by the cook ahead of timehwbiresponds to the synchronized composition
of works A and B), the cook will get a paymentmn, this is logical and fair.

In the both situations above, more successful customerak spends less resources (power, electricity, water, &ic.)
get his bonus or paymentin. Thus, the preferred and encouraged way of doing (the lalg@dviour or work) consists

in the parallel or the synchronized executing of actionsic8iwe prefer to collect more bonus rewards, clearly, the
decisions providing more rewards must have a preferenceshodld be executed with a greater probability.

The standard approach while system modeling within dtsiBBE split the system operations into the probabilis-
tic decision, specified by an immediate multiaction, andtitme-consuming work followed, that is specified by one
or more stochastic multiactions. It is more natural to iptet weights of immediate multiactions as bonus rewards,
subsequently used to determine the decision probabijlgirse probabilities of stochastic multiactions are idteh
to calculate the duration of work.

Observe also that we do not have self-synchronizationsyechronization of an activity with itself, since all the
(enumerated) activities executed together are considerkd diferent. This allows us to avoid rather cumbersome
and unexpected behaviour, as well as many techniiduliies [16].

In Table 4, inaction rules, action rules (with stochastitnemediate multiactions) and empty loop rule are com-
pared according to the three questions about their apjgicavhether it changes the current state, whether it leads t
a time progress, and whether it results in execution of satigites. Positive answers to the questions are denoted
by the plus sign while negative ones are specified by the nsigrs If both positive and negative answers can be
given to some of the questions irfidirent cases then the plus-minus sign is written. The pratatss are considered
up to structural equivalence of the corresponding exprassiand time progress is not regarded as a state change.

3.3. Transition systems

Now we construct labeled probabilistic transition systeassociated with dynamic expressions. The transition
systems are used to define the operational semantics of dyeapressions.

Definition 3.6. Thederivation sebf a dynamic expressioB, denoted byDR(G), is the minimal set such that
e [G]. € DR(G);

e if [H]. € DR(G) and3Y, H - H then [H]. € DR(G).
13

Table 4: Comparison of inaction, action and empty loop rules

| Rules | State change Time progress Activities execution

Inaction rules - - -
Action rules + + +
(stochastic multiactions
Action rules + - +
(immediate multiactions
Empty loop rule - + -

Let G be a dynamic expression as® € DR(G).

The set ofall sets of activities executable insdefined aExecs) = {T |IH € s, H, H % H}.
It can be proved by induction on the structure of expresdioas’ € Exeds) \ {0} implies3H € s, T € Now(H).
The reverse statement does not hold in general, as the rexipds shows.

Example 3.4. Let H, H’ be from Example 3.2 and=s[H]. = [H’].. We have No(H) = {{({a}, h1)}} and NowH") =
{{({b}, %)}}. Since only rule€i andB can be applied to H while no action rule can be applied tq We get Exe) =
{{({a}, h1)}}. Then, for H € s andT = {({b}, %)} € Now(H’), we obtainY ¢ Exeqs).

The statesis tangible if Exeqs) Nﬁf For tangible states we may hakkeecs) = {#}. Otherwise, the stateis
vanishing and in this cas& xeds) € NZ£\ {0}. The set ofill tangible states from DE&) is denoted byDRy(G), and

the set ofall vanishing states from D(I&n) is denoted byDRy(G). Clearly,DR(G) = DR;(G) v DRy(G) (v denotes
disjoint union).

Note that if T € Exeds) then by rulesP2, P2i, Sy2, Sy2iand definition ofExeds), VE C Y, = # 0, we have
E € Execs).

Since the inaction rules only distribute and move upper amet bars along the syntax of dynamic expressions,
all H € s have the same underlying static expresftorProcess expressions always have a finite length, hence, the
number of all (enumerated) activities and the number of@drations in the syntax &f are finite as well. The action
rulesSy2andSy?2iare the only ones that generate new activities. They resutt the handshake synchronization of
actions and their conjugates belonging to the multiactemsof the first and second constituent activity, respebtiv
Since we have a finite number of operatass in F and all the multiaction parts of the activities are finite tizeits,
the number of the new synchronized activities is also firlitee action rules contribute t6xeds) (in addition to the
empty set, if ruleéEl is applicable) only the sets consisting both of activitiesf F and the new activities, produced by
Sy2andSy2i. Since we have a finite numbenf all such activities, we g¢Exegs)| < 2" < 0. Thus, summation and
multiplication by elements from the finite séixeds) are well-defined. Similar reasoning can be used to demeestr
that for all dynamic expressiort$ (not just for those frons), Now(H) is a finite set.

LetY € Exeds) \ {0}. Theprobability that the set of stochastic multiactioxigs ready for execution in er the
weight of the set of immediate multiactionsvhich is ready for execution inis

[T [] @-x seDRreG)
(@p)eT H(Bx)IEEXeEs)|(B.x)£ T}
PF(T,s) =
(X9 Dt se DRy(G).
(al)er

In the casér = 0 ands € DRy (G) we define
(1-x). Exeqs) # {0};

PF(0,9) = { (BeExeqs)
1, Exeds) = {0}.

14

If se DRr(G) andExeds) # {0} thenPF(, s) can be interpreted agj@int probability of independent events (in
a probability sense, i.e. the probability of intersectidrihese events is equal to the product of their probabi)ities
Each such an event consists in the positive or negativeidedis be executed of a particular stochastic multiaction.
Every executable stochastic multiaction decides prolstibilly (using its probabilistic part) and independgiitfom
others), if it wants to be executed & If T is a set of all executable stochastic multiactions whichehdecided to
be executed irs andYT € Exeds) then is ready for execution irs. The multiplication in the definition is used
because it reflects the probability of the independent emdatsection. Alternatively, wheit = 0, PF(Y, s) can be
interpreted as the probability to execueclusivelythe set of stochastic multiactiofsin s, i.e. the probability of
intersectionof two events calculated using the conditional probabftitynula in the formP(X N'Y) = P(X|Y)P(Y).

The eveniX consists in the execution &f in s. The eventy consists in the non-execution §of all the executable
stochastic multiactions not belonging 1o Since the mentioned non-executions are obviously indég@revents,
the probability ofY is a product of the probabilities of the non-executioP€Y) = [1;s,)cexecsi@.ner (1 — x)- The
conditioning of X by Y makes the executions of the stochastic multiactions fibmdependent, since all of them
can be executed in parallel by definition of Exeds). Hence, the probability to execuieunder conditiorthat no
executable stochastic multiactions not belonginy &re executed isis a product of probabilities of these stochastic
multiactions:P(X]Y) = [], ,)er 0. Thus, the probability thdl is executedaindno executable stochastic multiactions
not belonging toY are executed irs is the probability ofX conditioned byY multiplied by the probability ofY:
PXNY) = P(XIY)P(Y) = [Tp)er P - [Tu@aicexeesi@er (L —x)- WhenY = 0, PF(7, s) can be interpreted as the
probability not to execute is any executable stochastic multiactions, thRB(0, s) = [];,))cexe¢sy (1 — x). When
only the empty set of activities can be executed,ine. Exeds) = {0}, we takePF(0, s) = 1, since we stay irsin
this case. Note that fare DRy (G) we havePF(0, s) € (0; 1], hence, we can stay Bat the next time moment with a
certain positive probability.

If se DRy(G) thenPF(, s) can be interpreted as tlwwerall (cumulativeveight of the immediate multiactions
from T, i.e. the sum of all their weights. The summation here is shece the weights can be seen as the rewards
which are collected [87]. In addition, this means that corent execution of the immediate multiactions has more
importance than that of every single one. The weights of idiate multiactions can also be interpreted as bonus
rewards of transitions [12]. The rewards are summed wheneidiate multiactions are executed in parallel, because
all of them participated in the execution. Since executibimmomediate multiactions takes no time, we prefer to
execute in a step as many parallel immediate multiactiopeasible to get more progress in behaviour. This aspect
will be used later, while evaluating performance on thedakthe EDTMCs of expressions. Note that this reasoning
is the same as that used to define the weight of synchronizeédtiate multiactions in the rulgy?2i.

Note that the definition dPF(, s) (as well as the definitions of other probability functionsieh we shall present)
is based on the enumeration of activities which is consitiangplicit.

Let T € Exeds). BesidesY, some other sets of activities may be ready for executiog imence, a kind of
conditioning or normalization is needed to calculate thecetion probability. Therobability to execute the set of
activitiesY in sis

PF(T,)

> PFES

ZcExeds)

PT(Y,) =

If se DRr(G) thenPT(Y, s) can be interpreted as tltenditionalprobability to execut&” in s calculated using
the conditional probability formula in the forf(Z|W) = P(PZ(Q,)W). The even consists in the exclusive execution
of T in s, henceP(Z) = PF(Y, s). The evenWV consists in the exclusive execution of any set (includirggempty
one)= € Exed€s) in s. Thus,W = U;Z;, whereVj, Z; are mutually exclusive events (in a probability sense, i.e.
intersection of these events is the empty event) Aind = Z. We haveP(W) = 3 P(Zj) = Yzcexeqs PF(E. 9),
because summation reflects the probability of the mutuattjusive event union. SincenW = z,n(V;Z;) = Z = Z,
we haveP(Z|W) = % = %. PF(T, s) can also be seen as thetentialprobability to execut&' in s, since
we havePF(T,s) = PT(T, s) only whenall sets (including the empty one) consisting of the executstalehastic
multiactions can be executed & In this case, all the mentioned stochastic multiactiomstimexecuted in parallel
in sand we havezcgyeqs) PF(E,) = 1, since this sum collects the productsafifcombinations of the probability

parts of the stochastic multiactions and the negationsesfdlparts. But in general, for example, for two stochastic

15

multiactions &, p) and 3, y) executable irs, it may happen that they cannot be executesltimgether, in parallel, i.e.
0, {(a,)}, {(8, x)} € Exeqs), but{(a, p), (B, x)} ¢ Execs). Note that fors € DRt (G) we havePT(0, s) € (0; 1], hence,
there is a non-zero probability to stay in the statd the next time moment, and the residence timgimat least 1
discrete time unit.

If s € DRy(G) thenPT(Y, s) can be interpreted as the weight of the set of immediateiactibnsY which is
ready for execution irs normalizedy the weights ofll the sets executable & This approach is analogous to that
used in the EMPA definition of the probabilities of immediaftgtions executable from the same process state [14]
(inspired by way in which the probabilities of conflicting inediate transitions in GSPNs are calculated [6]). The
only difference is that we have a step semantics and, for every set@dimte multiactions executed in parallel, we
use its cumulative weight. To get the analogy with EMPA pesi®j interleaving semantics, we should interpret the
weights of immediate actions of EMPA as the cumulative wisigtfi the sets of immediate multiactions of dtsiPBC.

The advantage of our two-stage approach to definition of tbbability to execute a set of activities is that the
resulting probability formuld@T (Y, s) is valid both for (sets of) stochastic and immediate matians. It allows one
to unify the notation used later while constructing the atienal semantics and analyzing performance.

Note that the sum of outgoing probabilities for the expmssibelonging to the derivations & is equal to 1.
More formally,Vs € DR(G), Yvecexeqsy PT(T,S) = 1. This, obviously, follows from the definition &?T((, s), and
guarantees that it always defines a probability distritsutio

Theprobability to move from s t8 by executing any set of activitiiss

PM(s 3 = Z PT(Y, 9).
(T AHes, IHeE HSA)
The summation in the definition above reflects the probagbdit the mutually exclusive event union, since
ZITBHe& Fes 1) PT(Y,9) = m -ZITBHe& s 1) PF(T, s), where for eacly’, PF(, s) is the prob-
ability of the exclusive execution of in s. Note that/s € DR(G), > PM(s, 8 =

% %

(§3Hes, AAES 37, HSA)

PT(T, S) = ZTeExec(s) PT(T, S) =1

{§FHes, IAes 3T, HSA) “r[EHes, IHE HSA)

Example 3.5. Let E = ({a}, p)[]({a}, x), wherep, y € (0;1). DR(E) consists of the equivalence classgs=sS[E]~
and $ = [E].. We have DR(E) = {s1, S}. The execution probabilities are calculated as follows\cBIE xets;) =
{0.{({a}, p)}. {(fa}, X)}}, we get PR{(fa}.p)}.s1) = p(1 - x), PF({({al.x)}. s1) = x(1 - p) and PHO,s) = (1 -
P)(L = x). ThenXzcexeqs) PFE s1) = p(1—x) +x(1-p) + (1 - p)(1 - x) = 1 - px. Thus, PT{({ah o)} 1) =

A0, PT((la)). 52) = 452 and PT(0, s1) = PM(ss, 1) = S48, Further, Exets,) = (0}, hence,
Y zeexeds,) PF(E, &) = PF(0, 2) = 1 and PT(0, ;) = PM(s,, SQ) = 7 = 1. Finally, PM(sy, sz) PT({({a},0)}, 51) +
PT({({alx)}, S1) = p(ipj(() +)(l(:))/;) p+1)(_ p?)(

Let E = ({a},f)[({a},bm), Where Im € R.o. DR(E’) consists of the equivalence classés=s [E’]. and
s, = [E']~. We have DIR(E) = {s,} and DR/(E’) = {s;}. The execution probabilities are calculated as fol-

lows. Since Exdg)) = al, i}, {({a} hm) we get PI{(0k 3'1) = | and PF((B}, s) = m. Then
Z_EExqu) PF(E,s) = | + m Thus, PT{({a h|) s) = I+m and PT({({a}, im)}. S7) = I+m Further, Exe¢s)) =

hence, Z_EEXQQS,Z) PF(E, s’.z) = PF(0, s’.z) 1 and PT(0,s,) = PM(s,.s) = % = 1. Finally, PM(s;, s’.z) =
PT({({a), b)), s)) + PT(({@), b)), §) = i + 1o = L.

Definition 3.7. Let G be a dynamic expression. Tiflabeled probabilistic) transition systewf G is a quadruple
TS(G) = (Se. Le, T, S), where

e the set ofstatesis Sg = DR(G);
e the set ofabelsis Lg = 257 x (0; 1];
o the set oftransitionsis 7 = {(s (7, PT(T,9),9 | S5 DRG), IHes IH e § H 5 A):

e theinitial stateis sg = [G] .

16

The definition ofT S(G) is correct, i.e. for every state, the sum of the probabdinf all the transitions starting
fromitis 1. This is guaranteed by the note after the definibbPT(r, s). Thus, we have definedgenerativenodel
of probabilistic processes [40]. The reason is that the sthreqprobabilities of the transitions with all possible ééd
should be equal to 1, not only of those with the same labeltqmumeration of activities they include) as in the
reactivemodels, and we do not have a nested probabilistic choicethg siratifiedmodels.

The transition syster S(G) associated with a dynamic expressi®rdescribes all the steps (concurrent execu-
tions) that occur at discrete time moments with some (oep}gtrobability and consist of sets of activities. Everypste
consisting of stochastic multiactions or the empty step (ihat consisting of the empty set of activities) occurs in-
stantly after one discrete time unit delay. Each step ctingisfimmediate multiactions occurs instantly withouyan
delay. The step can change the current state. The statdseatuctural equivalence classes of dynamic expressions
obtained by application of action rules starting from thpressions belonging t&] .. A transition §, (Y, P), 9 € T¢

. . T o .. - ~ . .
will be written ass —¢ §. It is interpreted as follows: the probability to charg® §as a result of executiny is P.
Note that for tangible state¥; can be the empty set, and its execution does not change trentatate (i.e. the

equivalence class), since we have a loop trans'ﬂ;iewmp s from a tangible stats to itself. This corresponds to the
application of the empty loop rule to expressions from th&edence class. We have to keep track of such executions,
calledempty loopsbecause they have non-zero probabilities. This folloasifthe definition oPF(0, s) and the fact
that multiaction probabilities cannot be equal to 1 as thelpig to the interval (0; 1). For vanishing statésannot
be the empty set, since we must execute some immediate atialtia from them at the current moment.

The step probabilities belong to the interval (0; 1], beirig the case when we cannot leave a tangible stated

the only transition leaving it is the empty loop ogse»1 s, or if there is just a single transition from a vanishing stat
to any other one.

We Writesl Sif AP, SI)p Sands — §if AT, SI) S.
The first equivalence we are going to introduce is isomomhigich is a coincidence of systems up to renaming
of their components or states.

Definition 3.8. Let TS(G) = (Sg, Le, 76, Ss) andT S(G') = (Se', Le» Te, So) be the transition systems of dynamic
expression& andG’, respectively. A mapping : Sg — Sg is anisomorphisnbetweenT S(G) andT S(G’), denoted
byB: TS(G) = TS(G), if

1. Bis a bijection such tha(ss) =

2. Vs &€ Sg, VT, S5p & & B(S) Sp B
Two transition systems S(G) andT S(G’) areisomorphic denoted byl S(G) ~ T S(G'), if 38 : TS(G) = TS(G).

Transition systems of static expressions can be definedlasfoeE € RegS tatE xpriet TS(E) = T S(E).
Definition 3.9. Two dynamic expressions andG’ are equivalent with respect to transition systerdgnoted by
G =G, if TS(G) =~ TS(G).

Example 3.6. Consider the expressidtop = ({g}, %) rs g specifying the special process that is only able to perform
empty loops with probabilityt and never terminates. We could actually use any arbitratyoacfrom A and any
probability belonging to the intervgD; 1)in the definition oStop. Note thatStop is analogous to the one used in the
examples of [63]. Then, far, y,0,¢ € (0; L)and Lm e R, let

= [({a}, p) * (({b}, x); (((tch, t); ({d}, ODO(({E}, m); ({T1, ¢)))) * Stop].

DR(E) consists of the equivalence classes

= [[({al, p) = (b, x); ((({ch, B); ({dl), O)D(({e), bd; (T, ¢)))) * Stop]] -,
= [[({a, p) = (b, x); (((tch, b); ({dl}, O)O(({e), td; (T, ¢)))) = Stop]] -,
s3 = [[({a}, p) = (({b}, x); (e},); (d}, (L€} m); ({1, ¢)))) * Stop]] ~,
s = [[(fa), p) * (b}, x); (e}, b); (dy,)D(({€}, bim); (11, 9)))) * Stop]]-,
s = [[(fa),) * (b}, x); ((((c}, b); (td),)((fe), bm); ([T}, 6)))) * Stop]] .

17

Figure 2: The transition system &ffor E = [({a}, p) = (({b}. x); (({c}, &); ({d},) I(({e}, bm); (T}, 4)))) = Stop].

We have DR(E) = {s1, S, S4, S5} and DR/(E) = {sg}.

In Figure 2, the transition system TB) is presented. The tangible states are depicted in ovalslamddnishing
ones are depicted in boxes. For simplicity of the graphieplresentation, the singleton sets of activities are writte
without outer braces.

4. Denotational semantics

In this section, we construct the denotational semanti¢srms of a subclass of labeled discrete time stochastic
and immediate PNs (LDTSIPNS), called discrete time sta@ghasd immediate Petri boxes (dtsi-boxes).

4.1. Labeled DTSIPNs

Let us introduce a class of labeled discrete time stochasticimmediate Petri nets (LDTSIPNSs), a subclass of
DTSPNs [76, 77] (we do not allow the transition probabistte be equal to 1) extended with transition labeling and
immediate transitions. LDTSIPNs resemble in part disctiete deterministic and stochastic PNs (DTDSPNSs) [99],
as well as discrete deterministic and stochastic PNs (DB3F8]. DTDSPNs and DDSPNs are the extensions of
DTSPNs with deterministic transitions (having fixed delhgittcan be zero), inhibitor arcs, priorities and guards.
In addition, while stochastic transitions of DTDSPNSs, ltkese of DTSPNs, have geometrically distributed delays,
stochastic transitions of DDSPNs have discrete time phizsébtdited delays. At the same time, LDTSIPNs are not
subsumed by DTDSPNs or DDSPNSs, since LDTSIPNs have a stepngiesiwhile DTDSPNs and DDSPNs have
interleaving one. LDTSIPNs are somewhat similar to labeleibhted DTSPNs (LWDTSPNSs) from [29], but in
LWDTSPNSs there are no immediate transitions, all (stodtjastnsitions have weights, the transition probab#itie
may be equal to 1 and only maximal fireable subsets of the edatansitions are fired.

Stochastic preemptive time Petri nets (SpTPNs) [24] isereis time model with a maximal step semantics, where
both time ticks and instantaneous parallel firings of maxitrasition sets are possible, but the transition steps in
LDTSIPNSs are not obliged to be maximal. The transition deliyspTPNs are governed by static general discrete
distributions, associated with the transitions, whilett@sitions of LDTSIPNs are only associated with probbsi
used later to calculate the step probabilities after ong(froim tangible markings) or zero (from vanishing markings
delay. Further, LDTSIPNSs have just geometrically distr#alior deterministic zero delays in the markings. Moreover,
the discrete time tick and concurrent transition firing asated in sSpTPNs as féikrent events while firing every
(possibly empty) set of stochastic transitions in LDTSIRNguires one unit time delay. spTPNs are essentially
a modification and extension of unlabeled LWDTSPNSs with toldal facilities, such as inhibitor arcs, priorities,
resources, preemptions, schedulers etc. However, the girisuch an expressiveness of spTPNs is that the model is
rather intricate and dicult to analyze.

Note also that guards in DTDSPNs and DDSPNSs, inhibitor ardgpaiorities in DTDSPNs, DDSPNs and spTPNs,
as well as the maximal step semantics of LWDTSPNs and spTRiks all these models Turing powerful, resulting
in undecidability of many important behavioural propestie

18

First, we present a formal definition of LDTSIPNSs.

Definition 4.1. A labeled discrete time stochastic and immediate Petri nBT&IPN)is a tuple
N = (Pn, Tn, Wi, Qn, £y, M), where

e Py andTy = Tsy W Tiy are finite sets oplacesandstochastic and immediate transitigmespectively, such that
PyUTN #0andPyNTy =0;

Wy - (Pn X Tn) U (T X Py) — Nis a function providing theveights of arcdbetween places and transitions;

Qy is thetransition probability and weighfiunction such that

— Qnlrs - Tsy — (0; 1) (it associates stochastic transitions with prolitids);
— Onlmy @ Tin = Roo (it associates immediate transitions with weights);

Ln : Ty — Lis thetransition labelingfunction assigning multiactions to transitions;

e My € Nfif1 is theinitial marking.

The graphical representation of LDTSIPNs is like that fanstard labeled PNs, but with probabilities or weights
written near the corresponding transitions. Square bokasrmnal thickness depict stochastic transitions, andahos
with thick borders represent immediate transitions. Indase the probabilities or the weights are not given in the
picture, they are considered to be of no importance in theesponding examples, such as those used to describe the
stationary behaviour. The weights of arcs are depicted thiéim. The names of places and transitions are depicted
near them when needed.

Now we consider the semantics of LDTSIPNSs.

LetN be an LDTSIPNandle Ty, U € Nm. Theprecondition"t and thepostconditiont of t are the multisets of
places defined astj(p) = Win(p,t) and ¢*)(p) = Wi(t, p). Theprecondition*U and thepostcondition U of U are
the multisets of places definedds = >, *tandU*® = Y, t*. Note that forU = we have’d = 0 = 0°.

LetN be an LDTSIPN and, M € N7 .

Immediate transitions have a priority over stochastic othess, immediate transitions always fire first, if they can.
Suppose that all stochastic transitions have priority Oa@hoinmediate ones have priority 1. A transitib Ty is

enabledn M if °t € M and one of the following holds:

1. teTiyor
2.YueTn, 'UCM = ueTx.

In other words, a transition is enabled in a marking if it hasiegh tokens in its input places (i.e. in the places from
its precondition) and it is immediate one, otherwise, whdg stochastic one, there exists no immediate transition
with enough tokens in its input places. LEhaM) be the set ofll transitions enabled in M By definition, it
follows thatEnaM) C Tiy or EnaM) C Tsy. A set of transitiondJ € EnaM) is enabledin a markingM, if
*U ¢ M. Firings of transitions are atomic operations, and tréarstmay fire concurrently in steps. We assume that
all transitions participating in a step shouldfdr, hence, only the sets (not multisets) of transitions nray fihus,
we do not allow self-concurrency, i.e. firing of transitiangarallel to themselves. This restriction is introduced t
avoid some technical fliculties while calculating probabilities for multisets ofnsitions as we shall see after the
following formal definitions. Moreover, we do not need to simer self-concurrency, since denotational semantics of
expressions will be defined via dtsi-boxes which are safe 8&IPNs (hence, no self-concurrency is possible).

The markingM is tangible denoted bytang(M), if Ena(M) C Tsy, in particular, ifEnaM) = 0. Otherwise, the
markingM is vanishing denoted byanisi{M), and in this cas&naM) ¢ Tiy andEnaM) # 0. If tang(M) then a
stochastic transitioh e Ena(M) fires with probabilityQy(t) when no other stochastic transitions conflicting with it
are enabled.

LetU ¢ EnaM), U # 0 and*U C M. Theprobability that the set of stochastic transitions U is rgddr firing
in M or theweight of the set of immediate transitions U which is readyifing in M is

19

[Ton®- [] @-onw). tangMm);
PF(U, M) — teU ueEna(M)\U
Z On(), vanist(M).
teU
In the casd&J = () andtang(M) we define

[] @-on), Enam)=o;
PF(Q), M) = ueEna(M)
1, EnaM) = 0.
LetU ¢ EnaM), U # 0 and*U C M or U = 0 andtang(M). BesidedJ, some other sets of transitions may be
ready for firing inM, hence, a kind of conditioning or normalization is needeckticulate the firing probability. The

concurrent firing of the transitions frobh changes the markinigl to M = M —*U +U*, denoted byM gp M, where
P = PT(U, M) is theprobability that the set of transitions U fires in tefined as

PF(U, M)

PF(V, M)
{VI*VCM}

Note that in the casel = 0 andtang(M) we haveM = M.

The advantage of our two-stage approach to definition of tbbability that a set of transitions fires is that the
resulting probability formul@T(U, M) is valid both for (sets of) stochastic and immediate trémss. It allows one
to unify the notation used later while constructing the dational semantics and analyzing performance.

Note that for all markings of an LDTSIPN, the sum of outgoing probabilities is equal to 1. More foryal
YM e prif], 2yurucwmy PT(U, M) = 1. This obviously follows from the definition &*T(U, M) and guarantees that it
defines a probability distribution.

We writeM 5 Mif 3P, M %, M andM — M if 3U, M 5 M.

The probability to move from M td/ by firing any set of transitionis

PT(U,M) =

PM(M,M)= > PT(U,M).
UMW

SincePM(M, M) is the probability forany (including the empty one) transition set to change marhihtp M,

we use summation in the definition. Note tRafl € prif], Zivim—i PM(M, M) = PHVIVIRY unwlim PT(U, M) =
Zuruemy PT(U, M) = 1.

Definition 4.2. Let N be an LDTSIPN. Theeachability sebf N, denoted byRS(N), is the minimal set of markings
such that

e My € RS(N),
e if M e RS(N)andM — M thenM € RS(N).

Definition 4.3. Let N be an LDTSIPN. Theeachability graphof N is a (labeled probabilistic) transition system
RG(N) = (Sn, Ln, 75 SN), Where

o the set ofstatesis Sy = RS(N);

e the set ofabelsis Ly = 2™ x (0; 1];

o the set otransitionsis Ty = {(M, (U,?), M) | M, M € RS(N), M 5, M};
e theinitial stateis sy = My.

The set ofall tangible markings from R&) is denoted byRSr(N), and the set oéll vanishing markings from
RS(N) is denoted byRSy(N). Obviously,RS(N) = RSr(N) & RSy (N).

20

4.2. Algebra of dtsi-boxes
Now we introduce discrete time stochastic and immediate Pexes and the algebraic operations to define a net

representation of dtsiPBC expressions.
Definition 4.4. A discrete time stochastic and immediate Petri box (dtsi}ia tupleN = (Pn, Tn, Wy, An), Where
e Py andTy are finite sets oplacesandtransitions respectively, such th&ty U Ty # 0 andPy N Ty = 0;

e Wy : (Pn X Tn) U (Thn X Py) — Nis a function providing theveights of archbetween places and transitions;

e Ay is theplace and transition labelinéunction such that

— Anlp, : Pn — {&,i,x} (it specifiesentry, internalandexit places, respectively);
— Anlty : Tn = {o | 0 € 257£ x ST L} (it associates transitions with thelabeling relationson activities).

Moreover,Vt € Ty, °t # 0 # t*. In addition, for the set oéntryplaces ofN, defined asN = {p € Py | An(p) = e},
and for the set oéxit places ofN, defined adN° = {p € Py | An(p) = X}, the following condition holds®N # 0 #
NO, .(ON) — @ — (NO)..

A dtsi-box isplain if Yt € Tn, I(a,«) € STL, An(t) = 0e.x), Whereoe g = {(0, (@, x))} is aconstant relabeling
that can be identified with the activity(«). A marked plain dtsi-bojs a pair (\, My), whereN is a plain dtsi-box
andMy € Nfif1 is its marking. We shall use the following notatioN: = (N,°N) andN = (N, N°). Note that a
marked plain dtsi-boxRy, Tn, Wi, An, M) could be interpreted as the LDTSIPR\, Tn, Wi, Qn, LN, My), Where
functionsQy and Ly are defined as followsyt € Ty Qn(t) = « if k € (0;1); orQn(t) = 1'if « =, | € R.o; and
Ln(t) = @, whereAn(t) = 0@ Behaviour of the marked dtsi-boxes follows from the firinderof LDTSIPNs.

A plain dtsi-boxN is n-boundedn € N) if N is so, i.e.YM € RS(N), Vp € Py, M(p) < n, and it issafeif it is
1-bounded. A plain dtsi-boN is cleanif YM € RS(N), °NC M = M =°NandN°cM = M = N°, i.e. if there
are tokens in all its entry (exit) places then no other pléaa® tokens.

The structure of the plain dtsi-box corresponding to a st@tipression is constructed like in PBC [17, 16], i.e.
we use simultaneous refinement and relabeling meta-opéregiorefinement) in addition to thaperator dtsi-boxes
corresponding to the algebraic operations of dtsiPBC aatlifing transformational transition relabelings. Operat
dtsi-boxes specify-ary functions from plain dtsi-boxes to plain dtsi-boxe®(lave 1< n < 3 in dtsiPBC). Thus,
as we shall see in Theorem 4.1, the resulting plain dtsi-baxe safe and clean. In the definition of the denotational
semantics, we shall apply standard constructions usedd@r. Bet® denoteoperator boxandu denotetransition

namefrom PBC setting.
The relabeling relations ¢ 257£ x S7.£ are defined as follows:

e oid = {{(a, K)}, (@, k) | (@, k) € ST L} is theidentity relabelingkeeping the interface as it is;

O(ex) = (0, (a, x))} is theconstant relabelinghat can be identified witho «) € S7.L itself;

orn = {({(@. K} (@), k) | (. &) € STLY;
osa = {({(e. 0}, (@.K)) | (@, k) € STL, a, & ¢ a};

Osy a IS the least relabeling relation containing such that if I, (@, «)), (E, (8, 1)) € 0sy a, a € @, &€ Bthen

- (Y+E (@®af. k- 1) €0sya if k, 1€ (0;1);
- (T+E, (@®afB.b+m) €0syaif k =k, 1 =tm, |, me R.o.

The plain dtsi-boxedl), Ne.y), Wherep € (0;1) andl € R.o, and operator dtsi-boxes are presented in Figure

3. The label of internal places is usually omitted.
In the case of the iteration, a decision that we must takeeiséiection of the operator box that we shall use for it,

since we have two proposals in plain PBC for that purpose [@6F of them provides us with a safe version with six
transitions in the operator box, but there is also a simp@esion, which has only three transitions. In general, in PBC

21

@rs a @sy a @; @[**]
! !
] ‘U[f] ‘Qrsa‘ursa‘gsya‘usya‘ de ‘u} ‘ Qid ‘u[l**]

i l
© @ @
@ ‘ QI “2 ‘ QId ‘“f’**]

g wle] e © O

Figure 3: The plain and operator dtsi-boxes.

with the latter version we may generate 2-bounded nets,hwidy occurs when a parallel behavior appears at the
highest level of the body of the iteration. Neverthelesgiun case, and due to the syntactical restriction introduced
for regular terms, this particular situation cannot ocsorthat the net obtained will be always safe.

To construct the semantic function that associates a plairbdx with every static expression of dtsiPBC, we
introduce theenumeratiorfunctionEnu: Ty — Num which associates the numberings with transitions of anplai
dtsi-boxN in accordance with those of activities. In the case of symeization, the function associates with the
resulting new transition the concatenation of the paresitleel numberings of the transitions it comes from.

Now we define the enumeration functi@mufor every operator of dtsiPBC. L&0Xxsi(E) = (Pe, Te, We, Ag)
be the plain dtsi-box corresponding to a static expressiandEnu: : Te — Numbe the enumeration function for
Boxyisi(E). We shall use the analogous notation for static expres$iandK.

e Boxsi((@, «).) = Nie.,- Since a single transitioip corresponds to the activityr(«), € ST L, their numberings
coincide:

Enut) =

e Boxsi(E o F) = O,(Boxisi(E), Boxisi(F)), o € {;,[].ll}. Since we do not introduce new transitions, we
preserve the initial numbering:

| Enuwe(t), teTeg;
Em(t)_{ Enu=(t), teTg.

e Boxis(E[f]) = Orfj(Boxisi(E)). Since we only replace the labels of some multiactions Hjjection, we
preserve the initial numbering:

Enut) = Enwe(t), t € Te.

e Boxsi(E rs a) = O a(Boxgisi(E)). Since we remove all transitions labeled with multiaoi@ontaininga or
4, this does not change the numbering of the remaining tiansit

Enut) = Enue(t), te Te, aa¢ a, Ae(t) = 0@0-

22

o Boxisi(E sy @) = Osy a(BoXisi(E)). Note thatVv,w € Tg, such thatAg(v) = 0@, Ae(W) = 0@,y and
a € a, a < g, the new transitiort resulting from synchronization afandw has the label(t) = o@e.s.1) if
t is a stochastic transition; GX(t) = Q(e,s.4..) If TiS an immediate one(= b, A = b, |,m € R.o); and the
numberingenut) = (Enu=(v))(Enue(w)). Thus, the enumeration function is defined as

Enut) = Enus(t), te Tg;
u) = (Enue(V))(Enug(w)), tresults from synchronization efandw.

According to the definition odsy a, the synchronization is only possible when all the traosgiin the set are
stochastic or when all of them are immediate. If we synclm®itie same set of transitions irftdrent orders,
we obtain several resulting transitions with the same |aioel probability or weight, but with the @ierent
numberings having the same content. Then, we only consisi@igée transition from the resulting ones in the
plain dtsi-box to avoid introducing redundant transitions

For example, if the transitionsandu are generated by synchronizimgandw in different orders, we have
A(t) = 0(eeapr-1) = A(U) for stochastic transitions &X(t) = oe.sh.) = A(U) for immediate ones(= b, 1 =

bm, 1, M € Ryg), butEnut) = (Enue(v))(Enue(w)) # (Enue(wW))(Enue(v)) = Enu(u), whereasCont(Enu(t)) =
Conf{Enu(v)) U ContEnuw)) = ContEnuu)). Then only one transition(or, symmetricallyy) will appear in
Boxutsi(E sy a).

o BoxXsi([E * F * K]) = Or..](Boxisi(E), Boxtsi(F), Boxisi(K)). Since we do not introduce new transitions, we
preserve the initial numbering:

Enu(t), teTg;
Enut) ={ Enu(t), teTE;
Enu(t), teTk.

Now we can formally define the denotational semantics as ahwrphism.

Definition 4.5. Let (o, «) € SIL, a € ActandE, F,K € RegS tatExprThedenotational semantiosf dtsiPBC is a
mappingBoxysi from RegS tatE xpnto the domain of plain dtsi-boxes defined as follows:

1. Boxsi((a@, €).) = N3

2. Boxsi(E o F) = ©,(Boxiisi(E), Boxitsi(F)), © € {;. 1. II};

3. Boxusi(E[f]) = Oy (Boxitsi(E));

4. Boxysi(E o @) = O.a(Boxitsi(E)). o € {rs,sy};

5. Boxysi([E * F * K]) = 0[..1(Boxisi(E), Boxitsi(F), Boxysi(K)).

The dtsi-boxes of dynamic expressions can be defined askelE € RegS tatExpriet BOthsi(E) = BoX4tsi(E)
andBoxsi(E) = Boxutsi(E).

Note that this definition is compositional in the sense that,any arbitrary dynamic expression, we may de-
compose it in some inner dynamic and static expressionsyliarth we may apply the definition, thus obtaining the
corresponding plain dtsi-boxes, which can be joined adogrtb the term structure (by definition &oxys), the
resulting plain box being marked in the places that were ethik the argument nets.

Theorem 4.1. For any static expression,EBoxys(E) is safe and clean.

Proor. The structure of the net is obtained as in PBC [17, 16], coimbiboth refinement and relabeling. Conse-
guently, the dtsi-boxes thus obtained will be safe and clean O

Let ~ denote isomorphism between transition systems and re#ithgbaphs that binds their initial states. Note

that the names of transitions of the dtsi-box correspontiregstatic expression could be identified with the enumer-
ated activities of the latter.

23

Figure 4: The marked dtsi-bdN = Boxusi(E) for E = [({a), p) = (b}, x); (({c}, &); (td), 6))I(({€), bm); (1 f}, #)))) * Stop] and its reachability graph.

Theorem 4.2. For any static expression E,

TS(E) ~ RG(Boxs(E)).

Proor. As for the qualitative (functional) behaviour, we have siaene isomorphism as in PBC [17, 16].

The quantitative behaviour is the same by the following oeas First, the activities of an expression have the
probability or weight parts coinciding with the probabég or weights of the transitions belonging to the correspon
ing dtsi-box. Second, we use analogous probability or wefighctions to construct the corresponding transition
systems and reachability graphs. O

Example 4.1. Let E be from Example 3.6. In Figure 4, the marked dtsi-box Boxys(E) and its reachability graph
RG(N) are presented. It is easy to see that(Epand RGEN) are isomorphic.

The following example demonstrates that without the syticaestriction on regularity of expressions the corre-
sponding marked dtsi-boxes may be not safe.

Example 4.2. Let E = [(({a}, 2) * (({b}, 3)lI({c}, 3)) = ({d}, 3)]. In Figure 5, the marked dtsi-box N BoXysi(E)

and its reachability graph R@®N) are presented. In the markin@, 1, 1, 2, 0, 0) there are2 tokens in the place 4
Symmetrically, in the markin, 1, 1, 0, 2, 0) there are2 tokens in the placegp Thus, allowing concurrency in the
second argument of iteration in the expressBrcan lead to non-safeness of the corresponding markedodisi-
N, though, it is2-bounded in the worst case [16]. The origin of the problemhigttN has a self-loop with two
subnets which can function independently. Therefore, we Hacided to consider regular expressions only, since the
alternative, which is a safe version of the iteration operawith six arguments in the corresponding dtsi-box, like
that from [16], is rather cumbersome and has too intricatérPeet interpretation. Our motivation was to keep the
algebraic and Petri net specifications as simple as possible

24

Figure 5: The marked dtsi-baX = Boxysi(E) for E = [(({a),) * (({b}, 3)lI({c}, 1)) = ({d}, $)] and its reachability graph.

5. Performance evaluation

In this section we demonstrate how Markov chains corresipgrtd the expressions and dtsi-boxes can be con-
structed and then used for performance evaluation.

5.1. Analysis of the underlying SMC

For a dynamic expressidb, a discrete random variable is associated with every tégthtes € DRr(G). The
variable captures a residence time in the state. One capiiatetaying in a state at the next discrete time moment as
a failure and leaving it as a success of some trial series.dasy to see that the random variables are geometrically
distributed with the parameterIP M(s, s), since the probability to stay imfor k— 1 time moments and leave it at the
momenk > 1isPM(s, 5)1(1-PM(s, 9)) (the residence time Isin this case, and this formula defines the probability
mass function (PMF) of residence timesh Hence, the probability distribution function (PDF) obigence time in
sis 1- PM(s, 91 (k > 1) (the probability that the residence timesiis less thark). The mean value formula for the
geometrical distribution allows us to calculate the aversgjourn time irs as Clearly, the average sojourn
time in a vanishing state is zero. Le€ DR(G).

Theaverage sojourn time in the statéss

1
1-PM(s,9) "

—+i—. se DRy(G);
_] TPMGs '
SJs) { 0, se DRy(G).

Theaverage sojourn time vectarf G, denoted by5J, has the element8Js), s< DR(G).
Thesojourn time variance in the statés

M9 s e DRr(G);
— 1-PM(s,9))?
VAR®) ‘{ 0. P S e DR(G).

Thesojourn time variance vectaf G, denoted byAR has the element¢ARs), s< DR(G).

To evaluate performance of the system specified by a dynatpiessiorG, we should investigate the stochastic
process associated with it. The process is the underlyinG 8\, 59], denoted bMQG), which can be analyzed
by extracting from it the embedded (absorbing) discrete tMarkov chain (EDTMC) corresponding €@ denoted
by EDTMC(G). The construction of the latter is analogous to that aplpilethe context of generalized stochastic
PNs (GSPNs) in [71, 5, 6], and also in the framework of digctimhe deterministic and stochastic PNs (DTDSPNS)

25

in [99], as well as within discrete deterministic and statitaPNs (DDSPNs) [98]JEDTMC(G) only describes the
state changes @M{G) while ignoring its time characteristics. Thus, to constiihe EDTMC, we should abstract
from all time aspects of behaviour of the SMC, i.e. from thpsm time in its states. The (local) sojourn time in
every state of the EDTMC is equal to one discrete time unis Well-known that every SMC is fully described by the
EDTMC and the state sojourn time distributions (the latar be specified by the vector of PDFs of residence time
in the states) [45].

Let G be a dynamic expression agds € DR(G). The transition syster S(G) can have self-loops going from a
state to itself which have a non-zero probability. Obviguie current state remains unchanged in this case.
Let s — s. Theprobability to stay in s due to &k > 1) self-loopsis

PM(s, s)¥.
Lets — Sands # & Theprobability to move from s t8 by executing any set of activities after possible self$i®

. PM(s 3 Yo PM(s 9k = M6 s 5
PM(s 3 = - T-PM(s$) b =SI(9PM(s §), wh
(59 { PM(s, §), otherwise; USPM(s §), where
; S —_— S'
= 1-PM(ss)’ ’
SUS) { 1, otherwise;

HereSL(s) is theself-loops abstraction factor in the stateTheself-loops abstraction vectaf G, denoted bysL,
has the elementSL(s), s € DR(G). The valuek = 0 in the summation above corresponds to the case when no self-

loops occur. Note thats € DRr(G), SK(s) = ﬁ(&s) = SJ9), hencey¥s € DRy (G), PM*(s, 8 = SJs)PM(s, 9),

since we always have the empty loop (which is a self-ltmpm) s from every tangible state Empty loops are not
possible from vanishing states, hengs, € DRy(G), PM*(s,8) = 15’2”,\(,'??5), when there are non-empty self-loops
(produced by iteration) frors, or PM*(s, §) = PM(s, §), when there are no self-loops frosn

Note that after abstraction from the probabilities of tiiass which do not change the states, the remaining
transition probabilities are normalized. In order to cdtel transition probabilitie®T(T, s), we had to normalize
PF(T,s). Then, to obtain transition probabilities of the statewaoging step$ M*(s, §), we now have to normalize
PM(s, 3). Thus, we have a two-stage normalization as a result.

Notice thatPM*(s, §) defines a probability distribution, sinéts € DR(G), such thatsis not a terminal state, i.e.
there are transitions tofikerent states after possible self-loops from it, we have
Yiasos sty PM(s,9) = ﬁ(ﬁ) Yiasos sty PM(s 8) = ﬁ(w(l - PM(s, 9) = 1.

We decided to consider self-loops followed only by a stdtenging step just for convenience. Alternatively,
we could take a state-changing step followed by self-loops state-changing step preceded and followed by self-
loops. In all these three cases our sequence beglasdends with the loops which do not change states. At the
same time, the overall probabilities of the evolutions cifed since self-loops have positive probabilities. To avoid
inconsistency of definitions and too complex descriptioa censider sequences ending with a state-changing step. It
resembles in some sense a construction of branching biioni[39] taking self-loops instead of silent transitions

Definition 5.1. Let G be a dynamic expression. Teenbedded (absorbing) discrete time Markov chain (EDTMIC)
G, denoted b)EDTMC(G), has the state spa¥R(G), the initial state §]. and the transitions —»» §, if s — Sand
s+ § whereP = PM‘(s, 3).

The underlying SMCof G, denoted bySMQG), has the EDTMCEDTMC(G) and the sojourn time in every
se DRy (G) is geometrically distributed with the parameter PM(s, s) while the sojourn time in everge DRy (G)
is equal to zero.

EDTMCs and underlying SMCs of static expressions can beafis well. FOE € RegS tatE xpriet
EDTMC(E) = EDTMCQ(E) andSMQE) = SMQE).

Let G be a dynamic expression. The eleméﬁi‘gs(l <i,j < n=|DR(G)|) of the (one-step) transition probability
matrix (TPM)P* for EDTMC(G) are defined as

P = PM*(s,sj), S — S, S#S;
b1 o, otherwise

26

The transienti-step k € N) PMF y*[K] = (¥*[K](S), - - -, ¥*[K](s)) for EDTMC(G) is calculated as

Y[k = ¢ [01(P"),
wherey*[0] = (¥*[0](s1), . . ., ¥*[0](sn)) is the initial PMF defined as

1, s =[Cls;
0, otherwise

V0)(s) = {

Note also that/*[k + 1] = y*[K]P* (k € N).
The steady-state PMF* = (y*(s1), . . ., ¥*(s)) for EDTMC(G) is a solution of the equation system

yr(P-1)=0
{ l//*lT =1 >
wherel is the identity matrix of orden andO is a row vector of values 0 1 is that ofn values 1.

Note that the vectap* exists and is unique, EDTMC(G) is ergodic. TheleDTMC(G) has a single steady state,
and we have™ = limy_,. y*[K].

The steady-state PMF for the underlying semi-Markov cl&WQG) is calculated via multiplication of every
Yv*(s) (1 < i < n) by the average sojourn tinf&Xs) in the states, after which we normalize the resulting values.
Remember that for a vanishing state DRy (G) we haveSJs) = 0.

Thus, the steady-state PMi= (¢(s1), - . ., ¢(Sh)) for SMQG) is

n‘/’*(S)SXS) , s €DRr(G);
g(s) =1 D W (s)SIs)
j=1
O], S € DR\/(G)

Thus, to calculate, we apply abstraction from self-loops to g&tand theny*, followed by weighting bySJand
normalization EDTMC(G) has no self-loops, unlikEMJG), hence, the behaviour 8D TMC(G) stabilizes quicker
than that ofSMQG) (if each of them has a single steady state), siithas only zero elements at the main diagonal.

Example 5.1. Let E be from Example 3.6. In Figure 6, the underlying SMC @B)Gs presented. The average
sojourn times in the states of the underlying SMC are writtext to them in bold font.
The average sojourn time vectorbfis

The sojourn time variance vector Bfis

1-p 1—y 1-0 1-
VAR:(P ZX 29 ¢).

P X 2 7 ¢?
The TPM for EDTMGE) is

010 0 O
001 0 O
P=0 00 £ =&
010 0 O
010 0 O

The steady-state PMF for EDTME) is

Figure 6: The underlying SMC d for E = [({aJ, p) * (({b}, x); ((({c}. b); (i},))(({&), bm); (), 4)))) * Stop].

The steady-state PMF* weighted by SJ is

1 | m
(0’ @’O’ 30(1+m) 3p(l +m))°

It remains to normalize the steady-state weighted PMF biglitig it by the sum of its components

0ol + m) + y (ol + 6m)
3y0s(l + m)

lﬁ*SJT —

Thus, the steady-state PMF for SKE} is

1
= 0¢(1 + m) + x (¢l + 6m)

@ (0, 84(1 + m), O, y¢bl, x6m).

In the case E m andéd = ¢ we have

1

=—-(0,20,0 .
‘)0 2(X+0)(’) 7X’X)

Let G be a dynamic expression asd € DR(G), S,S ¢ DR(G). The following standargerformance indices
(measuresgan be calculated based on the steady-state £ldF SMQG) and the average sojourn time vec&rof
G [79, 32, 55].

Theaverage recurrence (return) time in the statéttsee number of discrete time units required for thisﬁ@.
Thefraction of residence time in the statéssy(s).

Thefraction of residence time in the set of state®iSheprobability of the event determined by a condition
that is true for all states from & > .5 ¢(9).

Therelative fraction of residence time in the set of states $ wspect to that irS is g%zg

Therate of leaving the stateis %.
Thesteady-state probability to perform a step with a set ofaligis = is 3 s.pre) ©(S) 2rizcr; PT(Y, 9).

The probability of the event determined by a reward function rte statess s prg) ©(9r(s), wherevs €
DR(G), 0<r(s) < 1.

28

010000

001000

Figure 7: The underlying SMC dfl = Boxysi(E) for E = [({a}, p) * (({b}, x); (({c}, b); ({d},))0(({e}, tim); ({}, #)))) * Stop].

Let N = (Pn, Tn, Wi, Qn, Ly, My) be a LDTSIPN andv, M e NPV, Then the average sojourn ting&(M),

the sojourn time variancéAR'M), the probabilities?M*(M, M), the transition relatiorM —» M, the EDTMC
EDTMC(N), the underlying SMGGMQN) and the steady-state PMF for it are defined like the cormedipg notions
for dynamic expressions.
As we have mentioned earlier, every marked plain dtsi-baid:be interpreted as the LDTSIPN. Therefore, we
can evaluate performance with the LDTSIPNs correspondimigsi-boxes and then transfer the results to the latter.
Let ~ denote isomorphism between SMCs that binds their initetest where two SMCs are isomorphic if their
EDTMCs are so and the sojourn times in the isomorphic stdtded=DTMCs are identically distributed.

Proposition 5.1. For any static expression E,
SMQE) ~ SMQBO0x;si(E))-

Proor. By Theorem 4.2 and definitions of underlying SMCs for dynaexpressions and LDTSIPNs taking into
account the following. First, for the associated SMCs, therage sojourn time in the states is the same, since it is
defined via the analogous probability functions. Seconel tithnsition probabilities of the associated SMCs are the
sums of those belonging to transition systems or reactabiaphs. O

Example 5.2. Let E be from Example 3.6. In Figure 7, the underlying SMC @N)@s presented. Clearly, SME)
and SM@N) are isomorphic. Thus, both the transient and steady-st&t&$for SMGEN) and SMGE) coincide.

5.2. Analysis of the DTMC

Let us consider an alternative solution method, studyimgDAMCs of expressions based on the state change
probabilitiesP M(s, §).

Definition 5.2. LetG be a dynamic expression. THiscrete time Markov chain (DTM®@Y G, denoted byp TMC(G),
has the state spa@R(G), the initial state ¢]. and the transitions —¢ §, where = PM(s, §).

DTMCs of static expressions can be defined as well. FFarReg$S tatE xpret DTMC(E) = DTMC(E).

One can see th&DTMC(G) is constructed fronDTMC(G) as follows. For each state BXTMC(G), we remove
a possible self-loop associated with it and then normalisefrobabilities of the remaining transitions from the
state. ThusEDTMC(G) and DTMC(G) differ only by existence of self-loops and magnitudes of the gindiies
of the remaining transitions. HendeDTMC(G) andDTMC(G) have the same communication classes of states and
EDTMC(G) is irreducible ff DTMC(G) is so. Since botiEDTMC(G) and DTMC(G) are finite, they are positive
recurrent. Thus, in case of irreducibility, each of them aasingle stationary PMF. Note thEDTMC(G) andor
DTMC(G) may be periodic, thus having a unique stationary distidimytbut no steady-state (limiting) one. For
example, it may happen thBDTMC(G) is periodic whileDTMC(G) is aperiodic due to self-loops associated with

29

some states of the latter. The stateSMJG) are classified usingDTMC(G), henceSMQG) is irreducible (positive
recurrent, aperiodicfi EDTMC(G) is so.

Let G be a dynamic expression. The elemefits(1 < i, j < n = |DR(G)|) of (one-step) transition probability
matrix (TPM)P for DTMC(G) are defined as

P = { PM(s,sj), s —S;
Y70, otherwise
The steady-state PMFfor DTMC(G) is defined like the corresponding notion 8DTMC(G).
Let us determine a relationship between steady-state PMBESTMC(G) andEDTMC(G). The following theorem
proposes the equation that relates the mentioned steatdyPSVIFs.
First, we introduce some helpful notation. For a veeter (vy, ..., V), let Diag(v) be a diagonal matrix of order
n with the element®iag;j(v) (1 <1, j < n) defined as

o v, =,
Diagij(v) = { 0, otherwise

Theorem 5.1. Let G be a dynamic expression and SL be its self-loops alistragector. Then the steady-state PMFs
W for DTMC(G) andy* for EDTMC(G) are related as followsYs € DR(G),
ERACS O

PIRACEC)

8DR(G)

() =

Proor. Let PSLbe a vector with the elements

_ | PM(s), s—s
PSU(s) = { 0, otherwise

By definition of PM*(s, §), we haveP* = Diag(SD(P — Diag(PSLD). Further,
Y (P*=1)=0andy"P" = y".
After replacement oP* by Diag(SL)(P — Diag(PSL) we obtain
y*Diag(Sh(P — Diag(PSD) = y* andy*Diag(S)P = y*(Diag(SLDiag(PSD +I).
Note thatvs € DR(G), we have

SUPM(s 9 +1= M9 4 g - L sos
S PS 1= 1-PM(s 5) 1-PM(s.9) . = SI(s).
L(s)PSI(s) + { SW(g)-0+1=1, otherwise; s

Hence,Diag(SUDiag(PSL + | = Diag(SL). Thus,

Y Diag(SLOP = y*Diag(SD.
Then, forv = y*Diag(SL), we have
vP =vandv(P-1)=0.

In order to calculatey on the basis of, we must normalize it by dividing its elements by their suince we
should havey1" = 1 as a result:

1 1 -
vtV = yDiagenrt? DRISH:

Thus, the elements @f are calculated as followsts € DR(G),

(//:

30

_ Y (s)SUs)
v = Yseor) ¥ (OSUY)’

It is easy to check that is a solution of the equation system

Wy(P-1)=0
Yyl =1 ’
hence, it is indeed the steady-state PMFDBIMC(G). O

The following proposition relates the steady-state PMEStdQG) andDTMC(G).

Proposition 5.2. Let G be a dynamic expressiop be the steady-state PMF for SNI®) and ¢ be the steady-state
PMF for DTMC(G). ThenVs € DR(G),

— MY scDR©G):
o) = geE;(G)‘”@
0, se DRy(G).

Proor. Let s € DRr(G). Remember tha¥s € DRr(G), SL(s) = SJs) andVs € DRy(G), SJs) = 0. Then, by
Theorem 5.1, we have

¥(9) _ z@ﬁ(éff?(s?su@ _ ¥ (9)SL(s) _ Zeoro W (SUY

Y sDrr(c) ¥(5 deDRT(G)(%) 2 50rEe) ¥ (OSUS) Xsor (g ¥ (9SUY)
Y (s)SUs) _ Y (9)SJIs) _ Y (9)SJs) _

2 5orr(@) Y (OSUY) Zsoric) ¥ (DSXY Xsore) ¥ (9SIJ)

@(9).

O

Thus, to calculate, one can only apply normalization to some elements @obrresponding to the tangible states),
instead of abstracting from self-loops to gtand theny*, followed by weighting bySJand normalization. Hence,
usingDTMC(G) instead ofEDTMC(G) allows one to avoid multistage analysis, but the paymenit ie more time-
consuming numerical and more complex analytical caloutedif y with respect tay*. The reason is thdTMC(G)
has self-loops, unlikEDTMC(G), hence, the behaviour @TMC(G) stabilizes slower than that #DTMC(G) (if
each of them has a single steady state) Riglmore dense matrix thadei, sinceP may additionally have non-zero
elements at the main diagonal. Nevertheless, Propositiis ¥ery important, since the relationship betweemnd
¥ it discovers will be used in Proposition 5.3 to relate thadtestate PMFs foBMQG) and the reduceBTMC(G),
as well as in Section 8 to prove preservation of the statiphahaviour by a stochastic equivalence.

Example 5.3. Let E be from Example 3.6. In Figure 8, the DTMC DT{&pis presented.
The TPM for DTMGE) is

0
0
1

¥

m

[
1-6

OO ox O
T
| oo o

o |
=

The steady-state PMF for DTME) is

1
= 0oL+) + M)+ x(dl + om) (0, 8p(I + M), x6g(I + M), ypl, y6m).

31

4

Figure 8: The DTMC of for E = [({al,) * (({b}, x); ((({c}, b); (i},))[(({e), bm); (), 4)))) * Stop].

Remember that DRE) = {s1, $, &, S5} and DR/(E) = {ss}. Hence,

(1 + m) + x (ol + 6mM)
(1 + x)(I + M) + x (ol + 6m)

DL U = u(s1) + () + Y(sa) + Y(ss) =

%DR; (E)
By Proposition 5.2, we have

_ 0d(L+x)(1+m)+x (sl +6m) _
¢(s1) = 0 Zgsimmiam = O

_ O¢(1+m) O0(1+x)(1+m)+x (gl +6m) _ O¢(1+m)
90(52) =) I+m) e @+0m) ~ 0p(1+m)+y(pl+om) Gp(I+m)+x (ol +6m) >
¢(s3) =0,

(s4) = X4 . OeU)(+m)+x(gl+6m) _ X4
¥ 0 (1+x)(1+m)+y (sl +6m) 0 (1+m)+yx (ol +6m) 0 (1+m)+yx (ol +6m) *

_ xom 0p(1+x)(1+m)+x (gl +6m) _ xom

‘10(55) T 0p(L+x)(I1+m)+x (sl +6m) ’ O (1+m)+x (gl +6m) 0p(l+m)+x(¢l+6m) *

Thus, the steady-state PMF for SNE} is

1
~ 0¢(1 + m) + (ol + 6m)
This coincides with the result obtained in Example 5.1 withuse ofy* and SJ.

%) (0, 8¢(1 + M), O, x|, x6m).

5.3. Analysis of the reduced DTMC

Let us now consider the method from [32, 72, 5, 7, 6] that elates vanishing states from the EMC (EDTMC,
in our terminology) corresponding to the underlying SMC eéry GSPNN. The TPM for the resultingeduced
EDTMC (REDTMC) has smaller size than that for the EDTMC. Thetinod demonstrates that there exists a transfor-
mation of the underlying SMC dfl into a CTMC, whose states are the tangible markings.ofhis CTMC, which is
essentially theeducedunderlying SMC (RSMC) oN, is constructed on the basis of the REDTMC. The CTMC can
then be directly solved to get both the transient and thelgtetate PMFs over the tangible markings\bfin [32], the
program and computational complexities of sucteiminationmethod, based on the REDTMC, were evaluated and
compared with those of thereservatiormethod that does not eliminate vanishing states and basgtedtDTMC.
The preservation method for GSPNs corresponds in dtsiPBi@tanalysis of the underlying SMCs of expressions.

The elimination method for GSPNs can be easily transfewetdtsiPBC, hence, for every dynamic expression
G, we can find a DTMC (since the sojourn time in the tangibleestdtom DR(G) is discrete and geometrically
distributed) with the states froDRr(G), which can be directly solved to find the transient and thady-state PMFs
over the tangible states. We shall demonstrate that suetitecedDTMC (RDTMC) of G, denoted byRDTMQG),
can be constructed fro@MTMC(G), using the method analogous to that designed in [72, 5, ih, tBle framework of
GSPNs to transform EDTMC into REDTMC. Since the sojourn tim#he vanishing states is zero, the state changes

32

of RDTMQG) occur in the moments of the global discrete time associatgdSMJG), unlike those cEDTMC(G),
which happen only when the current state changes to slifieeentone, irrespective of the global time. Therefore, in
our case, we can skip the stages of constructing the REDTM&; dénoted byREDTMGG), from EDTMC(G), and
recovering RSMC of3, denoted byRSMGQG), (which is the sought-for DTMC) frolREDTMQG), since we have
RSMQG) = RDTMQG).

Let G be a dynamic expression aRde the TPM foDTMC(G). We reorder the states froBR(G) such that the
first rows and columns d® will correspond to the states froBRy(G) and the last ones will correspond to the states
from DRy (G). Let|DR(G)| = nand|DR(G)| = m. The resulting matrix can be decomposed as follows:

C D
p- (c b) |
The elements of then m) x (n—m) submatrixC are the probabilities to move from vanishing to vanishirages,
and those of then(— m) x msubmatrixD are the probabilities to move from vanishing to tangibléestaThe elements
of themx (n — m) submatrixE are the probabilities to move from tangible to vanishingestaand those of thmx m

submatrixF are the probabilities to move from tangible to tangibleestat
The TPMP° for RDTMQG) is them x m matrix, calculated as

P° = F + EGD,

where the elements of the matare the probabilities to move from vanishing to vanishiragest in any number of
state changes, without traversal of the tangible states.

If there are no loops among vanishing states then for anyshiarg state there exists a value N such that every
sequence of state changes that starts in a vanishing stétis &onger tharl should reach a tangible state. Thus,
A eNVk>I1Ck=0andyy,Ck = ZLzo Ck. If there are loops among vanishing states then all suchslaop
supposed to be of “transient” rather than “absorbing” tygiece the latter is treated as a specification error to be
corrected, like in [72, 6]. We have earlier required tBMQG) has a single closed communication (which is also
ergodic) class of states. Remember that a communicaties ofstates is their equivalence class w.r.t. communicatio
relation, i.e. a maximal subset of communicating statesorounication class of states is closed if only the states
belonging to it are accessible from every its state. Thediocgrass cannot consist of vanishing states only to avoid
“absorbing” loops among them, hence, it contains tangitdées as well. Thus, any sequence of vanishing state
changes that starts in the ergodic class will reach a tamgiisite at some time moment. All the states that do not
belong to the ergodic class should be transient. Hence, emyesice of vanishing state changes that starts in a
transient vanishing state will some time reach either asteant tangible state or a state from the ergodic class [59].
In the latter case, a tangible state will be reached as welrgued above. Thus, every sequence of vanishing state
changes irBMQG) that starts in a vanishing state will exit the set of all g states in the future. This implies
that the probabilities to move from vanishing to vanishitajes ink € N state changes, without traversal of tangible
states, will lead to 0 whek tends toco. Then we have lifp,., C = lim_.(I — (I = C))* = 0, hence)l — Cis a
non-singular matrix, i.e. its determinant is not equal toozeThus, the inverse matrix ¢f— C exists and may be
expressed by a Neumann seriegs,(l — (I - C)k = Yo Ck = (I - C)™L. Therefore,

G- i ok = Yoo CKs dleN, v|1< >, C¥=0, noloops among vanishing states;
& (1 -0 limeCk=0, loops among vanishing states;

where0 is the square matrix consisting only of zeros anslthe identity matrix, both of order— m.
For1<i,j<mand 1<k | <n-m,letF; be the elements of the matrx Sy be those oE, Gy be those ofs
and®D,; be those oD. By definition, the elemem@fj of the matrixP°® are calculated as

n—-mn-m n-m n-m n-m n-m
P =Fij + SkGuDij = Fij + Z&k Z GuDij = Fij + Z Dij Z&kah
k=1 1=1 P =1 k=1

i.e.#; (1 <i,j < m)is the total probability to move from the tangible statéo the tangible stats; in any number
of steps, without traversal of tangible states, but poggibing through vanishing states.

33

Let s, 5 € DRr(G) such thats = s, 8 = s;. Theprobability to move from s t& in any number of steps, without
traversal of tangible stateis

PM’(s,§) = 7.

Definition 5.3. Let G be a dynamic expression an@]L € DRr(G). Thereduced discrete time Markov chain
(RDTMC)of G, denoted byRDTMQG), has the state spa8ir(G), the initial state 5] . and the transitions < §,
whereP = PM°(s, 9).

RDTMCs of static expressions can be defined as well FerRegS tatE xpiet RDTMQE) = RDTMQE).

Let us now try to defin&RSMCG) as a “restriction” ofSMG) to its tangible states. Since the sojourn time in
the tangible states @MQQG) is discrete and geometrically distributed, we can seeR&NGG) is a DTMC with
the state spacBRr(G), the initial state 5] and the transitions whose probabilities collect all thas8MQG) to
move from the tangible to the tangible states, directly dirgctly, namely, by going through its vanishing states/onl
Thus,RSMCG) has the transitions <4 §, whereP = PM°(s, §), hence, we gRSMCG) = RDTMQOG).

One can see th®DTMQG) is constructed fronDTMC(G) as follows. All vanishing states and all transitions
to, from and between them are removed. All transitions betwiangible states are preserved. The probabilities of
transitions between tangible states may become greatememdransitions between tangible states may be added,
both iff there exist moves between these tangible states in any mwhseps, going through vanishing states only.
Thus, for each sequence of transitions between two tangthtes inDTMC(G) there exists a (possibly shorter,
since the eventual passed through vanishing states areveeingequence between the same statd3DiMQG)
and vice versa. IDTMC(G) is irreducible then all its states (including tangible sheommunicate, hence, all states
of RDTMQG) communicate as well and it is irreducible. Since bBIRMC(G) and RDTMQG) are finite, they
are positive recurrent. Thus, in case of irreducibility®fMC(G), each of them has a single stationary PMF. Note
thatDTMC(G) andor RDTMQG) may be periodic, thus having a unique stationary distidoytbut no steady-state
(limiting) one. For example, it may happen tiREMC(G) is aperiodic whileRDTMQG) is periodic due to removing
vanishing states from the former.

Let DRy (G) = {sy, ..., Sm} and [G]~ € DRy (G). Then the transienk{step,k € N) PMF
UIK] = (W°[KI(s1), - - -, ¥°[K](Sm) for RDTMQG) is calculated as

y°[Kl = w°[0](P°),
wherey°[0] = (¥°[0](sy), - . ., ¥°[0](sm)) is the initial PMF defined as

X 1, s=[G];
¢°[01(s) ={ 0, otherwise

Note also that°[k + 1] = ¢°[K]P°® (k € N).
The steady-state PMF® = (y°(s1), ..., ¥°(Sn)) for RDTMQG) is a solution of the equation system

p(P-1)=0
{ lﬂolT -1)
wherel is the identity matrix of ordem and0 is a row vector omvalues 0 1is that ofmvalues 1.

Note that the vectap® exists and is unique, RDTMQG) is ergodic. ThelRDTMQG) has a single steady state,
and we have/® = limy_. ¥°[K].

The zero sojourn time in the vanishing states guarantetththatate changes RBDTMQG) occur in the moments
of the global discrete time associated wWBMQG), i.e. every such state change occurs after one time uraydel
Hence, the sojourn time in the tangible states is the sanRDIGMQG) andSMJG). The state change probabilities
of RDTM(QG) are those to move from tangible to tangible states in anybmrrof steps, without traversal of the
tangible states. TherefolDTMQG) andSMQG) have the same transient behaviour over the tangible states
the transient analysis &MQG) is possible to accomplish usiRPTMQG).

The following proposition relates the steady-state PMESIQG) andRDTMQG). It proves that the steady-
state probabilities of the tangible states coincide fonthe

34

Proposition 5.3. Let G be a dynamic expressiapbe the steady-state PMF for SNI&) andy° be the steady-state
PMF for RDTMQG). ThenVs € DR(G),

_ | v°(9), seDRg(G);
#(9) = { 0, se DR\T,(G).

Proor. To make the proof more clear, we use the following unifiedatioh. | denotes the identity matrices of any
size.0 denotes square matrices and row vectors of any size andhlefigalues 01 denotes square matrices and row

vectors of any size and length of values 1.
Let P be the reordered TPM f®@TMC(G) andy be the steady-state PMF fDITMC(G), i.e. ¢ is a solution of the

equation system

y(P-1)=0
pli =1 =

Let|DR(G)| = nand|DRy(G)| = m. The decomposed, P — | andy are

E F

whereyy = (Y1,...,¥n-m) iS the subvector ofy with the steady-state probabilities of vanishing stated yan =
(Yn-m+1, - - - » ¥n) is that with the steady-state probabilities of tangibégess.
Then the equation system fgris decomposed as follows:

{ w(C-1N)+ytE=0

C D cC-1 D
p=(),P—I:(E F_I)andzﬁ=(lﬁv,lﬁr),

wD+yr(F-1)=0 .
l//vlT +l//T1T =1

Further, letP® be the TPM foRDTMQG). Theny° is a solution of the equation system

pe(P =1)=0

Yyl =1)
We have

P° = F + EGD,

where the matrixG can have two dferent forms, depending on whether the loops among vanisieétes exist, hence,
we consider the two following cases.

1. There exisho loops among vanishing statée havedl € N, Yk > I, CX = 0andG = }_,C.
Let us right-multiply the first equation of the decomposedaipn system fog by G:

Yv(CG - G) +y7EG = 0.
Taking into account tha® = ZL:O Ck, we get

| |
Yy ch+c'+l—c°—2ck +y7EG = 0.
k=1 k=1
SinceC'*! = 0andC? = I, we obtain
—yv +YTEG = 0andyy = ¥TEG.
Let us substitutg with yTEG in the second equation of the decomposed equation system for

YTEGD +y7(F - 1) = O andyr(F + EGD - 1) = 0.
35

SinceF + EGD = P°, we have

yr(P* 1) =0,

2. There existoops among vanishing staté&/e have lim_,., CK = 0andG = (I - C)™L.
Let us right-multiply the first equation of the decomposedagipn system fog by G:

—yv(l - C)G +yTEG = 0.
Taking into account tha® = (I — C)~%, we get

v + l//TEG =0 andt//v = lﬁTEG

Let us substitutgy with y+EG in the second equation of the decomposed equation system for

YTEGD + y1(F—1) = 0andys(F+ EGD - 1) = 0.
SinceF + EGD = P°, we have

yr(P°~1) =0,

The third equationyy1™ + 11" = 1 of the decomposed equation systemgamplies that ifyy has nonzero
elements then the sum of the elementgpis less than one. We normalize by dividing its elements by their sum:

ve L
B EAR
It is easy to check thatis a solution of the equation system
v(P°-1)=0
viT =1 ’
hence, it is the steady-state PMF RDTMQG) and we have
o V — 1
lﬁ - vV-= l,bT 17 l/’T'
Note thatVs € DRr(G), y¥1(S) = ¥(s). Then the elements @f are calculated as follow&'s € DRy (G),
PR, (C B C
2sori@) ¥T(® Xsorc) ¥(5
it _ ¥(s)
By Proposition 5.2y¥s € DRr(G), ¢(s) = m.
Thereforeys € DR (G),
S <
9= —2 s,

2 5DRr(6) ¥(5)
O

Thus, to calculate, one can just take all the elements/dfas the steady-state probabilities of the tangible states,
instead of abstracting from self-loops to gtand theny*, followed by weighting bySJand normalization. Hence,
usingRDTMQG) instead ofEDTMC(G) allows one to avoid such a multistage analysis, but cootitryP® also
requires someforts, including calculating matrix powers or inverse neds. Note thaRDTMQG) has self-loops,
unlike EDTMC(G), hence, the behaviour ®#DTMJG) may stabilize slower than that #DTMC(G) (if each of
them has a single steady state). On the other h@hds smaller and denser matrix th&, sinceP° has additional
non-zero elements not only at the main diagonal, but alsoyrothem outside it. Therefore, mostly, we have less
time-consuming numerical calculation @f with respect tay*. At the same time, the complexity of the analytical
calculation ofy° with respect tay* depends on the model structure, such as the number of vagistates and loops

36

among them, but usually it is lower, since the matrix sizeiotidn plays an important role in many cases. Hence, for
the system models with many immediate activities we nowrfale a significant simplification of the solution. At
the abstraction level of SMCs, the elimination of vanishétates decreases their impact to the solution complexity
while allowing immediate activities to specify a compresibie logical structure of systems at the higher level of
transition systems.

Example 5.4. Let E be from Example 3.6. Remember thatt [l = {s1, S, &, S5} and DR/(E) = {s3}. We reorder
the states from DEE), by moving the vanishing states to the first positions, dsvsl s, s1, %, &4, .
The reordered TPM for DTM(E) is

|
0O O 0 e
0 1-p p 0 0
Pr=lx O 1-xy O 0
0 O 06 1-6 O
0 O @ 0 1-¢
The result of the decomposifg are the matrices
0 1-p »p 0 0
B B I m o 3 0 1-x O 0
C_O,D_(0,0,—|+m,—|+m),E_ O,F_ 0 o 1-9 0o
0 0 1) 0 1-¢

SinceC! = 0, we haverk > 0, CK = 0, hence, k= 0 and there are no loops among vanishing states. Then

|
G:}SCkzcozL
k=0

Further, the TPM for RDTM(E) is

1-p p 0 0
. _ _ N L
P°=F+EGD=F+EID =F+ED = 0 P 1+_m9 +m
0 ¢ 0 1-¢

In Figure 9, the reduced DTMC RDTME) is presented. The steady-state PMF for RDTEs

o _ 1
~ 0g(l + m) + y (¢l + 6m) (0, 891 + m), x¢l, xyom).

Note thaty® = (°(s1), ¥°(S2), ¥°(s4), ¥°(Ss)). By Proposition 5.3, we have

¢(s1) =0,

_ 0g(1+m)
(%) = grmysctorsam
¢(ss) =0,

— ¢l
(%) = gmmyram

om
¢(ss) = e¢(|+m;(+)((¢|+em)-

Thus, the steady-state PMF for SKE} is

: 1

= 0¢(1 + m) + x (ol + 6m)
This coincides with the result obtained in Example 5.1 withuse ofy* and SJ.

@ (0, 84(1 + m), O, x|, x6m).

37

RDTMC (E)

1-6 1-¢

Figure 9: The reduced DTMC d for E = [({al. p) * (({b}. x); ((({c}. t); ({d},)(({e). tm); (T}, 4)))) * Stop].

RSMC(E)

X|= D=

Figure 10: The reduced SMC &for E = [({a},) * (b}, x); ((({c}, t); ({d),) I(((e}, tim); ({F), 4)))) * Stop].

Example 5.5. In Figure 10, the reduced underlying SMC RS(#Tis depicted. The average sojourn times in the
states of the reduced underlying SMC are written next to tirebold font. In spite of the equality RSNE) =
RDTMQE), the graphical representation of RSNE) differs from that of RDTM(E), since the former is based on
the REDTMGE), where each state is decorated with fiusitiveaverage sojourn time of RSME) in it. REDTMQE)

is constructed from EDTM(E) in the similar way as RDTM(E) is obtained from DTM(E). By construction, the
residence time in each state of RSMELis geometrically distributed. Hence, the associated pat@mof geometrical
distribution is uniquely recovered from the average sojotime in the state.

Note that our reduction of the underlying SMC by eliminatitsgvanishing states, resulting in the reduced DTMC,
resembles the reduction from [67] by removing instantasestates of stochastically discontinuous Markov reward
chains. The latter are “limits” of continuous time Markoadis with state rewards and fast transitions when the rates
(speeds) of these transitions tend to infinity, making themmeédiate. By analogy with that work, we would consider
DTMCs extended with instantaneous states instead of SM@sgeiometrically distributed or zero sojourn time in
the states. However, within dtsiPBC, we have decided to$\K€Es as the underlying stochastic process to be able in
the perspective to consider not only geometrically disteéd and zero residence time in the states, but arbitrany fixe
time delays as well.

6. Stochastic equivalences

Consider the expressioiis= ({a}, 3) andE’ = ({a}, $)a[l({a}, 3)2, for whichE # E’, sinceT S(E) has only one
transition from the initial to the final state (with probeityil%) while TS(E’) has two such ones (with probabiliti%}a
On the other hand, all the mentioned transitions are laliBtedttivities with the same multiaction pgaj. Moreover,
the overall probabilities of the mentioned transition§&(E) and T S(E’) coincide: 1 = 1 + 1. Further,TS(E) (as
well asT S(E’)) has one empty loop transition from the initial state telitsvith probability% and one empty loop
transition from the final state to itself with probability The empty loop transitions are labeled by the empty set of
activities. For calculating the transition probabilitasT S(E’), takep = y = % in Example 3.5. Then you will see that

the probability parts and1 of the activities {a},)1 and (ay}, 1), are “splitted” among probabilitie§ and 2 of the
38

corresponding transitions and the probabiﬁt;vf the empty loop transition. Unlike;s, most of the probabilistic and
stochastic equivalences proposed in the literature doifferdntiate between the processes such as those specified by
E andE’. In Figure 12(a), the marked dtsi-boxes correspondingealymamic expressiors andE’ are presented,

i.e. N = Boxsi(E) andN’ = Boxysi(E”).

Since the semantic equivaleneg is too discriminating in many cases, we need weaker equigal@otions.
These equivalences should possess the following necgasmgrties. First, any two equivalent processes must have
the same sequences of multisets of multiactions, whichhererultiaction parts of the activities executed in steps
starting from the initial states of the processes. Secavdevery such sequence, its execution probabilities within
both processes must coincide. Third, the desired equivalgimould preserve the branching structure of computations
i.e. the points of choice of an external observer betweeeratgxtensions of a particular computation should be taken
into account. In this section, we define one such notion: stieghastic bisimulation equivalence.

6.1. Step stochastic bisimulation equivalence

Bisimulation equivalences respect the particular poihthoice in the behavior of a system. To define stochastic
bisimulation equivalences, we have to consider a bisirarias arequivalenceelation that partitions the states of
the union of the transition system§S(G) and T S(G’) of two dynamic expressions andG’ to be compared. For
G andG’ to be bisimulation equivalent, the initial stat€3]] and [G’]. of their transition systems should be related
by a bisimulation having the following transfer property:two states are related then in each of them the same
multisets of multiactions can occur, leading with the ideadtoverall probability from each of the two statesthe
same equivalence clafsr every such multiset.

Thus, we follow the approaches of [53, 61, 47, 49, 14, 10, ba},we implement step semantics instead of
interleaving one considered in these papers. Recall adovinuse the generative probabilistic transition systéikes,
in [53], in contrast to the reactive model, treated in [6 1 ave take transition probabilities instead of transitiates
from [47, 49, 14, 10, 11]. Thus, step stochastic bisimufaéquivalence that we define further is (in the probabilistic
sense) comparable only with interleaving probabilistirbulation one from [53], and our equivalence is obviously
stronger.

In the definition below, we considef(Y) € Nﬁn for Y e Nfi;fl, i.e. (possibly empty) multisets of multiactions.
The multiactions can be empty as well. In this ca8€Y’) contains the elemengs but it is not empty itself.

Let G be a dynamic expression afid C DR(G). Then, for anys € DR(G) andA € Nﬁn, we write s Ap H,
whereP = PMa(s, H) is theoverall probability to move from s into the set of staféwia steps with the multiaction
part Adefined as

PMa(s, H) = > PT(T, 9).
(T[FEH, sH8 L(T)=A)

We write s A Hif AP, s ip H. Further, we writes - H if A, s A H, whereP = PM(s, H) is theoverall
probability to move from s into the set of staf¥svia any stepslefined as

PM(sH)= > PT(Y,s).

(TA%H, 55§

ForSe DR(G), we writes 5@ Sif s gp {8} ands 4 Sif AP s gp s

To introduce a stochastic bisimulation between dynamicesgionss andG’, we should consider the “compos-
ite” set of stateDR(G) U DR(G’), since we have to identify the probabilities to come frorg Bmo equivalent states
into the same “composite” equivalence class (with respette stochastic bisimulation). Note that, @k G’, transi-
tions starting from the states BIR(G) (or DR(G’)) always lead to those from the same set, SDB¥G)NDR(G’) = 0,
and this allows us to “mix” the sets of states in the definitdstochastic bisimulation.

Definition 6.1. Let G andG’ be dynamic expressions. AsguivalencaelationR ¢ (DR(G) U DR(G))? is astep
stochastic bisimulatiobetweerG andG’, denoted byR : G G/, if:

1. (Gl [G) e R
39

0,1—-6 0,1—-6

Figure 11: The multiaction transition systemfofor F = [({a}, p) * ({b}, x); ((({c}, b1); ({d}, OO(({c}, bm); ({d}, 6)))) * Stop].

2. (s1.%) € R = YH € (DR(G) U DR(G'))/x, YA€ N

fin?
A A
S —p H o s —p H.
Two dynamic expressiors andG’ arestep stochastic bisimulation equivaledénoted byco G, if IR : G G'.

We now define the multiaction transition systems, whosesttimms are labeled with the multisets of multiactions,
extracted from the corresponding activities.

Definition 6.2. Let G be a dynamic expression. Tliabeled probabilistic) multiaction transition systeshG is a
quadruplel Sg(G) = (Sz, Ls, T, Sg), where

e Sy =DR(G),
o Ly =NE& x(0;1];

o 77 ={(s (A PMx(s(8)).9 15 3€DRG). s 5 §;
® Sy = [G]x

The transition §, (A, P), 8) € 7 will be written ass ip 8

The multiaction transition systems of static expressioas be defined as well. FdE € RegStatExpiet
TS,(E) = TS,(E).

LetG andG’ be dynamic expressions affdt G _G'. Then the relatiorR can be interpreted as a step stochastic
bisimulation between the transition systeS,(G) andT S(G’), denoted byR : TS,(G)o T S,(G’), which is
defined by analogy (excepting step semantics) with inteitiegprobabilistic bisimulation on generative probaltitis
transition systems from [53].

Example 6.1. Let us consider an abstraction F of the static expressionoenfExample 3.6, such that€ e, d =
f, 0=09,le.

F =[(fa}, p) = (({b}, x); (e}, t); (td}, O)(({c}. m); ({d},)))) + Stop].

Then DRF) = {s1, S, S, &4, S5} is obtained from DFE) via substitution of the symbols €, ¢ by ¢ d, 6,
respectively, in the specifications of the correspondiatgstfrom the latter set. We have f(R) = {s1, S, &, S5} and
DRy(F) = {ss}. In Figure 11, the multiaction transition system F(&) is presented. For simplicity of the graphical
representation, the singleton multisets of multiactiores\varitten without outer braces.

The following proposition states that every step stochdssimulation binds tangible states only with tangible
ones and the same is valid for vanishing states.

40

Proposition 6.1. Let G and G be dynamic expressions aftt G G’. Then

R C (DRy(G) U DRr(G'))? w (DRy(G) U DRy(G'))2.

Proor. By definition of transition systems of expressions, forrgtangible state, there is an empty loop from it, and
no empty loop transitions are possible from vanishing state
Further,R preserves empty loops. To verify this fact, first take 0 in its definition to get/(s;,) € R,

YH € (DR(G) U DR(G"))/%, S1 gp H o s gp H, and then observe that the empty loop transition from a state
leads only to the same state. O

Let Rs{G,G") = U{R | R : G, G’} be theunion of all step stochastic bisimulatiobetweenG andG’. The
following proposition proves th&ks{G, G') is also arequivalencandRs{G,G’) : G G'.

Proposition 6.2. Let G and G be dynamic expressions and- G’. ThenRs{G, G’) is the largest step stochastic
bisimulation between G and'G

Proor. See Appendix A.1l. O

In [3], an algorithm for strong probabilistic bisimulatiam labeled probabilistic transition systems (a reformula-
tion of probabilistic automata) was proposed with time céexiy O(n’m), wheren is the number of states amdlis
the number of transitions. In [4], a decision algorithm flsoag probabilistic bisimulation on generative labeleolpr
abilistic transition systems was constructed with time ptaxity O(mlogn) and space complexif®(m+ n). In [30],
a polynomial algorithm for strong probabilistic bisimutat on probabilistic automata was presented. The mentioned
algorithms for interleaving probabilistic bisimulatioguivalence can be adapted for, using the method from [52],
applied to get the decidability results for step bisimwaatequivalence. The method takes into account that transiti
systems in interleaving and step semanti¢gedionly by availability of the additional transitions cosponding to
parallel execution of activities in the latter (which is @mase).

6.2. Interrelations of the stochastic equivalences
Now we compare the discrimination power of the stochastitvedences.

Theorem 6.1. For dynamic expressions G and @e followingstrictimplications hold:
GxG = G=:sG = Go G

Proor. Let us check the validity of the implications.

e Theimplication=is= © . is proved as follows. Leg : G =s G'. Thenitis easy to see th&t: G G’, where
R =1{(s8(9) | s€ DRG)}.

e The implication==s is valid, since the transition system of a dynamic formuldefined based on its struc-
tural equivalence class.

Let us see that that the implications are strict, i.e. themrgones do not work, by the following counterexamples.

(a) LetE = ({a}, 3) andE’ = ({a}, 1)1[I({a}, 3)2. ThenEeo F’, butE # E’, sinceT S(E) has only one transition
from the initial to the final state whil& S(E’) has two such ones.

(b) LetE = ({a}, 3); ({&}, 3) andE’ = (({a}, 2); (&), 3)) sy a. ThenE = E, butE # E’, sinceE andE’ cannot be
reached from each other by applying inaction rules. O

Example 6.2. In Figure 12, the marked dtsi-boxes corresponding to theadyin expressions from equivalence exam-
ples of Theorem 6.1 are presented, i.e=NBoxysi(E) and N' = Boxysi(E’) for each picture (a)—(b).

41

Nl

(2) N N (b) N
YLK 9

'
|(a1.3)] i [dard)] |dard] [derd)] |dand)]

ts
© W 07z
#
!

(b [dand)

l l
OO

Figure 12: Dtsi-boxes of the dynamic expressions from edence examples of Theorem 6.1.

7. Reduction modulo equivalences

The equivalences which we proposed can be used to reduséitarsystems and SMCs of expressions (reacha-
bility graphs and SMCs of dtsi-boxes). Reductions of grapked models, like transition systems, reachability ggaph
and SMCs, result in those with less states (the graph nodés)goal of the reduction is to decrease the number of
states in the semantic representation of the modeled systdimpreserving its important qualitative and quantitati
properties. Thus, the reduction allows one to simplify tebdvioural and performance analysis of systems.

An autobisimulatioris a bisimulation between an expression and itself. For ahoexpressio®s and a step
stochastic autobisimulation ont: G G, let K € DR(G)/¢ andsy, s, € K. We have/K e DR(G)/#, YA€ Nﬁn,

S —Aw K o S fw K. The previous equality is valid for adi, s, € K, hence, we can rewrite it & fw 7?, where
P = PMa(K, K) = PMa(s1, K) = PMa(s, K).

We write K at K if IP, K —A>¢> K andK — K if A, K at K. The similar arguments allow us to write
K —p K, whereP = PM(K, K) = PM(s1, K) = PM(s2, K).

By Proposition 6.1R < (DRy(G))? w (DRy(G))?. Hence YK € DR(G)/x, all states froniK are tangible, when
% € DRy (G)/«, or all of them are vanishing, whei§ € DRy(G)/x.

Theaverage sojourn time in the equivalence class (with resigeg] of statesk is

1 .
e K € DRr(G)/x;
— 1-PM(K, %)
S\}R(q() { 0, K e DRv(G)/R.
The average sojourn time vector for the equivalence classeth (@spect taR) of statesof G, denoted byS Xk,
has the elemenSk(K), K € DR(G)/x.
Thesojourn time variance in the equivalence class (with respeR) of stateskK is

VARK(K) = { @iy K € DRr(O)/x;
0, K e DRv(G)/qg.
Thesojourn time variance vector for the equivalence classdh (@spect toR) of statesof G, denoted byARg,
has the elementAR(K), K € DR(G)/x.
Let RsG) = UIR | R : GG} be theunion of all step stochastic autobisimulatiomsG. By Proposition 6.2,
Rs{G) is the largest step stochastic autobisimulatiorGorBased on the equivalence classes with respeRt4(©s),
the quotient (by-) transition systems and the quotient (&y,) underlying SMCs of expressions can be defined.
The mentioned equivalence classes become the quotiess.sTdie average sojourn time in a quotient state is that in
the corresponding equivalence class. Every quotientitrandetween two such composite states represents af step
(having the same multiaction part in case of the transiti@besn quotient) from the first state to the second one.

42

Figure 13: The quotient transition systemrofor F = [({a}, p) * (({b}, x); ((({c}, n); (d}, O)(({c}, bim); ({d}, 6)))) * Stop].

Definition 7.1. Let G be a dynamic expression. Theotient (by«~) (labeled probabilistic) transition systeof G
isaquadrupl§ S, (G) = (So_, Lo . To,, So), Where

* So, = DR(G)/r0);

o Lo =Nf x(0;1];

fin
o To,, = (K. (A PMAK. K)). K) | K. K € DR(G)/ro(q). K - K);

e So_ = [[Clilro)-

The transition ¢, (A, P), K) € To., will be written ask Ap K.

The quotient (by-) transition systems of static expressions can be definedlhskor E € RegS tatExprlet
TS, (E)=TS._(E).

Let G be a dynamic expression. We define the relaRen{G) = {(s K), (K. 9) | s€ K € DR(G)/rc)}", where
* is the transitive closure operation. One can seeRia{G) € (DR(G)UDR(G)/x.())? is an equivalence relation that
partitions the seDR(G) U DR(G)/z.c) to the equivalence classés, . .., Ly, defined asf; = K U {Ki} (1 <i < n),
whereDR(G)/r.qc) = {1, ..., Ka). The relatiorR zs{G) can be interpreted as a step stochastic bisimulation legtwe
the transition system$S,(G) and TS,_(G), denoted byR,s{G) : TS,(G)e T So_(G), which is defined by
analogy (excepting step semantics) with interleaving gbdlistic bisimulation on generative probabilistic tréios
systems from [53]. Itis clear that from this viewpoif;s{G) is also the union of all step stochastic bisimulations
and largest step stochastic bisimulation betw&&z(G) andT S.,_(G).

Example 7.1. Let F be from Example 6.1. Then DT%/RSS(E) = {K1, K>, K3, Ka}, where Ky = {1}, Ko = {9}, Kz =
{S3}, Ka = {54, 5}. We also have DRF)/x) = {1, Kz, Ka} and DR/(F) /) = (%3} In Figure 13, the quotient
transition system T§SS(E) is presented.

Thequotient (bye) average sojourn time vectof G is defined aS1, = Sk.c)-
Thequotient (bye) sojourn time variance vectaf G is defined a¥ AR, __ = VAR (c)-

Let X — K andkK # K. The probability to move fron¥ to K by executing any set of activities after possible
self-loopss

PM(K, %) 5520 PM(K, %)% = 2MERL - g¢ %;
PM(K, K), otherwise

The valuek = 0 in the summation above corresponds to the case when ntospE-occur. Note that’K e
DRr(G)/z4c), PM(K,K) = SL_(K)PM(K, K), since we always have the empty loop (which is a self-loop)

PM* (%, K) ={

43

Figure 14: The quotient underlying SMC Bffor F = [({a}, p) * (({b}, x); (({c}, b); ({d}.) I(({c}, m); ({d}, 6)))) * Stop].

0
K — K from every equivalence class of tangible stak&sEmpty loops are not possible from equivalence classes

of vanishing states, hencéX € DR(G)/z.qq), PM* (X, K) = e When there are non-empty self-loops

(produced by iteration) frork, or PM*(%, ‘]~() = PM(%, ‘]~(), when there are no self-loops frof.

Definition 7.2. Let G be a dynamic expression. Thaotient (by-_.) EDTMCof G, denoted b)EDTMC (G) has

the state spacBR(G)/RSS(G), the initial state [(5]~]z.(c) and the transition& — K, if K > K andk # 7(where
P = PM (K, K).

The quotient (by<) underlying SMCof G, denoted bySMC,_(G), has the EDTMCEDTMC,,_(G) and the
sojourn time in everyK € DRy (G)/zc) is geometrically distributed with the parameter PM(K,* ‘K) while the
sojourn time in every € DRy(G)/z.4c) is equal to zero.

The quotient (by-.) underlying SMCs of static expressions can be defined as Welt E ¢ RegStatExprlet
SMG,_(E) = SMG,, (E)

The steady- -state PMis, forEDTMC,_(G) andy., for SMC,_(G) are defined like the corresponding notions
y* for EDTMC(G) ande for S SMQG) respectlvely

Example 7.2. Let F be from Example 7.1. In Figure 14, the quotient undagysMC SMQSS(E) is presented.

The quotients of both transition systems and underlying Si@ the minimal reductions of these objects modulo
step stochastic bisimulations. The quotients can be usachfify analysis of system properties which are preserved
by & since less states should be examined for it. Such reduct&ihod resembles that from [2] based on place
bisimulation equivalence for PNs, excepting that the farmethod merges states, while the latter one merges places.

Moreover, the algorithms exist to construct the quotieftsamsition systems by an equivalence (like bisimulation
one) [81] and those of (discrete or continuous time) MarKa&ies by ordinary lumping [35]. The algorithms have
time complexityO(mlogn) and space complexit®(m + n), wheren is the number of states amdis the number
of transitions. As mentioned in [97], the algorithm from [2%n be easily adjusted to produce quotients of labeled
probabilistic transition systems by the probabilisticiiglation equivalence. In [97], the symbolic partition refi
ment algorithm on state space of CTMCs was proposed. Theithgocan be straightforwardly accommodated to
DTMCs, interactive MCs, Markov reward models, Markov dasisprocesses, Kripke structures and labeled prob-
abilistic transition systems. Such a symbolic lumping usesnory dficiently due to compact representation of the
state space partition. The symbolic lumping is tinfiécéent, since fast algorithm of the partition representatiad
refinement is applied. In [36], a polynomial-time algorition minimizing behaviour of probabilistic automata by
probabilistic bisimulation equivalence was outlined thegults in the canonical quotient structures. One coulgtada
the above algorithms for our framework of transition syste(reduced) DTMCs and SMCs.

Let us also consider quotient (By,) DTMCs of expressions based on the state change probediikil(%, %).

Definition 7.3. Let G be a dynamic expression. Tl@otient (by<) DTMC of G, denoted byDTMC,, (G), has
the state spad®R(G)/x4q), the initial state [{5]+]z.4c) and the transition& —p K, wherep = PM(K, ‘I?).

44

Figure 15: The quotient DTMC d& for F = [({a}, p) * (({b}, x); ((({c}. br); ({d}, O)I(({c}, bm); ({d}, 6)))) * Stop].

RDTMC_(F)

Figure 16: The reduced quotient DTMCBffor F = [({a}, p) = (({b}, x); (((ch, bn); (d}, B)D(({ch, bm); (d}, 6)))) = Stop].

The quotient (by=) DTMCs of static expressions can be defined as well. EFarRegS tatE xpriet
DTMC,_(E) = DTMC,, (E)
The steady -state PMEH for DTMC,,_(G) is defined like the corresponding notigrfor DTMC(G).

Example 7.3. Let F be from Example 7.1. In Figure 15, the quotient DTMC D'IL_MSCE) is presented.

Eliminating equivalence classes (with respecRtg(G)) of vanishing states from the quotient (by,) DTMCs
of expressions results in the reductions of such DTMCs.

Definition 7.4. Thereduced quotient (by>,) DTMC of G, RDTMGC,_(G), is defined likeRDTMQG) in Section 5,
butitis constructed fro®TMC,,_(G) instead oDTMC(G).

The reduced quotient (y>) DTMCs of static expressions can be defined as well. Eer RegS tatExpriet
RDTMC,_(E) = RDTMC,_(E).
The steady-state PME;SS for RDTMGC,_(G) is defined like the corresponding notigh for RDTMQG).

Example 7.4. Let F be from Example 7.1. In Figure 16, the reduced quotiefVIQ of RDTMCiSS(E) is presented.

Obviously, the relationships between the steady-state RMF ande o Po, andy.,_, as well asp, _ and
l//<_> o are the same as those determined between their “non- qtiol&rsmns in Theorem 5. 1, Proposmon 5.2 and
Proposmon 5.3, respectively.

In Figure 17, the cube of interrelations w.r.t. the relatioanstructed from” is depicted for both standard and
guotient transition systems and Markov chains (SMCs, DTM@RDTMCSs) of expressions. Note that the relations
betweenSMC and SMC,, , betweenDTMC andDTMC,, , as well as betweeRDTMC andRDTMC,,_, can be
obtained using the foIIowmg corresponding | tranS|t|ondi|mns defined by analogy with those already introduced:
PM*(K, ‘K), based olPM*(s, §), thenPM(K, ‘K), based orPM(s, §), as well aPM°* (%K, ‘K), based oPM°(s, §). In

45

DTMC 5 >RDTMC, __
DTMC ~|~ RDTMC ‘

TSHSS% SMC,
e

TS — SMC

Figure 17: The cube of interrelations for standard and gabtransition systems and Markov chains of expressions.

a similar way, the relations betwe&CandRDTMC, as well as betwee8BMC., andRDTMG,_, can be obtained
using the following corresponding transition functio®¥°(s, §), based orPM*(s 9, through PM)°(s,), as well
asPM° (%, K), based oP M* (%, K), through PM*)° (K, K).

The comprehensive quotient and reduction example will lbegmted in Section 9.

In [25], the ordinary, exact and strict lumpability relai®on finite DTMCs are explored. It is investigated which
properties of transient and stationary behaviour of DTMf&spmeserved by aggregation w.r.t. the three mentioned
kinds of lumping and their approximate “nearly” versionsisiproven that irreducibility is preserved by aggregation
w.r.t. any partition (or equivalence relation) on the stadé DTMCs. Since only finite irreducible DTMCs are
considered (with a finite number of states), these all argipesecurrent. Aggregation can only decrease the number
of states, hence, the aggregated DTMCs are also finite aritivpagcurrence is preserved by every aggregation. It
is known [87, 59] that irreducible and positive recurrentNdds have a single stationary PMF. Note that the original
and aggregated DTMCs may be periodic, thus having a unigiesary distribution, but no steady-state (limiting)
one. For example, it may happen that the original DTMC is iapdér while the aggregated DTMC is periodic due
to merging some states of the former. Thus, both finite ircdddle DTMCs and their arbitrary aggregates have a
single stationary PMF. Then the relationship betweenastaty probabilities of DTMCs and their aggregates w.r.t.
ordinary, exact and strict lumpability is established iB][4n particular, it is shown that for every DTMC aggregated
by ordinary lumpability, the stationary probability of éeaggregate state is a sum of the stationary probabilitia$f of
its constituent states from the original DTMC. The inforinatabout individual stationary probabilities of the origl
DTMC is lost after such a summation, but in many cases, thmstay probabilities of the aggregated DTMC are
enough to calculate performance measures of the high+tevdel, from which the original DTMC is extracted. As
mentioned in [25], in some practical applications, the aggted DTMC can be extracted directly from the high-level
model. Thus, the aggregation techniques based on lumpéngf @ractical importance, since they allow one to reduce
the state space of the modeled systems, hence, the coropatatdsts for evaluating their performance.

Let G be a dynamic expression. By definition ef_, the relationRs{G) on T S(G) induces ordinary lumping
on SMQG), i.e. if the states of S(G) are related byRs4G) then the same states 8MQG) are related by ordinary
lumping. The quotient (maximal aggregate BMQG) by such an induced ordinary lumpingS#C.,_(G). Since we
consider only finite SMCs, irreducibility SMQG) will imply irreducibility of SMC.,_(G) and they both are positive
recurrent. Then a unique quotient stationary PMISMC., (G) can be calculated from a unique original stationary
PMF of SMAG) by summing some elements of the latter, as described in &i&jilar arguments demonstrate that
the same results hold f@TMC(G) andDTMC,_(G), as well as foRDTMQG) andRDTMC,,_(G).

8. Stationary behaviour

Let us examine how the proposed equivalences can be usednjoace the behaviour of stochastic processes
in their steady states. We shall consider only formulasifgeg stochastic processes with infinite behavior, i.e.
expressions with the iteration operator. Note that thaiten operator does not guarantee infiniteness of behaviour
since there can exist a deadlock (blocking) within the baldg §éecond argument) of iteration when the corresponding
subprocess does not reach its final state by some reasonsirticufar, if the body of iteration contains ttstop
expression, then the iteration will be “broken”. On the othand, the iteration body can be left after a finite number
of its repeated executions and then the iteration ternundt started. To avoid executing any activities after the
iteration body, we tak&top as the termination argument of iteration.

46

Like in the framework of SMCs, in LDTSIPNs the most commonteyss for performance analysis arodic
(irreducible, positive recurrent and aperiodic) ones. émgodic LDTSIPNS, the steady-state marking probabilities
exist and can be determined. In [76, 77], the followindfisient (but not necessary) conditions for ergodicity of
DTSPNs are statedivenesgqfor each transition and any reachable marking there exdsgaence of markings from
it leading to the marking enabling that transitiobpundednesfor any reachable marking the number of tokens in
every place is not greater than some fixed number)rammtieterminisnfthe transition probabilities are strictly less
than 1).

Consider dtsi-box of a dynamic expressi@n= [E = F * Stop] specifying a process for which we assume that it
has no deadlocks while (repetitive) running the b&dgf the iteration operator. If, starting inH[+ F = Stop]]~ and
ending in [[E = F = Stop]] ~, only tangible states are passed through then the thredieityaonditions are satisfied:
the subnet corresponding to the looping of the iteratiorydods live, safe (1-bounded) and nondeterministic (since
all markings of the subnet are tangible and non-terminalptiobabilities of transitions from them are strictly ldsan
1). Hence, according to [76, 77], for the dtsi-box, its utglag SMC, restricted to the markings of the mentioned
subnet, is ergodic. The isomorphism between SMCs of exjpresand those of the corresponding dtsi-boxes, which
is stated by Proposition 5.1, guarantees 8iMQ(G) is ergodic, if restricted to the states betwedh §[F * Stop]]
and [[E = F = Stop]] ~.

The ergodicity conditions above are not necessary, i.erethrist dynamic expressions with vanishing states
traversed while executing their iteration bodies, such tihe properly restricted underlying SMCs are nevertheless
ergodic, as Example 5.1 demonstrated. However, it has Bemmnsin [7] that even live, safe and nondeterministic
DTSPNs (as well as live and safe CTSPNs and GSPNs) may bergodie.

In this section, we consider only the process expressiotis #at their underlying SMCs contain exactly one
closed communication class of states, and this class stateddbe ergodic to ensure uniqueness of the stationary
distribution, which is also the limiting one. The states befonging to that class do not disturb the uniqueness, since
the closed communication class is single, hence, theyaliransient. Then, for each transient state, the steatly-sta
probability to be in it is zero while the steady-state praligtio enter into the ergodic class starting from that stiat
equal to one.

8.1. Steady state, residence time and equivalences

The following proposition demonstrates that, for two dymaeaxpressions related By _, the steady-state prob-
abilities to enter into an equivalence class coincide. Gameatso interpret the result stating that the mean recuerenc
time for an equivalence class is the same for both expression
Proposition 8.1. Let G, G’ be dynamic expressions with: Go _ G’ andy be the steady-state PMF for SNI&), ¢’

—SS

be the steady-state PMF for SNI®). ThenVH € (DR(G) U DR(G))/x,

Doed= >)

seHNDR(G) seHNDR(G)
Proor. See Appendix A.2. O

Let G be a dynamic expression agdbe the steady-state PMF f&MQG), ¢., _be the steady-state PMF for
SMC,_(G). By Proposition 8.1 (modified foR ;s{G)), we haveVK € DR(G)/z), t,oiss(‘K) S sex ©(9). Thus,
for every equivalence clask’ € DR(G)/z. (), the value ofp., corresponding toc is the sum of all values ap
corresponding to the states frofi Hence, usingMC.,_(G) instead ofSMQG) simplifies the analytical solution,
since we have less states, but constructing the TPI\EEDJTMC .(G), denoted b)PH . also requires somdferts,
including determiningRs{(G) and calculating the probabllltles to move from one “eqenak class to other. The
behaviour ofEDTMC,,_(G) stabilizes quicker than that @DTMC(G) (if each of them has a single steady state),
sinceP:, is denser matrix thaR* (the TPM forEDTMC(G)) due to the fact that the former matrix is smaller and
the transitions between the equivalence classes “inclatlahe transitions between the states belonging to these
equivalence classes.

By Proposition 8.1¢> preserves the quantitative properties of the stationamgdieur (the level of SMCs). Now
we intend to demonstrate that the qualitative properti¢sestationary behaviour based on the multiaction labels ar
preserved as well (the level of transition systems).

47

Definition 8.1. A derived step tracef a dynamic expressio® is a chainX = A;--- A, € (me) whereds €

DR(G), SE S 5.5 Sh, L(Ti) = Ai (1 <i <n). Then theprobability to execute the derived step tr&&e sis

PT(Z. 9 = D ﬁ PT(Ti, S-1).

Ty To T) i=1
[F e YalS=S0 S5 550, L(T7)=A (L<i<n)}

The following theorem demonstrates that, for two dynamiaregsions related by
ities to enter into an equivalence class and start a derbegdisace from it coincide.

the steady-state probabil-

ss

Theorem 8.1. Let G, G’ be dynamic expressions with: G G’ andg be the steady-state PMF for SNIE), ¢’ be
the steady-state PMF for SMG’) andX be a derived step trace of G and.GhenvH € (DR(G) U DR(G"))/«,

D eIPTE 9= > JS)PTES).

scHNDR(G) seHNDR(G')

Proor. See Appendix A.3. O

Let G be a dynamic expressiow, be the steady-state PMF f@MQG), ¢ be the steady-state PMF for
SMGC,_(G) andX be a derived step trace G By Theorem 8.1 (modified deLSS(G)) we have/K € DR(G)/z.c)
Po, (‘K)PT(Z K) = Yeex (SPT(Z,), whereVs € K, PT(Z, K) = PT(Z, s).

"We now present a result not concerning the steady-statepildles, but revealing very important properties of
residence time in the equivalence classes. The followinggsition demonstrates that, for two dynamic expressions
related by~ the sojourn time averages in an equivalence class coinasdeell as the sojourn time variances in it.

Proposition 8.2. Let GG’ be dynamic expressions with: G G’. ThenVH € (DR(G) U DR(G"))/x,
Sknpre)(H N DR(G)) = Sknpre):(H N DR(G)),
VAR or@)2 (H N DR(G)) = VAR prG)2 (H N DR(G)).
Proor. See Appendix A.4. O
Example 8.1. Let
E = [({a}, 3) * (({b}, 3); (e}, 2)a0l({ch, 3)2)) = Stop],
E’ = [({a), 3) = (1), 3)1; ({0}, 2)1)0(({b}, 3)2; (fc}, 3)2)) * Stop].

We haveEo E'.
DR(E) consists of the equivalence classes

s = [[({a} 3) = (({b}, 3); (e}, $)all({ch, 3)2)) * Stop]]~,
s = [[({ah, 2) = (b}, 1); ((teh, DaM((c), 2)2)) * Stop]]~,
ss = [[(fa), 3) = (({b}, 3); ((fc}, 3)101({c}, 3)2)) * Stop]] .

DR(E’) consists of the equivalence classes

s, = [[(fa}, 3) = (b}, 3)1: (fe, 3)1)O(({BY, 3)2; (fch, 3)2)) = Stop]]-,
s, = [[({a), 3) * (b}, 3)1; (fch, 3))D(({bY,)2 (fc), 3)2)) * Stop]] ~,
s, = [[({a), 3) * (b}, 3)1; (fch, 3))D(({bY,)2 (fc), 3)2)) = Stop]] ~,
s, = [[({a}, 3) * (1), 3)1; ({e), 5)1)0(({b}, 3)2; ({c), 3)2)) * Stop]] .

48

%

O,

Figure 18:< . preserves steady-state behaviour and sojourn time piepérithe equivalence classes.

The steady-state PMRsfor SMQEE) and¢’ for SMQEE’) are

P AN A
‘10_ 9292 7‘10_ 729494-

Consider the equivalence class (with respecRE, E")) H = (s, s’3 s,}. One can see that the steady-state
1

probabilities for H coincide: X 4/preE) ¢(S) = ¢(Ss) = 1 = 3 = ¢(8) +¢(s) = ZscwrorE) ¥'(S)-
LetX = {{c}}. The steady-state probabilities to enter mto the equivedeclassH and start the derived step

ee
trace = from it coincide as well:p(s3)(PT({((c},)1} s3) + PT(I({ch 3)2)%0)) = 3(3+3) =3 =3-3+% 3=

¢'(PT(((c),)}) + ¢/ (S)PT(((c), 3)2). 5y).

Further, the sojourn tlme averages in the equwalence ci:élssommde S & E,)Q(DR(E))Z(?{ N DR(G))

jbll—‘

L = = = j—
Sk, Enoreyis)_ 1_PM(’53H53)) T TPM(sss) E 2= _% = 1—PM(s’3 CA PM(S s~ TPM(s, s')|% SR
SREEINORE))2(S S‘JRSS(E E)N(DORE £y (H N DR(G)).
Finally, the solourn tlme variances in the equivalence slascoincide: VAI% EF)n(DR(E))Z((}{ N DR(G)) =
VAR, ((ss) = PM(Sshiss)) _ _ PM(ss.ss) _ 5 _ 5 _ _ _PM&S) _ _PMEs)
s(EE)NORE)? (1-PM(isshiss))? — (1-PM(ss.%)? — (1-1)7 ~ (1_%) = TP~ @PM(S,)

HUESARESA . _ L _ ,
s s = VAR EEnorE) (1S D) = VAR EE)nor@E)e (1 N DRGY)). .
In Figure 18, the marked dtsi-boxes corresponding to theadyin expressions above are presented, i.e.
N = Boxisi(E) and N = Boxgsi(E’).

8.2. Preservation of performance and simplification of italgsis

Many performance indices are based on the steady-statalglitibs to enter into a set of similar states or, after
coming in it, to start a derived step trace from this set. Tih@larity of states is usually captured by an equivalence
relation, hence, the sets are often the equivalence cla8seposition 8.1, Theorem 8.1 and Proposition 8.2 guar-
antee coincidence of the mentioned indices for the exgmesselated by~ . Thus,<_ (hence, all the stronger
equivalences we have considered) preserves performastaobiastic systems modeled by expressions of dtsiPBC.

In addition, it is easier to evaluate performance using arCSiith less states, since in this case the size of the
transition probability matrix will be smaller, and we shatilve systems of less equations to calculate steady-state
probabilities. The reasoning above validates the follgwirethod of performance analysis simplification.

1. The investigated system is specified by a static expmess$idtsiPBC.
49

TS(E) H TS, (E) HSMCﬁSS (E) Per,, }——‘Performance
!
\‘RDTMCﬁSS (B)—~{ve.,, |

Figure 19: Equivalence-based simplification of perforneaeealuation.

N

. The transition system of the expression is constructed.

3. After treating the transition system for self-similgriti step stochastic autobisimulation equivalence for the
expression is determined.

4. The quotient underlying SMC is constructed from the cpratiransition system.

5. Stationary probabilities and performance indices al@ézted using the SMC.

The limitation of the method above is its applicability oritythe expressions such that their underlying SMCs
contain exactly one closed communication class of statekttds class should also be ergodic to ensure uniqueness
of the stationary distribution. If an SMC contains sevetabed communication classes of states that are all ergodic
then several stationary distributions may exist, whichethepon the initial PMF. There is an analytical method to
determine stationary probabilities for SMCs of this kindaaedl [59]. Note that the underlying SMC of every process
expression has only one initial PMF (that at the time momgnihénce, the stationary distribution will be unique in
this case too. The general steady-state probabilitieharedalculated as the sum of the stationary probabilitiedl of
the ergodic classes of states, weighted by the probabititienter into these classes, starting from the initiatstat
passing through some transient states. It is worth applyiegnethod only to the systems with similar subprocesses.

Before calculating stationary probabilities, we can farthreduce the quotient underlying SMC, using the algo-
rithm from [72, 5, 6] that eliminates vanishing states frdma torresponding EDTMC and thereby decreases the size
of its TPM. For SMCs reduction we can also apply an analoguketieterministic barrier partitioning method from
[42] for semi-Markov processes (SMPs), which allows onestidgrm quicker the first passage-time analysis. Another
option is the method of stochastic state classes from [G1jéneralized SMPs (GSMPs) reduction, allowing one to
simplify transient performance analysis (based on thestesm probabilities of being in the states of GSMPs).

Alternatively, the results at the end of Section 7 allow usitaplify the steps 4 and 5 of the method above
by constructing the reduced quotient DTMC (instead of thetignt underlying SMC) from the quotient transition
system, followed by calculating the stationary probaiefiitof the quotient underlying SMC using this DTMC, and
then obtaining the performance indices. We first merge thavalgnt states in transition systems and only then
eliminate the vanishing states in Markov chains. The re&strat transition systems, being a higher-level formalism
than Markov chains, describe both functional (qualitgtased performance (quantitative) aspects of behaviourawhil
Markov chains represent only performance ones. Thus, ditimg vanishing states first would destroy the functional
behaviour (which is respected by the equivalence used faienting), since the steps withftBrent multiaction parts
may lead to or start from fferent vanishing states.

Figure 19 presents the main stages of the standard andaiteraquivalence-based simplification of performance
evaluation described above.

9. Shared memory system

In this section with a case study of the shared memory systershaw how steady-state distribution can be used
for performance evaluation. The example also illustrdtestethod of performance analysis simplification above.

9.1. The standard system

Consider a model of two processors accessing a common sim@radry described in [72, 5, 6] in the continuous
time setting on GSPNs. We shall analyze this shared memetgrsyin the discrete time stochastic setting of dtsiPBC,
where concurrent execution of activities is possible, &/hib two transitions of a GSPN may fire simultaneously (in
parallel). The model works as follows. After activation bétsystem (turning the computer on), two processors are
active, and the common memory is available. Each processorarjuest an access to the memory after which the
instantaneous decision is made. When the decision is mdaeaur of a processor, it starts acquisition of the memory

50

Processor 1 Memory Processor 2

[ood
Ootd 0o
oono ooad
oooan ooono
 — Y — - | —a;

Figure 20: The diagram of the shared memory system.

and the other processor should wait until the former one éadsemory operations, and the system returns to the
state with both active processors and the available comnssnary. The diagram of the system is depicted in Figure
20.

Let us explain the meaning of actions from the syntax of d@&iRexpressions which will specify the system
modules. The actiom corresponds to the system activation. The actiond < i < 2) represent the common
memory request of processiorThe instantaneous actiodscorrespond to the decision on the memory allocation in
favour of the processar The actionsm represent the common memory access of procesJdre other actions are
used for communication purposes only via synchronizatioml, we abstract from them later using restriction. For
a,...,an € Act(n e N), we shall abbreviatesy a; --- syanrsa;--- rsa, to sr(ag,...,an).

The static expression of the first processor is

1 1 1
Ea = [({xd}, E) *(({ra}, E); ({d, ya}, b2); ({my, z1}, 5)) * Stop].

The static expression of the second processor is

1 1 1
Ez = [({x2}, E) « (({ra}, 5); ({d2, y2}, ba); ({me, 22}, 5)) * Stop].

The static expression of the shared memory is

Es = [((@ 5. %1) » (931 2); (), Z)0(5).b); (173, 5)) = Stopl

The static expression of the shared memory system with teogssors is

E = (E1llE2lIEs) sr (X1, X2, Y1, Y2, 1, Z2).
Let us illustrate anfeect of synchronization. As result of the synchronizatiomaihediate multiactions
({di, yi}, b1) and {Vi}, b1) we obtain (di},b2) (1 < i < 2). The synchronization of stochastic multiactiofrs (z}, %)
and (z}, 3) produces{my},) (1 < i < 2). The result of synchronization ofg(X1, %2}, 3) with ({x.}, 3) is ({a, %2}, 3),
and that of synchronization ofg, X1, 2}, 3) with ({x2}, 3) is ({a, X1}, 3). After applying synchronization tdd, %}, 3)
and (X2}, 1), as well as to{@, X1}, 1) and (x.}, 2), we obtain the same activityaf, 2).
DR(E) consists of the equivalence classes

st = [([(Axa}, 2) * ((ra), 3); ({da, ya), Ba); (Im, 21}, 2)) = Stop]|
[({%2), 3) * (({r2), 2); (12, y2), Be); ({me, 22}, 3)) * Stop]|
[(fa, X1, %2}, 3) = (192}, bo); ({22}, 3)O({Y2) ba); (122}, 3))) * Stop])

ST (X1, X2, Y1, Y2, Z1, 22)] ~»

51

S = [([({xa}, 2) = ((ra), 3); (D1, ya), Ba); ((mu, 2}, 3)) = Stop] |

[(1%2), 3) * (({r2), 2); (12, y2), Be); ({me, 22}, 3)) * Stop]|
[({a, X1, %2}, 3) = (((1Y2}, be); ({22}, 2NO(Y2) ba); (122}, 3))) * Stop])

Sr (X1, X2, Y1, Y2, Z1, 22)] ~»

s = [([({xa}, 2) = ((ra), 3); ((da, ya), Ba); ((mu, 2}, 3)) * Stop] |
[({%2}, 3) * (({r2}, 2); ({2, Y2}, Be); ({me, 22}, 3)) = Stop]|
[(fa, X1, 53}, 3) = (172}, ba); (), 3)O(((Y2), he); (122}, 3))) * Stop])

St (X1, X2, Y1, Y2, Z1, 22)] ~»

se = [([(1xa}, 3) = ((ra), 3); ({da, ya), Ba); (Im, 21, 2)) = Stop]|
[(1%2), 3) * (({r2), 2); (1d2, y2), Be); ({me, 22}, 3)) * Stop]|
[({a, X1, %2}, 3) = (((1Y2}, be); ({22}, 3)O(({Y2) ba); ({22}, 3))) * Stop])

S (X1, X2, Y1, Y2, 71, 22)] ~»

ss = [([({xa), 3) * ((Irad, 2); ({de, ya), be); (fm, z2), 3)) * Stop]|
[({%2},) * (({r2}, 2); ({d2, Y2}, ba); ({me, 2}, 3)) = Stop]|
[({a, X1, %2}, 3) = (172}, bo); ({22}, SNO({Y2)) (122}, 3))) * Stop])

St (X1, X2, Y1, Y2, Z1, 22)] ~»

s6 = [([({xa), 3) * ((rad, 2); ({dw, ya), be); (tm, z2), 3)) = Stop]|
[({%2}, 3) * (({r2}, 2); ({2, Y2}, Be); ({me, 22}, 3)) = Stop]|
[({a %1, %2}, 3) = (172}, Bo); (12} 2)OCY2) ba); (22}, 2))) + Stop])

S (X1, X2, Y1, Y2, Z1, 22)] ~»

s7 = [([({xa}, 3) = ((fra, 3); ({da, ya), Ba); (Im, 21, 2)) = Stop]|
[({%2}, 3) = (({r2h, 2); ({2, Y2}, Be); ({me, 22}, 3)) = Stop]|
[(fa, X1, 53}, 3) = (172}, ba); (), 3)I(({¥2), he); (122}, 3))) * Stop])

S (X1, X2, Y1, Y2, Z1, 22)] ~»

s = [([({xa}, 2) = ((ra}, 3); ((da, ya), Ba); (M, 2}, 3)) = Stop] |
[({%2},) * (({r2}, 2); ({d2, Y2b, ba); (Ime, 22}, 3)) + Stop]|

[({a, X1, %2}, 3) = (((1Y2}, be); ({22}, SNO({Y2) ba); (122}, 3))) * Stop])
st (X1, X2, Y1, Y2, 21, 22)] ~»
o = [([({xa}, 3) = ((fra}, 3); ({da, ya}, Ba); (I, 21}, 2)) = Stop]|
[({%2}, 3) = (({r2}, 2); ({2, Y2}, Be); ({me, 22}, 3)) = Stop]|
[(fa, X1, %2}, 2) = (192}, be); ({22}, 2NOT2) b); (122}, 2))) * Stop))

St (X1, X2, Y1, Y2, 71, 22)] ~.

We haveDRr (E) = {s1, %, S5, S7, S, So} andDRy (E) = {S3, u, So}-

The states are interpreted as followsis the initial states,: the system is activated and the memory is not requested,
s3: the memory is requested by the first processgr,the memory is requested by the second processorthe
memory is allocated to the first processgr,the memory is requested by two processsrsthe memory is allocated
to the second processas, the memory is allocated to the first processor and the memagguested by the second
processorsy: the memory is allocated to the second processor and the mesn@quested by the first processor.

In Figure 21, the transition systeS(E) is presented. In Figure 22, the underlying SNSMQE) is de-
picted. Note that, in step semantics, we may execute thewfslyy activities in parallel: {f1}, %), ({ra}, %), as well

52

53

{Urir),

{m2}. D)} %

({d1},82),1

Figure 21: The transition system of the shared memory system

{m1}.4).4

{m1}.4).%

{{rih),

(a}.$). %

({d1}.82). %

S6

Figure 22: The underlying SMC of the shared memory system.

53

({ra}.)3, 1

{{r2} 5,

{m1}, D43

S4

{ma}.). §

({d2}.b2). %

({m2}, 1)1

({d2},82),1

Table 5: Transient and steady-state probabilities for th&MC of the shared memory system.

[k O] 5 [10 [16 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | o |
I L1] O 0 0 0 0 0 0 0 0 0 0

gl [0 0 | 00754/ 0.0859] 0.0677] 0.0641] 0.0680] 0.0691| 0.0683] 0.0680| 0.0681] 0.0682
y;[K| | 0] 0.2444] 0.2316] 0.1570] 0.1554] 0.1726] 0.1741] 0.1702] 0.1696] 0.1705] 0.1707| 0.1705
y:[K | 0] 0.2333] 0.0982] 0.1516] 0.1859] 0.1758] 0.1672] 0.1690] 0.1711] 0.1708] 0.1703] 0.1705
yi[K] | 0] 0.0444] 0.0323] 0.0179] 0.0202] 0.0237] 0.0234] 0.0226| 0.0226] 0.0228| 0.0228] 0.0227
yi[0] 0 [01163]0.1395] 0.1147] 0.1077] 0.1130] 0.1150] 0.1139] 0.1133] 0.1136] 0.1136

as (ra), 2), (fmp}, 3), and (rz}, 3), (Imy},). The statess only exists in step semantics, since it is reachable exclu-
sively by executing{f1}, 1) and (r»}, 2) in parallel.
The average sojourn time vectorBfis

4 8 8
-(8,2,0,0,2,0,2,4,4.
SJ (8, 3,0,0, 5,0, 54)
The sojourn time variance vector Bfis

4 24 24
VAR= (56, 9 0,0, 25 o, 25 12, 12).

The TPM forEDTMC(E) is

010000000
ool lolooo
000010000
00000O0T10O

Pri=|0 4 0f00020
0000000; 3
ot 1000003
000100000
001000000

In Table 5, the transient and the steady-state probabififigk] (i € {1, 2, 3,5, 6, 8}) for the EDTMC of the shared
memory system at the time momehkts {0, 5, 10,...,50} andk = ~ are presented, and in Figure 23, the alteration
diagram (evolution in time) for the transient probabiltis depicted. It is dticient to consider the probabilities for
the states;, S, S3, S5, S, Ss 0nly, since the corresponding values coincidedprs,, as well as fosss, s7, and forsg, .

The steady-state PMF f@DTMC(E) is

(03 1515151 155 5
i 44’ 88’ 88’ 88’ 44’ 88’ 44’ 44)°
The steady-state PMF* weighted bySJis
1 3 3 5 5
(O, ﬂ, O, 0, ﬂ, O, ﬂ, ﬁ, ﬁ) .
It remains to normalize the steady-state weighted PMF bigighig it by the sum of its components

17
st =
v 11
Thus, the steady-state PMF 8MQE) is

54

1.(#.
—0— Y1"[K]
0.8* —m— Yo" [K]
—o— ¢3"[K]
0.6 —a— Y57 [K]
—v— Y67 [K]
0.4
—— yYg'[K]
0.2 ‘
e
" '4"”{\»‘.{ S0 5SSOSO 060066066066666606606660
‘A"\ Iy v\” 9
AN T ¢S T PP P PP PP P PP P PP P PP P VPP PP PP PP PIIIIIIIPY k

0 0 0 40 0

Figure 23: Transient probabilities alteration diagramtfer EDTMC of the shared memory system.

1 3 3 5 5
‘10_(091_7’090’1_7’ 91_7’1_791_7 .
Otherwise, from T S(E), we can construct the DTMC &, DTMC(E), and then calculate using it.

In Figure 24, the DTMTMC(E) is depicted.
The TPM forDTMC(E) is

g%ooooooo
0 ;7 201 o000
0 00O010TU0O0TO
0 000O0OT1O0O
ongoggoogo
oooooooié
ofio0o002%20 3
0 003%00020
0 03 000O0O0OFQO0?3?

In Table 6, the transient and the steady-state probabiitid] (i € {1, 2,3,5, 6, 8}) for the DTMC of the shared
memory system at the time momehkts {0, 5, 10,...,50} andk = ~ are presented, and in Figure 25, the alteration
diagram (evolution in time) for the transient probabiltis depicted. It is dticient to consider the probabilities for
the states,, 9, S3, S5, S, Ss only, since the corresponding values coincidesprs,, as well as fosss, s7, and forsg, .

The steady-state PMF f@TMC(E) is

ol 5511155
V=\"2156567 847 21 21)
Remember thabRy (E) = {S1, %, S5, 7, Se, So} andDRy(E) = {ss, s, S6}. Hence,

55

Table 6: Transient and steady-state probabilities for th&10 of the shared memory system.

Figure 24: The DTMC of the shared memory system.

k

[k O] 5 [10 [15 [20 | 25 | 30 [35 | 40 | 45 | 50 | = |
Yy1[K] || 1| 0.5129| 0.2631| 0.1349| 0.0692| 0.0355| 0.0182| 0.0093| 0.0048| 0.0025| 0.0013 0

o[kl || 0] 0.1161| 0.0829| 0.0657| 0.0569| 0.0524| 0.0501| 0.0489| 0.0483| 0.0479| 0.0478| 0.0476
W3[K] || 0| 0.0472| 0.0677| 0.0782| 0.0836| 0.0864 | 0.0878| 0.0885| 0.0889| 0.0891| 0.0892| 0.0893
Ys[K] || 0] 0.0581| 0.0996| 0.1207| 0.1315| 0.1370| 0.1399| 0.1413| 0.1421| 0.1425| 0.1427| 0.1429
WwelK] || 0| 0.0311| 0.0220| 0.0171| 0.0146| 0.0133| 0.0126| 0.0123| 0.0121| 0.0120| 0.0120| 0.0119
YwglK] || 0| 0.0647| 0.1487| 0.1923| 0.2146| 0.2260| 0.2319| 0.2349| 0.2365| 0.2373| 0.2377| 0.2381

56

1.G
’ —o— y[k]
0.8 —m— ylK]
—o— Y3lK]
08 —a— yelk]
i —¥— YelK]
0.4~
I —5— YglK]
P SAA™ E66666606000000080600000
5555 . ='>.'
> f 4 T 'H..‘. ‘f 400
"ii}.‘.,_ B «
10 20 30 40 0

Figure 25: Transient probabilities alteration diagramtfe DTMC of the shared memory system.

D) = (1) + u() + Y(Ss) + Y(s7) + (o) + (%) = ;_I

seDRy (E)

By Proposition 5.2, we have

(p(S]_)ZOi—%:O,

_ 1 21_ 1
90(52)—2—1'1—7—1—7,

¢(ss) =0,

¢(4) =0,
ps)=1-2=3%
¢(ss) = 0,
o(s)=3-2=2
p()=% " 5=1
po)=5 8=%

Thus, the steady-state PMF SMQ(E) is
1 3 3 5 5
p= (O, 1—7,0,0, 1—7,0, 1717 17)"

This coincides with the result obtained with the usg¢oindSJ

Alternatively , from T S(E), we can construct the reduced DTMCBfRDTMQE), and then calculate using it.

Remember thabRr(E) = {S1, S, S5, S7, S, So} andDRy(E) = {3, &4, Ss}. We reorder the elements BIR(E), by
moving the equivalence classes of vanishing states to 8tgfisitions:ss, s1, S, S1, 2, S5, S7, S8, So-

The reordered TPM foDTMC(E) is

57

Figure 26: The reduced DTMC of the shared memory system.

0 000010 00O
0 000 0O 1 O0UO0
0 00O0O0OTOT OI3 3
ooog%oooo
P=|%2 % 2020000
0%00%%0%0
$ 000302 03
020000020
2 0000O0TO0OO?:
The result of the decomposiiy are the matrices
0 00 g%oooo
i1 1 1
000 001000 171 01909,
C=000,D=000100,E=180,'::0?8383
i1 8 8 8 8
0 0O 0 00035 3 0 1o 000020
3 00 0 00O0O0:3:2

SinceC! = 0, we havevk > 0, CX = 0, hence| = 0 and there are no loops among vanishing states. Then

|
G=ZC"=C°=I.
k=0

Further, the TPM foRDTMQE) is

P°=F+EGD=F+EID =F+ED=

O O O O OwN
O O ®IF®IRRIFol-
Ble O ®lF®IwsFE O
O AlR®IWDIREAIE O
O Blw O ®iuI- O
Blw O wiw Ok o

In Figure 26, the reduced DTMRDTMQE) is presented.

58

Table 7: Transient and steady-state probabilities for tB& RC of the shared memory system.

[k O] 5 [10 [156 [20 | 25 | 30 | 35 | 40 | 45 | 50 | o |
Y[k][1] 05129] 0.2631] 0.1349] 0.0692] 0.0355] 0.0182] 0.0093] 0.0048] 0.0025[0.0013] 0

¢§[k] 0 0.1244| 0.0931| 0.0764| 0.0679| 0.0635| 0.0612| 0.0600| 0.0594| 0.0591 | 0.0590| 0.0588
l//g[k] 0| 0.0863| 0.1307| 0.1530| 0.1644| 0.1703| 0.1733| 0.1748| 0.1756| 0.1760| 0.1763| 0.1765
l//;[k] 0| 0.0951| 0.1912| 0.2413| 0.2670| 0.2802| 0.2870| 0.2905| 0.2922| 0.2932| 0.2936| 0.2941
1.@
—o— Y1°[K]
0.8
—m— Y K]
—o—y3°[K]
0.6
—— Y5 K]
0.4
0.2 “ |
% g ‘m
'/ 1 Y
Z O 0000000000 k
10 20 30 40 0

Figure 27: Transient probabilities alteration diagramtfer RDTMC of the shared memory system.

In Table 7, the transient and the steady-state probabilitigk] (i € {1, 2, 3,5}) for the RDTMC of the shared
memory system at the time momehkts {0, 5, 10,...,50} andk = ~ are presented, and in Figure 27, the alteration
diagram (evolution in time) for the transient probabilitis depicted. It is dticient to consider the probabilities for
the states, S, S5, Ss only, since the corresponding values coincidedps;, as well as forsg, So.

The steady-state PMF fRDTMQE) is

o_fpL 3355
V= 171717 17 17)°
Note thaty® = (y°(s1), ¥°(S2), ¥°(S5), ¥°(S7), ¥° (Ss), ¥° (Sv)). By Proposition 5.3, we have

e(s) =0, @() =1 e(s)==2. os)=2 o(s)=2 o) =75

Thus, the steady-state PMF 8MQE) is

1 3 3 55
¢ = (091_7>09071_7> 91_7> 1_79 1_7)
This coincides with the result obtained with the us¢oaindSJ
We can now calculate the main performance indices.

59

T I (T I R TS T (my 3 || [dmabd)

o o7 o bow

Figure 28: The marked dtsi-boxes of two processors, shasgdary and the shared memory system.

e The average recurrence time in the statavhere no processor requests the memory, calledibeage system
run-through is 2 = 17.

e The common memory is available only in the stadgss;, 4, Ss. The steady-state probability that the memory
is available ispz + @3+ @4+ g = 1% +0+0+0= 1% Then the steady-state probability that the memory is used
(i.e. not available), called thehared memory utilizatigris 1- & = 1.

e After activation of the system, we leave the statdor ever, and the common memory is either requested or
allocated in every remaining state, with exceptionsgf Thus, therate with which the necessity of shared

memory emergesincides with the rate of leaving, calculated ags = & - § = &.

e The parallel common memory request of two procesgers,), ({r2}, % }is only possible from the stas. In
this state, the request probability is the sum of the exenytiobabilities for all multisets of activities contaigin

both (ry}, %) and (rz}, %). Thus, thesteady-state probability of the shared memory request freorprocessors
1 . 1_ 1

IS 2 Zpriqra arar e PTL %) = 55 - 3 = 55
e The common memory request of the first procesSqn},(%) is only possible from the states, s;. In each of
the states, the request probability is the sum of the exattiobabilities for all sets of activities containing

({ra} %). Thesteady-state probability of the shared memory request franfirst processois

2 L prnyen PTOG $) + 97 Ty byery PTG) = (5 +3)+ (R +3) = &

In Figure 28, the marked dtsi-boxes corresponding to themhyo expressions of two processors, shared memory
and the shared memory system are presentedii2.Boxsi(Ei) (1 < i < 3) andN = Boxsi(E).

9.2. The abstract system and its reduction

Let us consider a modification of the shared memory systetm alistraction from identifiers of the processors,
i.e. such that they are indistinguishable. For example, are just see that a processor requires memory or the

60

memory is allocated to it but cannot observe which proceissior We call this system the abstract shared memory
one. To implement the abstraction, we replace the actipdsm (1 < i < 2) in the system specification lwyd, m,
respectively.

The static expression of the first processor is

Fu = [(0al)= (1), 3); (1) £2; (m 1), 5)) » Stop].

The static expression of the second processor is

F2 = [(h) (1), 3); (1Y), £); (m 21,) » Stop].

The static expression of the shared memory is

Fa = [((@ 5. %1,) * (93 8); ())05, b); (170, 5)) = Stopl

The static expression of the abstract shared memory systémtwo processors is

F = (FllF2llF3) sr (X1, X2, Y1, Y2, 21, Z2).

DR(F) resemble®R(E), andT S(F) is similar toT S(E). We haveSMQF) =~ SMQE). Thus, the average sojourn
time vectors oF andE, as well as the TPMs and the steady-state PMFERTMC(F) andEDTMC(E), coincide.

The first, second and third performance indices are the samthé standard and the abstract systems. Let us
consider the following performance index which is specifittte abstract system.

e The common memory request of a process$oy; %) is only possible from the states, s5, ;. In each of the
states, the request probability is the sum of the executioipgbilities for all sets of activities containing, %).
The steady-state probability of the shared memory request faoprocessoris ¢, Z‘TK",,%H} PT(TY, s) +

_1(1 1 1 3 (3 1 3 (3 1\ _ 15
@5 Zrin.ben PTG) +¢7 Do e PTOLS) = S (5+5+3)+ 2(3+3)+ 23+ 3) =&

The marked dtsi-boxes corresponding to the dynamic exipressf the standard and the abstract two processors
and shared memory are similar, as well as the marked dt&shoarresponding to the dynamic expression of the
standard and the abstract shared memory systems.

We haveDR(E)/,RSS(E) = (T, o, K, Ka, Ks, Ke), whereKy = {s1} (the initial state)J = {sp} (the system is
activated and the memory is not requesté® = {s3, 4} (the memory is requested by one processkil) = {Ss, 7}

(the memory is allocated to a processdf}, = {Ss} (the memory is requested by two processoks) = {Ss, So} (the
memory is allocated to a processor and the memory is regliegtanother processor).

We also havdDRT(F)/RSS(E) = {7(1,7(2,7(4,7(6} andDRV(F)/RSS(E) = {(](3,7(5}.

In Figure 29, the quotient transition systé’rﬁ;ﬁss(f) is presented. In Figure 30, the quotient underlying SMC
SMC:SS(E) is depicted. Note that, in step semantics, we may execatétlowing multiactions in parallel{r}, {r},
as well agr}, {m}. The stateKs only exists in step semantics, since it is reachable exalysby executingr} and{r}
in parallel.

The quotient average sojourn time vectoiFois

4 8
SJ =(8,=,0,=,0,4].
[30504
The quotient sojourn time variance vectorfofs
4 24
VAR = (56, 5 0, >E 0, 12).

The TPM forEDTMC,,_(F) is

61

%(IC4 \ {m}vé

{{r}{m}}
{d},1

{r}3 IC3 {rhirhd

%(]CG J {dr1 IC5

Figure 29: The quotient transition system of the abstraateshmemory system.

(’Cl)8

SMC_ (F)

=
.

(S

il
w
(=]
W=

4< ,CG/ 1 IC5 0

Figure 30: The quotient underlying SMC of the abstract shanemory system.

62

Table 8: Transient and steady-state probabilities for timignt EDTMC of the abstract shared memory system.

[k JO[5 [10 [156 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | o |
VK[L] O 0 0 0 0 0 0 0 0 0 0

v, [K[[0] 0 |0.0754]0.0859] 0.0677| 0.0641| 0.0680| 0.0691| 0.0683| 0.0680 0.0681 0.0682
y,’[Kl || 0] 0.4889] 0.4633] 0.3140| 0.3108] 0.3452| 0.3482| 0.3404] 0.3392] 0.3409] 0.3413| 0.3409
v,’[K] || 0] 0.4667] 0.1964] 0.3031] 0.3719] 0.3517| 0.3344] 0.3380] 0.3422] 0.3417] 0.3407] 0.3409
y.’[Kl || 0] 0.0444] 0.0323] 0.0179] 0.0202| 0.0237| 0.0234] 0.0226] 0.0226] 0.0228] 0.0228] 0.0227
v [K[[0] 0 |0.2325]0.2791] 0.2294] 0.2154] 0.2260] 0.2299| 0.2277| 0.2267] 0.2271] 0.2273

0.8

0.67

0.47

0.2

—0— 1" [K]

—u— " [K]
}‘ —o— 3" [K]

14 —— ¢4 [K]

—v— 5" [K]

..ﬂ' ‘@“{wwnn — oo

.“ "
" YRR WO OPCEEEEOOE0066606660660

’5 H» PO TPV VPPV TPV PPV VPPV PV VIVPIPVIIVIVIVVIVIVIVIVIIVIIYPY k
Figure 31: Transient probabilities alteration diagramtfer quotient EDTMC of the abstract shared memory system.

0 0 40 0

010000
002010
pe_[0 00100
“lottoos
0000O0O01
001000

In Table 8, the transient and the steady-state probabilitigk] (1 < i < 6) for the quotient EDTMC of the
abstract shared memory system at the time momeat®, 5, 10, . .., 50} andk = o are presented, and in Figure 31,
the alteration diagram (evolution in time) for the transigrobabilities is depicted.

The steady-state PMF f&@DTMC,,_(F) is

The steady-state PMF* weighted bySJ is

63

8!

DTMC,_(F)

oo~

ool

o]

=
=

C)
i

00l
e

w
N

C(IC6) 1 ,CB

Figure 32: The quotient DTMC of the abstract shared memastesy.

110711 11
It remains to normalize the steady-state weighted PMF bigighg it by the sum of its components

(O 1 O,E,O 10).

17
% T _ '
v'sT =3
Thus, the steady-state PMF 8MC.,_(F) is
) 1 6 10
@ = 091_77 91_77091_7 .

Otherwise, fromTSiss(E), we can construct the quotient DTMC Bf DTMCiSS(E), and then calculatg’ using

In Figure 32, the quotient DTMOTMC,,_(F) is depicted.
The TPM forDTMC,, _(F) is

1 00 00
851010

4 2 4
F,,_000100
053535 03
0 00 0 0 1
0 010032

In Table 9, the transient and the steady-state probabilifig] (1 < i < 6) for the quotient DTMC of the abstract
shared memory system at the time moméats {0, 5, 10,...,50} andk = o are presented, and in Figure 33, the
alteration diagram (evolution in time) for the transienlpabilities is depicted.

64

Table 9: Transient and steady-state probabilities for timignt DTMC of the abstract shared memory system.

k

10

20

30

| [0] 5 | | 15] | 25] | 35 | 40 [45 | 50 | o]
Yi[K] || 1] 05129 0.2631| 0.1349| 0.0692| 0.0355| 0.0182| 0.0093| 0.0048| 0.0025| 0.0013 0
Yo[K] || 0] 0.1161| 0.0829| 0.0657| 0.0569| 0.0524| 0.0501| 0.0489| 0.0483| 0.0479| 0.0478| 0.0476
YolK] || 0| 0.0944| 0.1353| 0.1564| 0.1672| 0.1727| 0.1756| 0.1770| 0.1778| 0.1782| 0.1784| 0.1786
y,lKl || 0] 0.1162| 0.1992| 0.2414| 0.2630| 0.2740| 0.2797| 0.2826| 0.2841| 0.2849| 0.2853| 0.2857
Ye[Kl || 0]0.0311| 0.0220| 0.0171)| 0.0146| 0.0133| 0.0126| 0.0123| 0.0121| 0.0120| 0.0120| 0.0119
welk] || 0] 0.1294| 0.2974| 0.3845| 0.4292| 0.4521| 0.4638| 0.4698| 0.4729| 0.4745| 0.4753| 0.4762
1.@
-@-y1'[K]
o' [K]
0.8 - 3'[K]
g/ [K]
0.6 -v s’ [K]
' = ye'[K]
~AOEEE00 uuuuuuuuuuuuuuuuuu@@
3330""
44470 AR 0D A AD A AA KA AA KA AA KA MDA A2 k

Figure 33: Transient probabilities alteration diagramtfa quotient DTMC of the abstract shared memory system.

65

The steady-state PMF f@TMC,,_(F) is
(oL 52110
v=\"2r2e 784 21)
Remember thabRr (F) /. g = (K1, Kz, Ka, Ko} andDRy(F) /) = (%3, Ks). Hence,

S WK =) + 0)+ (Ke) + 0 (K =

KeDRy (F) I rss(F)

By the “quotient” analogue of Proposition 5.2, we have

¢'(K1)=0-5 =0,
G0 = B b
¢'(K3) = 0,
)=3-B=%
¢'(Ks) =0,

Thus, the steady-state PMF 8MC.,_(F) is

1 6 _ 10
y 1_7, 0, 1_7, 0, 1_7 .
This coincides with the result obtained with the usg/6fandSJ. _ _
Alternatively, from TS,_(F), we can construct the reduced quotient DTMCRfRDTMG,_(F), and then

calculatey’ using it. _ _
Remember thaDRT(F)/,RSS(E) = {K1, K2, K4, K5} and DRV(F)/‘RSS(E) = {K3,Ks}. We reorder the elements of

DR(E)/RSS(E), by moving the equivalence classes of vanishing statestéir8t positionsKs, Ks, K1, Kz, Ka, Ke.
The reordered TPM fodTMC,,_(F) is

¢ =10

0 00 0O 10

0 00 0 01

, 00 f oo

Pe=]l1 1 8 E 00

4 4

1001 33

i 5% 8

7 0 0 0 0 4

The result of the decomposiij are the matrices

0 0 L % 0 0
, (00, (0OO0O10_. |2 2]_ |02 00O
C‘(oo)’D‘(0001)’E‘%O’F‘oggg
7 O 0 0 0 3

SinceC™ = 0, we havevk > 0, C’* = 0, hence) = 0 and there are no loops among vanishing states. Then

|
Gl:ZCd =C,O=I.
k=0

Further, the TPM foRDTMC,,_(F) is

66

7
8

Figure 34: The reduced quotient DTMC of the abstract sharemhony system.

Table 10: Transient and steady-state probabilities forédeced quotient DTMC of the abstract shared memory system.

[k O] 5 [10 [156 | 20 | 25 | 30 | 35 | 40 | 45 [50 [o |
v, "] [[1] 0.5129] 0.2631] 0.1349] 0.0692] 0.0355] 0.0182] 0.0093] 0.0048] 0.0025] 0.0013] 0

v,"[K] || 0] 0.1244] 0.0931] 0.0764 0.0679] 0.0635| 0.0612| 0.0600| 0.0594| 0.0591| 0.0590| 0.0588
v, °[K] || 0] 0.1726] 0.2614] 0.3060] 0.3289] 0.3406 0.3466 0.3497| 0.3513] 0.3521] 0.3525] 0.3529
v,°[K] || 0] 0.1901] 0.3824] 0.4826] 0.5341] 0.5605] 0.5740] 0.5810| 0.5845] 0.5863| 0.5872| 0.5882

P°=F +EGD =F +EID'=F +E'D =

O O Owi~N
O Dl
INIV N o}
INIRCININTRY G

In Figure 34, the reduced quotient DTIVRDTMC:SS(E) is presented.

In Table 10, the transient and the steady-state probaisififi [K] (1 < i < 4) for the reduced quotient DTMC of
the abstract shared memory system at the time monkent§, 5, 10, .. ., 50} andk = o are presented, and in Figure
35, the alteration diagram (evolution in time) for the tiansg probabilities is depicted.

Then the steady-state PMF fRDTMC,,_(F) is

oo L 6 10
vEP)
Note thaty’* = (¥"° (K1), ¥ (K2), ¥ (Ka), ¥ (Ks)). By the “quotient” analogue of Proposition 5.3, we have

¢(K) =0, ¢(K)=7%. ¢(K3)=0, ¢K)=72. ¢(Ks)=0, ¢ (Ke)=1
Thus, the steady-state PMF 8MC,,_(F) is
, (.1 6 10
¢ = (0’ 170170 17)'
67

1.6

-0 Y1 °[K]
== [K]

0.8’ +w3,0[k]
—a— Y4 °[K]

0.6

0.4

0.2/ I’

7 s
| | P00 000000 k

10 20 30 40 0

Figure 35: Transient probabilities alteration diagramtfar reduced quotient DTMC of the abstract shared memorgisyst

This coincides with the result obtained with the us@6fandSJ.
We can now calculate the main performance indices.

The average recurrence time in the stitewhere no processor requests the memory, calledbeage system
run-through is 2+ = & = 17.
2

The common memory is available only in the statés K3, Ks. The steady-state probability that the memory
is available isp, + ¢5 + ¢f = 1% +0+0= 1% Then the steady-state probability that the memory is uised (
not available), called thehared memory utilizatioris 1- % = 2.

After activation of the system, we leave the st@tefor ever, and the common memory is either requested or
allocated in every remaining state, with exceptior#/@f Thus, therate with which the necessity of shared
memory emergesoincides with the rate of leavird,, calculated a% =£-3=3

The parallel common memory request of two proces$is{r}} is only possible from the stat&>. In this
state, the request probability is the sum of the executiatailities for all multisets of multiactions con-
taining {r} twice. Thus, thesteady-state probability of the shared memory request fsom processorss
w5 PMA(TG, K) = & - = &

1~ &8
The common memory request of a procegspis only possible from the staté6,, K. In each of the states, the
request probability is the sum of the execution probabsifor all multisets of multiactions containifig. The
steady-state probability of the shared memory request &@rocessois ¢/, 2{ - PMa(%, K) +

PMA(LK) =5 (3+3)+ 2 (3+3) =8

AKITLNCA KoK

AKIrIeA, o>

/
4 2 gcirien KA

One can see that the performance indices are the same foorhy@ete and the quotient abstract shared mem-

ory systems. The coincidence of the first, second and thiribpeance indices obviously illustrates the results of
Proposition 8.1 and Proposition 8.2 (both modified®aF)). The coincidence of the fourth performance index is
due to Theorem 8.1 (modified f&R s{F)): one should just apply its result to the derived step tfgge{r}} of the
expressior and itself. The coincidence of the fifth performance indetie to Theorem 8.1 (modified f&®,s{F)):

68

one should just apply its result to the derived step trages {{r},{r}}, {{r},{m}} of the expressiofF and itself, and
then sum the left and right parts of the three resulting eties|

9.3. The generalized system

Now we obtain the performance indices taking general vaioeall multiaction probabilities and weights. Let
us suppose that all the mentioned stochastic multiactiane the same generalized probabifitg (0; 1), and all the
immediate ones have the same generalized weighR.o. The resulting specificatiod of the generalized shared
memory system is defined as follows.

The static expression of the first processor is

K1 = [({x1}, p) * (({re}, p); ({d1, y1}, br); ({mu, 1}, p)) * Stop].
The static expression of the second processor is

Kz = [({%2}, p) * (({r2}, p); (102, 2}, 1); ({Me, 22}, p)) * Stop].
The static expression of the shared memory is

Ks = [({a, X1, %2}, p) = (Y1} B1); ({2}, D2}, 11); (122}, p))) = Stop].
The static expression of the generalized shared memorgraysith two processors is

K= (K1||K2||K3) Sr (X]_, X2,¥Y1,Y2, 21, Zz).

We haveDRr (K) = {51, %, %, %. %, %} andDRy(K) = {3, &, %)
The states are interpreted as followsisthe initial states;: the system is activated and the memory is not requested,
§: the memory is requested by the first processgr,tAie memory is requested by the second processorthe
memory is allocated to the first processsr, the memory is requested by two processsrstiie memory is allocated
to the second processas; the memory is allocated to the first processor and the memagguested by the second
processorsy: the memory is allocated to the second processor and the meésnequested by the first processor.

In Figure 36, the transition systemS(K) is presented. In Figure 37, the underlying SNBMQK) is de-
picted. Note that, in step semantics, we may execute thewly activities in parallel: {f1}, o), ({r2}, p), as well
as (r.}. p), (Ima}, p?), and {rz}, p), (M1}, p?). The states§ only exists in step semantics, since it is reachable exclu-
sively by executing{f1}, o) and {r}, p) in parallel.

The average sojourn time vectoriéfis

~ (1 1 1 1 11

Si=|=, ,0,0, ,0, .= |-
(p3 p(2-p) p(L+p—p?)" " p(l+p-p?) p? pz)

The sojourn time variance vector Kfis

1-p° (1-p)? (1-p)°A+p) 1=p)*(L+p) 1-p° 1—p2)

P8 T p22-p)2 T T 2L+ p-p2)? T pA(L+p-pH)2 p* T pt

The TPM forEDTMQ(K) is

\mz(

0 1 0O 0 0 0O O 0
0 o0 ;—g ;—g 04 0 0 0
0 0 0 0O 1 0 0 o©O 0
0 0 0 0O 0 0 1 o© 0
- (1-p) 2 1-p2
PP=|0 £25 0 2% 0 0 0 2% 0
0o o0 0 o o0 o0 o0 1 :
—p,)2 —)2
0 fii)—;)z l+ﬁ)—p2 0 0 0 0 0 li l—pz
0 0 1 0 0 0 O 0
0 0 1 0O 0 0 0O o© 0

(*2}
©

TS(K)

{{r1}.0),
{ma}.pH}.03

S1

({d1},82p),1

s S
(1-p)(1—p?)

Hr2}.p),
p(1—p?)

({m1}.0%).0?

H{ri}.0),

({m1}.p?),
p2(1—p)

({a}.p%).03

{{r1}p}({r2}.0)} 02

({d1}.b2): 5

S6

{{r2}.p),
({m1}.pH}.03

({ma}.p?),
p2(1—p)

({ma},p?),0?

({d2},bg),1

(1—p)(1—p?)

Hr1}.p),
p(1—p2)

({d2}.82): 5

Figure 36: The transition system of the generalized shamdony system.

I S
p(1+p—p?)

Q-

3

Figure 37: The underlying SMC of the generalized shared ngsystem.

70

__ 1
p(1+p—p?)

(1-p)(1—p%) (1-p)(1—p*)

p(1—p%) p(1—p%)

Figure 38: The DTMC of the generalized shared memory system.

The steady-state PMF f&DTMC(K) is

U = iz (0202 =30 = p2), 2+ p = 30° +p%, 2+ p = 30? + 0, 2+ p = 307 + p%, 20%(1 - p),
2+p-302+p%2-p-p%2-p-p?.
The steady-state PMF weighted bySJis

1

It remains to normalize the steady-state weighted PMF bigighg it by the sum of its components

2+p-p*-p°
p%(6+ 30 = 92 + 20%)

787 =
Thus, the steady-state PMF 8MQK) is
1
22+ p-p?-p?)
Otherwise, from T S(K), we can construct the DTMC &, DTMC(K), and then calculatg Using it.

In Figure 38, the DTMTMC(K) is depicted.
The TPM forDTMC(K) is

= (0.20%(1- p).0,0,p(2- p),0,p(2— p).2— p — p*, 2= p — p°).

1-p3 p 0 0 0 0 0 0 0

0 (@-pP p-p) p(L-p) 0 p° 0 0 0

0 0 0 0 1 0 0 0 0
_ 0 0 0 0 0 0 1 0 0
P=| 0 p*(1-p) 0 PP (L-p)-p°) O 0 p(L-p?) 0

0 0 0 0 0 0 0 : :

0 p@-p p° 0 0 0 (1-p)(-p9) 0 p(1-p?)

0 0 0 p? 0 0 0 1-p? 0

0 0 02 0 0 0 0 0 1- p?

71

The steady-state PMF f@TMC(K) is

U = 3= (0. 20%(1 = p), p%(2 + p = 30% + p%), 0?2+ p = 30” + p°), p(2 - p), 20*(1 = p), p(2 ~ p),
2-p-p*2-p-p).

Remember thabRr (K) = {31, %, %, %, %. %} andDRy(K) = {5, &, %/ Hence,

2+p-p*=p°

D, W8 = 0(E) + U(&) + U(E) + U(E) + I&) +U(&) = 5

&DRy (K)

By Proposition 5.2, we have

B(3) =0- 2222 — g,

2+p—p2—p3
~oay _ _ pPA-p) | 24p+p*-2p* _ p*(1-p)
%) = gpr o Topi?g® = Tepit
#(%) =0,
(%) =0,
~e Yy _ _ p(2=p) 24p+p®-20* _ _ p(2-p)
&%) = 22+p+p2=20%) "~ 2+p—p?—p® _ 202+p—p?-p°)’
¢(%) =0,
~ray _ _ p(2=p) 24p+p®-20* _ _ p(2-p)
o(87) = 22+p+p2=20%) "~ 2+p—p2—p® _ 202+p—p?-p°)’
~(~) _ 2—p—p? . 2+4p+p2—20* _ 2—p—p?
PS) = 2(2+p+p2-2p%) 24p—p>-p3 T 2(2+p—p?-p3)’
~ 2 p 2 2 2_o 4 22
tp(Sg) — P—p +p+p =20 _ L—p’

22tp+p?=20%) * Ztp—p?p® _ 22p—p*pd)°
Thus, the steady-state PMF 8MQK) is

1
2(2+p - p%-p?)
This coincides with the result obtained with the us¢oindSJ _ .
Alternatively, from T S(K), we can construct the reduced DTMCKf RDTMJK), and then calculate (sing

(0.20%(1-p).0,0,p(2- p),0,p(2- p).2—p = p*, 2= p = p°).

o=

it.

Remember thabRr(K) = {31, %, &, &, &, %} andDRy(K) = {%, &, %}. We reorder the elements BR(K), by
moving the equivalence classes of vanishing states to 8tgbsitions:s;, &, %, 51, %, %, &7, %, %.

The reordered TPM foDTMC(K) is

0 0 0 0 0 1 0 0 0
0 0 0 o 0 0 1 0 0
0 0 0 o0 0 0 0 : :
B 0 0 0 1-p° p° 0 0 0 0
Pr=| p(l-p) p(l-p) p* 0 (1-p)? 0 0 0 0
0 PP 0 0 p(l-p) (1-p)1-p?) 0 p(1-p% 0
p° 0 0 0 p(1-p) 0 (1-p)(2-p?) 0 p(1-p)
0 P2 0 0 0 0 0 1- p? 0
02 0 0 o 0 0 0 0 - p?

The result of the decomposirﬁj are the matrices

72

Figure 39: The reduced DTMC of the generalized shared mesystem.

0 0 0
_ _ 2
_(000y (00100 0] p(lop) p(Lp) po
C=/000/D={000100}E=| 5, po o |’
000 00003 3 0 JERE
P2 0 0
1-p% 0 0 0 0
0 (1-p)p? 0 0 0 0
E-| O P-p) A-p)(-p?) 0 p(L-p?) 0
0 p*(1-p) 0 (1-p(-p?) 0 p(1-p%
0 0 0 0 1-p? 0
0 0 0 0 0 1-p?

Further, the TPM foRDTMQK) is

P°=F+EGD=F+EID=F+ED=

1-p° o° 0 0 0 0
0 (1-p2 pl-p) p(1=p) 5 5
0 p*(1-p) (1-p)(L-p? p° p(1-p?) 0
0 p(1-p) o (1-p)1-p?) 0 p(1-p?)
0 0 0 02 1-p? 0
0 0 o2 0 0 1-p?

In Figure 39, the reduced DTMRDTM_C(R) is presented.
Then the steady-state PMF BDTMK) is

1
T 2@+ p-p2-pd
Note that)® = (J°(31). ¥°(%). ¥° (%), ¥°(%7). ¥° (%), ¥°(%)). By Proposition 5.3, we have

v (0.20%(1-p).pR2 - p).p(2—p).2—p - p*. 2= p — p?).

73

2 2 2
B(&) = H(&) = £20p) H(&) = @) 5(5) = —p@p) 5(&) = 200 5(5) = — 20
&) =0 §(&)= 37505 &)= oy W)= 5 o $&) =g Ty W) = g Ty

Thus, the steady-state PMF 8MQK) is
1

2(2+p - p?-p?)

This coincides with the result obtained with the usg/ofndSJ

We can now calculate the main performance indices.

= (0.20%(1 - p),0,0,p(2— p),0,p(2 - p).2— p — p*, 2= p — p?).

e The average recurrence time in the statevhere no processor requests the memory, calledibeage system

} i« 1 _ 24pp®p®
run-through is %=

e The common memory is available only in the stadg$s, &4, &%. The steady-state probability that the memory

is available isp3 + 3 + @4 + e = zf;(;}ﬂ’)/ﬁ +0+0+0= Zf;fl[};‘:)p3. Then the steady-state probability that the

2 2
i i i iizatione 1 P (-p) _ 2+p-2
memory is used (i.e. not available), called #te@red memory utilizatigris 1 vl v

e After activation of the system, we leave the statdor ever, and the common memory is either requested or
allocated in every remaining state, with exceptionsgaf Thus, therate with which the necessity of shared

. . . . ~ 5 2(1— _ 3(1— _
memory emergemincides with the rate of leaving, Calculated ag: = > (—i)zli)/ﬁ ez - f’ZS) _”p)gp’;).

e The parallel common memory request of two procesfrsg, o), ({r2}, p)} is only possible from the state.In
this state, the request probability is the sum of the exenytiobabilities for all multisets of activities contaigin

both (r1}, p) and {r2}, p). Thus, thesteady-state probability of the shared memory request freorprocessors

.~ =y _ pA-p) 2 p*1-p)
is @2 Xpriaramnraonen PTON 82) = 555F50% = 5025

e The common memory request of the first proces8gf, (o) is only possible from the states, 3;. In each of the
states, the request probability is the sum of the executiologbilities for all sets of activities containing{}, p).
Thesteady-state probability of the shared memory request fr@nfirst processois ¢z 3. v, p)er) PT(T, &)+

~ ~ 2(1-, 2—p 2(2+p—202
7 irirapen PTG 8) = 25885 (0(1 - p) +p?) + 55258 (p(1 - p?) + p%) = St

9.4. The abstract generalized system and its reduction

Let us consider a maodification of the generalized shared mgsystem with abstraction from identifiers of the
processors. We call this system the abstract generaliz@ddimemory one.
The static expression of the first processor is

L1 = [({xa}, p) * (({r}, p); ({d, y1}, &n); (IM, 1}, p)) * Stop].
The static expression of the second processor is

Lz = [({x2}. p) * (({r}. p); ({d, y2}. b1); (M. 22}, p)) + Stop].
The static expression of the shared memory is

Ls = [({a X, X2}, p) * ({2}, b); ({Zh, D D(({Y2), 1); ({221, p))) * Stop].
The static expression of the abstract generalized sharatbnyesystem with two processors is

L = (LallL2lIL3) sr (X1, X2, Y1, Y2, Z1, 22).

DR(L) resemble®R(K), andT S(L) is similar toT S(K). We haveSMQL) ~ SMQK). Thus, the average sojourn
time vectors oL andK, as well as the TPMs and the steady-state PMFEBFMC(L) andEDTMC(K), coincide.

The first, second and third performance indices are the sanibd generalized system and its abstract modifica-
tion. Let us consider the following performance index whighgain specific to the abstract system.

74

™~

TSs, (

) =~

P {m},p*(1=p) [
— K4 Ko 57

(1-p)(1-p?)
{r}{m}}o®

{d},1

{r}.p(1=p%) ’CS {{r}.{r}}.0°

{m}.p®

~

- IC(; {dr1 IC5

(0,17/)2

Figure 40: The quotient transition system of the abstraceg®ized shared memory system.

e The common memory request of a process$oy;) is only possible from the states, 55, 3;. In each of the
states, the request probability is the sum of the executiolgbilities for all sets of activities containingy, p).

The steady-state probability of the shared memory request foprocessoris @2 3.y pery PT(T, %) +
~ ~ ~ ~ 12(1—
@5 2 riirpert PTOC, 85) + 67 vy ppery PT(Y, &) = gip(_pz’i)ps (o(1-p) +p(1 - p) +p?) +

2 2 2(2-p)(1+p—p?
2y P =P+ P9) + gt (o1 = %) + p°) = P,

We haveDR(E)/ﬂSS(D = {‘]~(1,7~<2,7~<3, ‘]~(4, ‘]~(5, ‘]~(6}, Where‘]~(1 = {&} (the initial state),7~(2 = {%} (the system is
activated and the memory is not requestéflg),z {%s, &} (the memory is requested by one processﬁn); {5, 57}
(the memory is allocated to a processd}}, = {%} (the memory is requested by two processofé),: {%, S} (the
memory is allocated to a processor and the memory is regliegtanother processor).

We also havedRr(L)/ 1y = (K1, Kz, Ka, Ko} andDRy(L)/ 1y = (K3, Ks).

In Figure 40, the quotient transition systéns., (L) is presented. In Figure 41, the quotient underlying SMC
SMC:SS(D is depicted. Note that, in step semantics, we may execatétlowing multiactions in parallel{r}, {r},

as well agr}, {m}. The statel~(5 only exists in step semantics, since it is reachable ex@lysby executingr} and{r}
in parallel. _
The quotient average sojourn time vectorois

—, (1 1 1 1
SJ == 709 709 _)'
(ps p2=p) " p(L+p-p?) 7 p?

The quotient sojourn time variance vectorfofs

. _ .3 2 PRV _ 2
VAFé:(l 6/)’ gl p) .0 (1 p) (1+2pl,0’1 4p)
P p*2-p)* pA(l+p-p?) P

75

™~

SMC 4 (

) =~

—
3=

—— p(1—p) —=
1 1+p—p? / 1
p(14+p—p2?) ,C4 ’CQ p(2—p)

1—p2
1+p—p?

Figure 41: The quotient underlying SMC of the abstract galimad shared memory system.

The TPM forEDTMC,,_(L) is

0 1 0 0O O 0
2(1-
0 o© ¢ 0 £ 0
B 0 0 0 1 0 0
- (1-p))? 1-p?
0 {erf;z l+2>fp2 0 0 l+p£p2
0 0 0 0 O 1
0 0 1 0 O 0

The steady-state PMF f&DTMC,,_(L) is

~ 1

U= 6+3p_9p2+2p3(0,p(2—3p +0°),2+p=3p>+p°, 2+ p =30 +p°, p*(1 - p). 2 p - p?).

The steady-state PMF* weighted by§J is

1

It remains to normalize the steady-state weighted PMF bigighig it by the sum of its components

2+p-p*-p°

~, ~T
7S = .
v 726+ 30— 92+ 209)

Thus, the steady-state PMF 8MC,,_(L) is

- 1 5)
P - 11— o_ oo .
¢ 2+p_p2_p3(o’p (p)’o’p(p)»ov pP—p)

76

DTMC., (T) —
Ky =,
P
= p*(1-p) -
Ky Ko 2
(1-p)(1-p?
e
1 2p(1 —p)
2 P 2
p(1—p%)]C3 p
2

~

= Ky 1 s

1—p?

Figure 42: The quotient DTMC of the abstract generalizedeshenemory system.

Otherwise, from TS,,_(L), we can construct the quotient DTMC bf DTMC,,_(L), and then calculatg’ Using it.
In Figure 42, the quotient DTMOTMCiSS(E) is depicted.
The TPM forDTMC,_(L) is

1 p3 p3

- 0 0 0 0
0 (1-pP® 2o(1-p) 0 p° 0
5 0 0 0 1 0 0
0 p(l-p) P (1-pA-p) 0 p(l-p?
0 0 0 0 0 1
0 0 P2 0 0 1-p?

The steady-state PMF f@TMC,,_(L) is

. 1
= (0,p%(1 = p). PP 2+ p — 30% + p°),p(2 - p). p* (L = p). 2 — p — p?).
¥ 2+'O+'02_2p4(,p(p).p°(2+p =30 +p°),p(2-p),p"(1-p),2=p—p°)

Remember thaDRr (L)/p) = (K. Ka. Ka. Ko} andDRy (L) /_y = (K. Ks}. Hence,
1 1 1 (e % 1 (e % 2+,0—,02—;03
Z '#(7()=¢(7(1)+¢((K2)+¢(‘K4)+¢(‘K6)=ﬁ~
_ p+p>—2p
KEDRr (D) ey

By the “quotient” analogue of Proposition 5.2, we have

77

§(K) = 0- 522 ~ 0,

2+p—p?—p?
—_— 2 2 4 2,

~/ _ _p(A-p) | 24ptp°-20" _ _p*(1-p)
L4 (752) T 24p+p?-20* 24p-p?—p3 T 2+p—p?>—p*’
¢'(K3) =0,

~r(qe\ — _ pR=p) 2+p+p®-20* _ _ p(2-p)

¥ (7(4) T 24p+p2-2p* 24+p-p?-p3 T 24p—-p2—p3’
¢'(Ks) =0,

~1(7?) _ _2-p—p® 24p+p?-2p* _ _2-pp?
¥ 6) = 2+p+p2=20% 24+p—p?—p3 T 2+p—p?—p3°

Thus, the steady-state PMF 8MC_,_(L) is

1
~l=70 21_ 0 2_ 02_ _ 2.
¢ 2+p_p2_p3(’p(p)’ 7)0(,0)7 5 P ,0)

This coincides with the result obtained with the uséz@fand§i.

Alternatively , from TS,,_(L), we can construct the reduced quotient DTMQoRDTMGC,,_(L), and then cal-
culateg using it. N

Remember thaDRT([)/RSS(D = (K, Ko, K, Ks) and DRV(E)/Rss(E) = {Ks,Ks). We reorder the elements of
DR(D/RSS(E)' by moving the equivalence classes of vanishing statesttirgt positions K, Ks, K1, Kz, Ka, K.

The reordered TPM fobTMC,,_(L) is

0 0 o0 0 1 0
0 0 o0 0 0 1
P - 0 0 1-p° o 0 0
"1 20(1-p) p* O (1-p)? 0 0
P> 0 0 p*(1-p) 1-pA-p?) p(1-p?)
o2 0 0 0 0 1-p?

The result of the decomposifj are the matrices

0 0
=~ (0 0\ = (0 0 1 0\ = |20(-p) p?
C‘(o 0)’D‘(0001)’E‘ 0° 0|
o° 0
1-p° o° 0 0
=_| 0 @-p? 0 0
| 0 pA-p) A-p)A-p) p(1-p?)
0 0 0 1- p?

SinceC'! = 0, we haverk > 0, C’* = 0, hence| = 0 and there are no loops among vanishing states. Then

G’:ié" =C%=1.

k=0
Further, the TPM foRDTMGC,_(L) is
1-p° o 0 0
Do T, T~ el = s o = s Y 0 (1_)0)2 2p(1 _p) pZ
P°=F+EGD =F +FEID'=F +E'D’ =
0 p(1-p) 1-p-p*+20° p(l1-p%
0 0 o2 1-p?

78

RDTMC._ ()

~ P p) ~
c< (-
1—p— IC4 /] 2p(1 —p) l ICQ (1 - p)?

(K1 =,
1-p

Figure 43: The reduced quotient DTMC of the abstract geizexhishared memory system.

In Figure 43, the reduced quotient DTI\/RDTMC:SS(E) is presented.
Then the steady-state PMF fRDTMC,,_(L) is

~ 1

Ioz— 21_ 2_ 2_ _2'
v 2+p_p2_p3(0»P(P).p(2-p),2-p—p°)

Note thaty’® = (J'°(Ky), ° (%), i (Ka), ¥° (Ks)). By the “quotient” analogue of Proposition 5.3, we have

F(K) =0, FI0) =292 F(Ka) =0, §Ka)= 7222 F(Ks) =0, F(Ks)= 72

2+p—p2—p3° 2+p—p2—p: 2+p—p2—p3*
Thus, the steady-state PMF 8MC,,_(L) is

~/

1

=— = (0,0’(1-p),0,0(2-p),0,2—p —p?).
2+p_p2_p3(,p(p),0,p(2-p) p=p°)
This coincides with the result obtained with the usézﬁfand§j.

We can now calculate the main performance indices.

e The average recurrence time in the stitewhere no processor requests the memory, calledvbemge system

_ i 1 _ 2+p—p?—p®
run-through is 5=)

e The common memory is available only in the statés K, Ks. The steady-state probability that the memory

is available isgy + & + ¢ = 25(_1;2‘:)[)3 +0+0= Zf;(_;’j),ﬁ. Then the steady-state probability that the memory

is used (i.e. not available), called thleared memory utilizatiqris 1 - zfjflp}}’j)173 = zi;f’;ff’;.

e After activation of the system, we leave the statefor ever, and the common memory is either requested or
allocated in every remaining state, with exceptior#@f Thus, therate with which the necessity of shared
Pyt A 2(1-, —pP. 3(1-)
memory emergesoincides with the rate of leavird,, calculated a%% =) . pCp) - 2 (1op)2op)

2+p—p?-p® 1 2+p—p?—p3 *

79

e The parallel common memory request of two procesgois{r}} is only possible from the stati,. In this
state, the request probability is the sum of the executiabatilities for all multisets of multiactions con-
taining {r} twice. Thus, thesteady-state probability of the shared memory request twm processorss

— ~ 1— 1
PMa (%2, K) = pr(pzp) 3P = pr(_p p)p

~7
2 2 A Riinnica B

e The common memory request of a procegspis only possible from the staté6, K. In each of the states, the
request probability is the sum of the execution probabsifor all multisets of multiactions containifig. The
steady-state probability of the shared memory request &g@rocessois ¢, ZIA%H”EA % iq?; PMa(%2, K) +

) PMa(Ks, K) = 3282 (2p(1 - p) + p?) + 52225 (o(1 - p?) + p?) = L)

2+p—p?—p 2+p—p*—p 2+p—p*—p

One can see that the performance indices are the same footgete and the quotient abstract generalized
shared memory systems. The coincidence of the first, seaahthad performance indices obviously illustrates the
results of Proposition 8.1 and Proposition 8.2 (both modifiie R »s{L)). The coincidence of the fourth performance
index is due to Theorem 8.1 (modified #8s{(L)): one should just apply its result to the derived step t{fige(r}}
of the expressioh. and itself. The coincidence of the fifth performance indedis to Theorem 8.1 (modified for
Rrs{L)): one should just apply its result to the derived step 4@}, {{r}, {r}}, {{r},{m}} of the expressioh and
itself, and then sum the left and right parts of the threeltiegpequalities.

Let us consider what is thdfect of quantitative changes of the parametempon performance of the quotient
abstract generalized shared memory system in its steady ®amember that € (0; 1) is the probability of every
stochastic multiaction in the specification of the systerhe €loser isp to 0, the less is the probability to execute
some activities at every discrete time tick, hence, theesystill most probablystand idle The closer i to 1, the
greater is the probability to execute some activities atyedescrete time tick, hence, the system will most probably
operate

Sincey, = ¢ = @, = 0, only @, = _zji(_l,}‘i)ps, &= 2+’;(_2;§’_)p3, @ = Zf;”pz_p depend om. In Figure 44, the plots
of 5, &,. & as functions op are deplcted. Notice that, however, we do not allow 0 orp = 1.

One can see that),,” ¢, tend to 0 andpg tends to 1 whep approaches 0. Thus, whenis closer to 0, the
probability that the memory is allocated to a processor aediiemory is requested by another processor increases,
hence, we havmore unsatisfied memory requests

Further,s,, ¢; tend to 0 andy, tends to 1 whep approaches 1. Thus, whernis closer to 1, the probability that
the memory is allocated to a processor (and not requesteddifier one) increases, hence, we hi@gs unsatisfied
memory requests

The maximal value @797 of¢) is reached whep ~ 0.7433. In this case, the probability that the system is
activated and the memory is not requested is maximal, ieemtiximal shared memory availability about 8%.

In Figure 45, the plot of the average system run-througlcutated asm as a function op is depicted. One can
see that the run-through tendsstovhenp approaches 0 or 1. Its m|n|mal value.3216 is reached when~ 0.7433.

To speed up operation of the system, one should take the ptegntloser to 07433.

The first curve in Figure 46 represents the shared memoiyattdn, calculated as1 ¢, — &7, — ¢, as a function
of p. One can see that the utilization tends to 1 both whapproaches 0 and whenapproaches 1. The minimal
value 09203 of the utilization is reached when~ 0.7433. Thus, theninimal shared memory utilizatios about
92%. To increase the utilization, one should take the patemeloser to 0 or 1.

The second curve in Figure 46 represents the rate with whizhécessity of shared memory emerges, calculated
asgi—é, as a function op. One can see that the rate tends to 0 both whapproaches 0 and whenapproaches 1.

The maximal value 0751 of the rate is reached wher- 0.7743. Thus, thenaximal rate with which the necessity of

shared memory emergé;saboutl%. To decrease the mentioned rate, one should take the pargnoédser to 0 or 1.
The third curve in Figure 46 represents the steady-stateapibity of the shared memory request from two pro-

cessors, calculated ag?”% wherep’,. = Z‘Aﬂ?mr},"”gk BAR) PMa(%, K) = PM(%, Ks), as fun_ction ofo. One

can see that the probability tends to 0 both whepproaches 0 and wherapproaches 1. The maximal valu@b17

of the probability is reached when~ 0.8484. To decrease the mentioned probability, one shoutdttekparameter

p closertoOor 1.

(AKI(rIeA, KaDK)

80

200

150

100

50

0.2

[P4
— ‘706
------.------"'"""---.-"'-q
pmam====ET | | R p
0.4 0.6 0.8 1.0
Figure 44: Steady-state probabilities, ¢;, &; as functions of the parameter
1

0.2

1 1 1 1
0.4 0.6 0.8 1.0 L

Figure 45: Average system run-through as a function of the parameter
2

81

1.04====
0.8 | 100
0.6+ __ %2

I Sy
0.4* ~ 1 ’

L == ¥, Pos
0.2~ e e

r — (2] 2 +¢, 24

i e - Tl Lk -T--‘- . N p

0.2 0.4 0.6 0.8 1.0

Figure 46: Some performance indices as functions of thenpetep.

The fourth curve in Figure 46 represents the steady-stategpility of the shared memory request from a proces-
sor, calculated ag,%, + ¢,%,, whereZ, = S ARiren 7AT PMa(%, K), i € {2,4}, as a function op. One can see
that the probability tends to 0 wherapproaches 0 and it tends to 1 wheapproaches 1. To increase the mentioned
probability, one should take the parameiendoser to 1.

10. Related work

In this section, we consider in detailfirences and similarities between dtsiPBC and other welwkror similar
SPAs for the purpose of subsequent determining the spedifemgages of dtsiPBC.

10.1. Continuous time and interleaving semantics

Let us compare dtsiPBC with classical SPAs: Markovian TiReatesses for Performance Evaluation (MTIPP)
[47], Performance Evaluation Process Algebra (PEPA) [48] EBxtended Markovian Process Algebra (EMPA) [14].

In MTIPP, every activity is a pair consisting of the actiomme(including the symbat for theinternal, invisible
action) and the parameter of exponential distribution efabtion delay (theate). The operations angrefix choice
parallel composition includingynchronizatioron the specified action set aretursion It is possible to specify pro-
cesses by recursive equations as well. The interleavingusices is defined on the basis of Markovian (i.e. extended
with the specification of rates) labeled transition systeNwte that we have the interleaving behaviour here because
the exponential PDF is a continuous one, and a simultaneaigon of any two activities has zero probability
according to the properties of continuous distributionBMCs can be derived from the mentioned transition systems
to analyze performance.

In PEPA, activities are the pairs consisting of action tyfiasluding theunknown unimportant typer) and
activity rates. The rate is either the parameter of expaaledistribution of the activity duration or it isnspecified
denoted byt. An activity with unspecified rate ipassiveby its action type. The set of operations inclughesfix
choice cooperation hiding and constants whose meaning is given by the defining eqsatictuding therecursive
ones. The cooperation is accomplished on the set of acti@stithe cooperation set) on which the components must
synchronizer cooperate. If the cooperation set is empty, the coomarafperator turns into thearallel combinator.
The semantics is interleaving, it is defined via the extemeidabeled transition systems with a possibility to specif
activity rates. Based on the transition systems, the coatia time Markov processes (CTMPs) are generated which
are used for performance evaluation with the help of the eltdd@ continuous time Markov chains (ECTMCs).

In EMPA, each action is a pair consisting of its type and ra&etions can beexternalor internal (denoted by
1) according to types. There are three kinds of actions aguptd rates:timedones with exponentially distributed

82

durations (essentially, the actions from MTIPP and PERAediateones with priorities and weights (the actions
analogous to immediate transitions of GSPNs) pasisiveones (similar to passive actions of PEPA). Timed actions
specify activities that are relevant for performance asialyymmediate actions model logical events and the aietvit
that are irrelevant from the performance viewpoint or mwddtdr than others. Passive actions model activities wgaitin
for the synchronization with timed or immediate ones, anpress nondeterministic choice. The set of operators
consist ofprefix, functionalabstraction functionalrelabeling alternativecomposition angbarallel composition ones.
Parallel composition includes/nchronizatioron the set of action types like in TCSP [50]. The syntax alstuitles
recursivedefinitions given by means of constants. The semanticsesl@aving and based on the labeled transition
systems enriched with the information about action ratest the exponentially timed kernel of the algebra (the
sublanguage including only exponentially timed and pasaistions), it is possible to construct CTMCs from the
transition systems of the process terms to analyze the peaftce.

In dtsiPBC, every activity is a pair consisting of the mudtian (not just an action, as in the classical SPAs) as
a first element. The second element is either the probalfiliy the rate, as in the classical SPAS) to execute the
multiaction independently (the activity is called a stostimmultiaction in this case) or the weight expressing how
important is the execution of this multiaction (the actiig called an immediate multiaction in this case). Immeaiat
multiactions in dtsiPBC are similar to immediate actionEMPA, but the former have positive integer weights,
unlike the latter, having positive real weights. We beliévat positive integers fit well as the weights of immediate
multiactions in dtsiPBC. Thus, by simplicity reasons, wendo follow the standard EMPA approach, inherited from
GSPNs, where positive reals have been used as a domain fanifleem ratéweight function, assigning the rates
to exponentially timed transitions and the weights to imiatedtransitions. Further, all the immediate multiactions
in dtsiPBC have the same priority 1 (with the purpose to eteetiiem always before stochastic multiactions, all
having the same priority 0), whereas the immediate actioSMPA can have dierent priority levels. Associating
the same priority with all immediate multiactions in dtsiPBesults in the simplified specification and analysis, and
such a decision is also appropriate to the calculus. Th@neiaghat, as mentioned in [44], weights (assigned also
to immediate actions in EMPA) are enough to denote prefeeamong immediate multiactions (designating their
advantages or prescribing sub-priorities to them) and edyce the conformable probabilistic behaviours when one
has to make a choice among several immediate multiacticsuable in some state. There are no immediate actions
in MTIPP and PEPA. Immediate actions are available only BRR [46], where they are analogous to immediate
multiactions in dtsiPBC, and in a variant of TIPP [41] dissed while constructing the calculus PM-TIPP in [86], but
there immediate activities are used just to specify prdlsticibranching and they cannot be synchronized.

dtsiPBC has the sequence operation in contrast to the prediinahe classical SPAs. One can combine arbitrary
expressions with the sequence operator, i.e. it is morebfeexinan the prefix one, where the first argument should
be a single activity. The choice operation in dtsiPBC is agals to that in MTIPP and PEPA, as well as to the
alternative composition in EMPA, in the sense that the ahddgrobabilistic, but a discrete probability function is
used in dtsiPBC, unlike continuous ones in the classicalutial Concurrency and synchronization in dtsiPBC are
different operations (this feature is inherited from PBC), kinthe situation in the classical SPAs where parallel
composition (combinator) has a synchronization capgbRelabeling in dtsiPBC is analogous to that in EMPA, but
it is additionally extended to conjugated actions. Theriggin operation in dtsiPBC diers from hiding in PEPA
and functional abstraction in EMPA, where the hidden adtiare labeled with a symbol of “silent” actian In
dtsiPBC, restriction by an action means that, for a givemesgion, any process behaviour containing the action or its
conjugate is not allowed. The synchronization on an eleargraction in dtsiPBC collects all the pairs consisting of
this elementary action and its conjugate which are condgiméhe multiactions from the synchronized activities. The
operation produces new activities such that the first el¢émfegvery resulting activity is the union of the multiacton
from which all the mentioned pairs of conjugated actionsrareoved. The second element is either the product of
the probabilities of the synchronized stochastic muliaxs or the sum of the weights of the synchronized immediate
multiactions. This diers from the way synchronization is applied in the classi¢¥\s where it is accomplished over
identical action names, and every resulting activity cstissdf the same action name and the rate calculated via some
expression (including sums, minimums and products) onatesrof the initial activities, such as the apparent rate in
PEPA. dtsiPBC has no recursion operation or recursive diefiisi but it includes the iteration operation to specify
infinite looping behaviour with the explicitly defined startd termination.

dtsiPBC has a discrete time semantics, and residence tithe tangible states is geometrically distributed, unlike
the classical SPAs with continuous time semantics and expt@lly distributed activity delays. As a consequence,

83

the semantics of dtsiPBC is the step one in contrast to tleeléatving semantics of the classical SPAs. The per-
formance is investigated via the underlying SMCs and (redu®TMCs extracted from the labeled probabilistic
transition systems associated with expressions of dtsiPB@e classical SPAs, CTMCs are usually used for per-
formance evaluation. In [38], a denotational semanticsERA&has been proposed via PEPA nets that are high-level
CTSPNs with coloured tokens (coloured CTSPNS), from whighunderlying CTMCs can be retrieved. In [13, 9], a
denotational semantics of EMPA based on GSPNs has beendldfiom which one can also extract the underlying
SMCs and CTMCs (when both immediate and timed transitioapersent) or DTMCs (but when there are only im-
mediate transitions). dtsiPBC has a denotational sengintierms of LDTSIPNs from which the underlying SMCs
and (reduced) DTMCs can be derived.

10.2. Continuous time and non-interleaving semantics

Only a few non-interleaving SPAs were considered amongMarkovian ones [57, 21]. The semantics of all
Markovian calculi is interleaving and their action delaywé exponential distribution, which is the only continuous
probability distribution with memoryless (Markovian) prerty.

In [23], Generalized Stochastic Process Algebra (GSPA)imtasduced. It has a true-concurrent denotational
semantics in terms of generalized stochastic event stes{GSESs) with non-Markovian stochastic delays of events
In that paper, no operational semantics or performanceatiah methods for GSPA were presented. Later, in [56],
generalized semi-Markov processes (GSMPs) were extréciedGSESSs to analyze performance.

In [83, 84], generalized Stochastiecalculus (&) with general continuous distributions of activity delayas
defined. It has a proved operational semantics with tramstlabeled by encodings of their deduction trees. No
well-established underlying performance model for thisian of Sr was described.

In [20, 19], Generalized Semi-Markovian Process AlgebraNBA) was developed with an ST-operational se-
mantics and non-Markovian action delays. The performanea#/ais in GSMPA is accomplished via GSMPs.

Again, the first fundamental fierence between dtsiPBC and the calculi GSPAaBd GSMPA is that dtsiPBC
is based on PBC, whereas GSPA is an extension of simple Rréadgsbra (PA) from [23], B extendsr-calculus
[75] and GSMPA is an enrichment of EMPA. Therefore, both GBRA GSMPA haverefixing choice(alternative
composition),parallel composition,renaming(relabeling and hiding (abstractior) operations, but only GSMPA
permitsconstantsUnlike dtsiPBC, GSPA has neither iteration or recursioBMPA allows onlyrecursivedefinitions,
whereas $ additionally has operations to specifyobility. Note also that GSPA,7#Sand GSMPA do not specify
instantaneous events or activities while dtsiPBC has iniatednultiactions.

The second significant fierence is that geometrically distributed or zero delaysiaseciated with process states
in dtsiPBC, unlike generally distributed delays assigneévents in GSPA or to activities intfSand GSMPA. As
a consequence, dtsiPBC has a discrete time operationahtemallowing for concurrent execution of activities
in steps. GSPA has no operational semantics whilea®d GSMPA have continuous time ones. In continuous
time semantics, concurrency is simulated by interleawingze simultaneous occurrence of any two events has zero
probability according to the properties of continuous p@iaibity distributions. Therefore, interleaving traneits are
often annotated with an additional information to keep ecowrency data. The transition labels in the operational
semantics of B encode the action causality information and allow one tivdehe enabling relations and the firing
distributions of concurrent transitions from the tramsitsequences. At the same time, abstracting from stochastic
delays leads to the classical early interleaving semanfiescalculus. The ST-operational semantics of GSMPA is
based on decorated transition systems governed by t@msities with rather complex preconditions. There are two
types of transitions: the choice (action beginning) andtémmination (action ending) ones. The choice transitions
are labeled by weights of single actions chosen for executitile the termination transitions have no labels. Only
single actions can begin, but several actions can end illg@larBhus, the choice transitions happen just sequentiall
while the termination transitions can happen simultankgouss a result, the decorated interleavingtep transition
systems are obtained. dtsiPBC has an SPN-based denotagomantics. In comparison with event structures, PNs
are more expressive and visually tractable formalism, lolepaf finitely specifying an infinite behaviour. Recursion
in GSPA produces infinite GSESs while dtsiPBC has iteratfweration with a finite SPN semantics. Identification of
infinite GSESs that can be finitely represented in GSPA wasdeh future research.

84

10.3. Discrete time

In [1], a class of compositional DTSPNs with generally digited discrete time transition delays was proposed,
called dts-nets. The denotational semantics of a stochedinsion (we call it stochastic ACP or sACP) of a subset
of Algebra of Communicating Processes (ACP) [8] can be cootd via dts-nets. There are two types of transitions
in dts-nets: immediate (timeless) ones, with zero delayd,teme ones, whose delays are random variables having
general discrete distributions. The top-down synthesidt®iets consists in the substitution of their transitibyps
blocks (dts-subnets) corresponding to the sequence,ehmcallelism and iteration operators. It was explained ho
to calculate the throughputtime of dts-nets using the sertiine (defined as holding time or delay) of their transiion
For this, the notions of service distribution for the traiasis and throughput distribution for the building blockene
defined. Since the throughput time of the parallelism bloéls walculated as the maximal service time for its two
constituting transitions, the analogue of the step sems&approach was implemented.

In [68, 69], an SPA called Theory of Communicating Processa#sdiscrete stochastic timd@ CPs) was intro-
duced, later in [66] called Theory of Communicating Proesssith discrete real and stochastic tirfie@@FP"s). It has
discrete real time (deterministic) delays (including zémoe delays) and discrete stochastic time delays. The edgeb
generalizes real time processes to discrete stochasgatires by applying real time properties to stochastic tinte an
imposing race condition to real time semantit€ P'sthas an interleaving operational semantics in terms of s®ch
tic transition systems. The performance is analyzed vierelis time probabilistic reward graphs which are esséytial
the reward transition systems with probabilistic statedrtafinite number of outgoing probabilistic transitionsdan
timed states having a single outgoing timed transition. feationed graphs can be transformed by unfolding or
geometrization into discrete time Markov reward chains MRICs) appropriate for transient or stationary analysis.

The first diference between dtsiPBC and the algebras SACH &#*tis that dtsiPBC is based on PBC, but SACP
andT CPst are the extensions of ACP. SACP has taken from ACP eatyuencechoice parallelismanditeration
operations, whereas dtsiPBC has additionally relabetiegfriction and synchronization ones, inherited from PBC.
In TCP's! besides standard actipmefixing alternative parallel compositionencapsulatior{similar to restriction)
andrecursivevariables, there are aldned delay prefixingdependent delays scopad themaximal time progress
operators, which are new both for ACP and dtsiPBC.

The second dierence is that dtsiPBC, sSACP af F*s!, all have zero delays, however, discrete time delays in
dtsiPBC are zeros or geometrically distributed and assetiaith process states. The zero delays are possible just
in vanishing states while geometrically distributed dslaye possible only in tangible states. For each tangihte, sta
the parameter of geometric distribution governing the glialahe state is completely determined by the probabilities
of all stochastic multiactions executable from it. In SAQRIZ CP'st, delays are generally distributed, but they are
assigned to transitions in SACP and separated from actepting zero delays) MCP'St. Moreover, a special
attention is given to zero delays in SACP and determinigtiayb inT CPYSt. In SACP, immediate (timeless) transitions
with zero delays serve as source and sink transitions oftdisubnets corresponding to the choice, parallelism and
iteration operators. ITCPSt, zero delays of actions are specified by undelayable actiefixps while positive
deterministic delays of processes are specified with tineddydprefixes. Neither formal syntax nor operational
semantics for SACP are defined and it is not explained how iwel®&arkov chains from the algebraic expressions
or the corresponding dts-nets to analyze performancentitistated explicitly, which type of semantics (interlewyi
or step) is accommodated in SACP. In spite of the discrete ipproach, operational semanticsTa® Pt is still
interleaving, unlike that of dtsiPBC. In addition, no deat@inal semantics was defined fB€ Pst,

Table 11 summarizes the SPAs comparison above and that fotio8 1 (the calculi sSPBC, gsPBC and dtsPBC),
by classifying the SPAs according to the concept of time,pitessence of immediate (multi)actions and the type of
operational semantics. The names of SPAs, whose denabhsiemantics is based on SPNs, are printed in bold font.
The underlying stochastic process (if defined) is specifigthrentheses near the name of the corresponding SPA.

11. Discussion

Let us now discuss which advantages has dtsiPBC in compasigh the SPAs described in Section 10.

11.1. Analytical solution
An important aspect is the analytical tractability of thelarlying stochastic process, used for performance eval-
uation in SPAs. The underlying CTMCs in MTIPP and PEPA, ad e®ISMCs in EMPA, are treated analytically,

85

Table 11: Classification of stochastic process algebras.

Time Immediate Interleaving semantics Non-interleaving semantics
(multi)actions
Continuous No MTIPP (CTMC),PEPA (CTMP), GSPA (GSMP), 8, GSMPA (GSMP)
sPBC(CTMC)
Yes EMPA (SMC, CTMC),gsPBC(SMC) —
Discrete No — dtsPBC (DTMC)
Yes TCPSY(DTMRC) sACP, dtsiPBC (SMC, DTMC)

but these continuous time SPAs have interleaving semar@&A, & and GSMPA are the continuous time mod-
els, for which a non-interleaving semantics is construcbed for the underlying GSMPs in GSPA and GSMPA,
only simulation and numerical methods are applied, wheneagerformance model forsSis defined. sACP and
TCPstare the discrete time models with the associated analytiesods for the throughput calculation in SACP
or for the performance evaluation based on the underlyinyIRTs in TCP*S! but both models have interleaving
semantics. dtsiPBC is a discrete time model with a non{gdgng semantics, where analytical methods are applied
to the underlying SMCs. Hence, if an interleaving model iprapriate as a framework for the analytical solution
towards performance evaluation then one has a choice betiveeontinuous time SPAs MTIPP, PEPA, EMPA and
the discrete time ones SACPC 'St Otherwise, if one needs a non-interleaving model with #soaiated analytical
methods for performance evaluation and the discrete tirpeoagh is feasible then dtsiPBC is the right choice.

The existence of an analytical solution also permits torpret quantitative values (rates, probabilities, weights
etc.) from the system specifications as parameters, whitheadjusted to optimize the system performance, like in
dtsPBC, dtsiPBC and parametric probabilistic transitigstems (i.e. DTMCs whose transition probabilities may be
real-value parameters) [60]. Note that DTMCs whose traarsjtrobabilities are parameters were introduced in [33].
Parametric CTMCs with the transition rates treated as petens were investigated in [43]. On the other hand, no
parameters in formulas of SPAs were considered in the fitegao far. In dtsiPBC we can easily construct examples
with more parameters than we did in our case study. The pedoce indices will be then interpreted as functions of
several variables. The advantage of our approach is thifitewsf the method from [60], we should not impose to the
parameters any special conditions needed to guarantethéhial values, interpreted as the transition probadmsliti
always lie in the interval [0; 1]. To be convinced of this fapist remember that, as we have demonstrated, the
positive probability function®F, PT, PM, PM*, PM° define probability distributions, hence, they always netur
values belonging to (0; 1] for any probability parametemsir(0; 1) and weight parameters frdRy,. In addition,
the transition constraints (their probabilities, rated goards), calculated using the parameters, in our casddshou
not always be polynomials over variables-parameters,tas oéquired in the mentioned papers, but they may also be
fractions of polynomials, like in our case study.

11.2. Concurrency interpretation

One can see that the stochastic process calculi proposkd literature are based on interleaving, as a rule, and
parallelism is simulated by synchronous or asynchronoaswgion. As a semantic domain, the interleaving formal-
ism of transition systems is often used. However, to prgpgupport intuition of the behaviour of concurrent and
distributed systems, their semantics should treat péismieas a primitive concept that cannot be reduced to nondete
minism. Moreover, in interleaving semantics, some impurfaoperties of these systems cannot be expressed, such
as simultaneous occurrence of concurrent transitionsdBijcal deadlock in the spatially distributed process&$.[7
Therefore, investigation of stochastic extensions forerexpressive and powerful algebraic calculi is an important
issue. The development of step or “true concurrency” (shahparallelism is considered as a causal independence)
SPAs is an interesting and nontrivial problem, which hasetéd special attention last years. Nevertheless, not so
many formal stochastic models of parallel systems were e@fivhose underlying stochastic processes are based on
DTMCs. As mentioned in [37], such models are moriclilt to analyze, since several events can occur simulta-
neously in discrete time systems (the models have a stemsies)aand the probability of a set of events cannot be

86

easily related to the probability of the single ones. Themefparallel executions of actions are often not consitlere
also in the discrete time SPAs, suchTa8 st whose underlying stochastic process is DTMCs with rewgpdgvi-
RCs). As observed in [51], even for stochastic models withegally distributed time delays, some restrictions on the
concurrency degree were imposed to simplify their analggisniques. In particular, the enabling restriction reegii
that no two generally distributed transitions are enahtedny reachable marking. Hence, their activity periods do
not intersect and no two such transitions can fire simultasigpothis results in interleaving semantics of the model.
Stochastic models with discrete time and step semantiesthaollowing important advantage over those having
just an interleaving semantics. The underlying Markov ohaif parallel stochastically timed processes have the
additional transitions corresponding to the simultanesxecution of concurrent (i.e. non-synchronized) actwgiti
The transitions of that kind allow one to bypass a lot of intediate states, which otherwise should be visited when
interleaving semantics is accommodated. When step sersastiused, the intermediate states can also be visited
with some probability (this is an advantage, since somerateve system’s behaviour may start from these states),
but this probability is not greater than the corresponding im case of interleaving semantics. While in interleaving
semantics, only the empty or singleton (multi)sets of s can be executed, in step semantics, generally, the
(multi)sets of activities with more than one element can kecated as well. Hence, in step semantics, there are
more variants of execution from each state than in the ipdwihg case and the executions probabilities, whose
sum should be equal to 1, are distributed among more passthil Therefore, the systems with parallel stochastic
processes usually have smaller average run-through. Intb@sunderlying Markov chains of the processes are
ergodic, they will take less discrete time units to stabilihe behaviour, since their TPMs will be denser because
of additional non-zero elements outside the main diagoHahce, both the first passage-time performance indices
based on the transient probabilities and the steady-seafermance indices based on the stationary probabilities
can be computed quicker, resulting in faster quantitathedyesis of the systems. On the other hand, step semantics,
induced by simultaneous firing several transitions at et $s natural for Petri nets and allows one to exploit full
power of the model. Therefore, it is important to respecpitodbabilities of parallel executions of activities in diste
time SPAs, especially in those with a Petri net denotatisaalantics.

Example 11.1.In Figure 47, the interleaving transition system of the gafieed shared memory systengKs$ from
Section 9 is presented. The transition systef t$s constructed from the (step) one TKS in Figure 36 as follows.
First, all the transitions due to executing more than one\étgt are removed. Second, the states that become non-
reachable (from the initial state) in the absence of suchrgbel” transitions are deleted, together with all the
transitions from these states. Third, for each of the stégéisthe remaining outgoing transition probabilities are
normalized. Formally, the probabilities of the remainirrgrtsitions are defined as follows. Let G be a dynamic
expression, &€ DR(G), T € Exed€s) and|Y| < 1. Theprobability to execute the multiset of activiti®sn s, when only

zero-element steps (i.e. empty loops) or one-element atemdlowedis pt(Y, s) = % As aresult, one can

see many serious fitrences between(#§) and TSK), i.e. between the system’s behaviour in the interleavirdy an
step semantics. One can define interleaving stochastimblation equivalence>; analogously to—>ss, but using the

interleaving transition systems of expressions insteati@&tandard (step) ones. Then, fror(KI)s the interleaving
quotient (by<,) transition system of the abstract generalized shared mgsystem ts (L) can be constructed,
depicted in Figure 48. Again, there exist substantigiedences betweenég,(L) and TS:SS(L) in Figure 40. Next,
from tsiis(f), the interleaving reduced quotient DTMC of the abstractagalized shared memory system rdgg(f)
can be obtained, shown in Figure 49. Clearly, there are s=d#ferences between rdt@g(f) and RDT M%ss(f)
in Figure 43. Then the steady-state PMF foirdtgslcf) is gZ” = m(o P21+ p), 20(1 + p + p%),2(1 + p)),
whereas the steady-state PMF for RDT MQL) isy"® = o p T (0, p%(1 = p), p(2 - p),2 - p — p?). From ts,, (L)
the interleaving quotient SMC of the abstract generalizeaksd memory system sg;sc(L) can also be extracted,
depicted in Figure 50. There are seriougidiences between sgg(f) and SMC:SS(E) in Figure 41. Then the steady-
state PMF fEr smg_(L) is (;3’ = MTW(O P2(1+p),0,20(1+p +p?),0,2(1+ p)), whereas the steady-state PMF
for SMG,, (L) i8¢’ = 51— 7p —(0, p4(1-p),0,p(2-p),0,2-p-p?). In Figure 51, the plots o, #,, ¢6 as functions
of p are deplcted One cane see substantigiedénces between plots in Figure 51 and those in Figure 44. The
differences indicate that whertends tal, the increase of performance (treated as the time fractibamthe memory
is allocated to a processor and not required by another omaugh quicker in step semantics (the funciigipthan

87

({at.p?).0%

({d1}62):1 ({riyo) o5 ({r2}.0). 745

({d2},b21),1

({ra}.p). p(l+p)

P(1+P)
1+p+p2 {r1}.0),

1+p+p2

D

0,1—p2

Figure 47: The interleaving transition system of the gelied shared memory system.

Table 12: Transient and steady-state probabilities foirttezleaving reduced quotient DTMC of the abstract sharethory system

| k JJo] 5 | 10 | 15 | 20 | 25 [30 | 3 | 40 | 45 | 50 [o |
¢,°[K [1]0.5129] 0.2631] 0.1349] 0.0692] 0.0355] 0.0182] 0.0093] 0.0048] 0.0025[0.0013] 0

¢,°[K] || 0] 0.1499] 0.1155] 0.0950| 0.0844] 0.0789| 0.0761] 0.0747| 0.0739| 0.0736| 0.0734[0.0732
¢5°[K] || 0] 0.1992] 0.2722] 0.3061] 0.3233] 0.3322| 0.3367 0.3390| 0.3402| 0.3408| 0.3411] 0.3415
¢,°[K] | 0] 0.1379] 0.3493] 0.4640] 0.5231] 0.5534| 0.5690| 0.5770| 0.5811| 0.5832| 0.5842| 0.5854

in the interleaving case%(l) On the other hand, the dependence of the steady-state PiMHsomore complex and
interesting in step semantics than in interleaving onecssitihe functiong’,, ;. ¢g have local extremums and more
inflections tharqbz, ¢4, ¢e

Example 11.2. Let us take = % and | = 1lin the interleaving transition systems and DTMC from Exaidl.1. Then
we obtain the interleaving transition systenfE} quotient transition systemélss(f) and reduced quotient DTMC

rdtmc;:is(f) of the concrete and abstrastandardshared memory system, specified in Section 9 by the statiesexp
sions E and F, respectively. In Table 12, the transient ardstieady-state probabilitieg °[k] (1 < i < 4) for the
interleaving reduced quotient DTMC of the abstract sharesmory system at the time moments{0, 5, 10,, 50}
and k = « are presented, and in Figure 52, the alteration diagram (etron in time) for the transient probabil-

ities is depicted. The steady-state PMF for rdtm¢F) is ¢ = (O, 2.4, [21‘1‘) whereas the steady-state PMF for

RDTMC. (F)isy = (0, &, &, 19). One can see that with k growing,’[k] = ¢"[KI(K) stabilizes slower (es-
pecially for the small values of k) thag,°[k] = ¢'°[K](%s) from Table 10 and Figure 35, since rdt@lgf) has
no transition from% to e, unlike RDT MG, _ (E) For instance, the absolute relativeffdirences for k= 5 are

"’;abi 5] 0585401379 _ 04475 - (7644 (about76%) and 7 wiﬁ[5]' — |05882-01901 _ 03981 o () 6768(about

0.5854 0.5854 v’ 0.5882 0.5882
68% i.e. 8% Iess)

11.3. Application area
From the application viewpoint, one considers what kind ysfteams are more appropriate to be modeled and
analyzed within SPAs. MTIPP and PEPA are well-suited forithterleaving continuous time systems such that the

88

(23 (L)

~~ 1-72 ~~

—(K m} e e
9, 1=’ 4 2 0,12
"Trats? T

{d},1 rh 7

o(14
{r}, £t ’CB {a}.p®

{m},p?

Figure 48: The interleaving quotient transition systemhefabstract generalized shared memory system.

rdtmes. (L)
2
-~ 14+p+p? -~
(@ I l M)
l—p2 IC4 / 2p \ }CQ 1-p
1+p+p2 I+p 1+p
1+
2 1p£p+t;)2 p?

= K¢) (K, =,
L—p 1—p

Figure 49: The interleaving reduced quotient DTMC of theti@as generalized shared memory system.

89

|

)

smcees, (

~ ~

14p+p? T+p+p? 14p
p(1+2p) IC4 IC2 2p

p(+p) 3
THptp? IC3 0 P

+(Kq (K)*

Figure 50: The interleaving quotient underlying SMC of thstaact generalized shared memory system.

mamm &2

- &4

— &6
..--..----?"T"'\--T--\ \ ! ! L p

0.2 0.4 0.6 0.8 1.0

Figure 51: Interleaving steady-state probabiliﬁéz's Jb;, q?g as functions of the parameter

90

1.@
-0 ¢1°[K]
= ¢2°[K]

0.8 o ¢5°1K]
——¢4'°[K]

0.6;

0.4

P
0.2 I
| | POV 00000000 0 k

10 20 30 40 0

Figure 52: Transient probabilities alteration diagramtfar interleaving reduced quotient DTMC of the abstractethanemory system

activity rates or the average sojourn time in the statesraoevk in advance and exponential distribution approximates
well the activity delay distributions, whereas EMPA can Isedito model the mentioned systems with the activity
delays of dfferent duration order or the extended systems, in which pprelbabilistic choices or urgent activities
must be implemented. GSPA and GSMPA fit well for modeling thetimuous time systems with a capability to keep
the activity causality information, and with the known &itti delay distributions, which cannot be approximated
accurately by exponential distribution, whiler 8an additionally model mobility in such systemBCPstis a good
choice for interleaving discrete time systems with deteistic (fixed) and generalized stochastic delays, whereas
SACP is capable to model non-interleaving systems as wadlit loffers not enough performance analysis methods.
dtsiPBC is consistent for the step discrete time systents that the independent execution probabilities of actsiti
are known and geometrical distribution approximates virgidtate residence time distributions. In addition, dt€PB
can model these systems featuring very scattered actiglgyd or even more complex systems with instantaneous
probabilistic choice or urgency, hence, dtsiPBC can beatakea nhon-interleaving discrete time counterpart of EMPA.

11.4. Advantages of dtsiPBC

Thus, the main advantages of dtsiPBC are the flexible mtitiia¢abels, immediate multiactions, powerful op-
erations, as well as a step operational and a Petri net dem@bsemantics allowing for concurrent execution of
activities (transitions), together with an ability for dytecal and parametric performance evaluation.

12. Conclusion

In this paper, we have proposed a discrete time stochaséogirn disiPBC of a finite part of PBC enriched with
iteration and immediate multiactions. In the presentediverof dtsiPBC, we have used positive reals as the weights
of immediate multiactions, with a goal to enhance its speatifbn capabilities. The calculus has a concurrent step
operational semantics based on labeled probabilistisitian systems and a denotational semantics in terms of-a sub
class of LDTSIPNs. A method of performance evaluation infthenework of the calculus has been presented. Step
stochastic bisimulation equivalence of process exprasdias been defined and its interrelations with other equiv-
alences of the calculus have been investigated. We havaiegglhow to reduce transition systems and underlying

91

SMCs of expressions with respect to the introduced equicaleWWe have proved that the mentioned equivalence guar-
antees identity of the stationary behaviour and the sojtinma properties, and thus preserves performance measures.
A case study of the shared memory system has been preserdaccaample of modeling, performance evaluation
and performance preserving reduction within the calcUfirsally, we have determined the advantages of dtsiPBC by
comparing it with other SPAs. In particular, by examining thterleaving transition system of the generalized shared
memory system, we have demonstrated that step semanticfésgble to the interleaving one for the specification
and analysis as in our context, as within other discrete Sip&s.

The advantage of our framework is twofold. First, one carcgpén it concurrent composition and synchroniza-
tion of (multi)actions, whereas this is not possible in sleal Markov chains. Second, algebraic formulas represent
processes in a more compact way than Petri nets and allowoaaqpty syntactic transformations and comparisons.
Process algebras are compositional by definition and tipeirations naturally correspond to operators of program-
ming languages. Hence, it is much easier to construct a @ompbdel in the algebraic setting than in PNs. The
complexity of PNs generated for practical models in theditere demonstrates that it is not straightforward to con-
struct such PNs directly from the system specificationsiP&6 is well suited for the discrete time applications,
whose discrete states change with a global time tick, sutlisiness processes, neural and transportation networks,
computer and communication systems, timed web servicdsd9@well as for those, in which the distributed archi-
tecture or the concurrency level should be preserved whildaling and analysis (remember that, in step semantics,
we have additional transitions due to concurrent execsjion

Future work will consist in constructing a congruence failBC, i.e. the equivalence that withstands application
of all operations of the algebra. The first possible caneitaa stronger version @b __defined via transition systems
equipped with two extra transitiorskip andredo, like those from [63]. We also plan to extend the calculuswit
deterministically timed multiactions having a fixed timdale(including the zero one which is the case of immediate
multiactions) to enhance expressiveness of the calcullisoeextend application area of the associated analysis tech
nigues. The resulting SPA will be a concurrent discrete tim&logue of SM-PEPA [18], whose underlying stochastic
model is a semi-Markov chain. Moreover, recursion coulddsieal to dtsiPBC to increase further specification power
of the algebra.

References

[1] W.M.P.van der Aalst, K.M. van Hee, H.A. Reijers, Analysif discrete-time stochastic Petri nets, Statistica [dedita 54 (2000) 237—255.
httpy/tmitwww.tm.tue.nistef/hreijergH.A. Reijers Bestand¢Btatistica.pdf.
[2] C.Autant, P. Schnoebelen, Place bisimulations in Fet$, in: Proc. 18 ICATPN 1992, volume 616 ofect. Notes Comp. SeiSpringer,
1992, pp. 45-61.
[3] C. Baier, Polynomial time algorithms for testing probitic bisimulation and simulation, in: Proc™8CAV 1996, volume 1102 of.ect.
Notes Comp. SciSpringer, 1996, pp. 50-61. hitfwww.inf.tu-dresden.deontentinstitutegthi/algi/publikationeritexte27_00.old.pdf.
[4] C. Baier, B. Engelen, M. Majster-Cederbaum, Decidingirhilarity and similarity for probabilistic processes,udisal of Computer and
System Sciences 60 (2000) 187-231.
[5] G. Balbo, Introduction to stochastic Petri nets, in: ®rt*t EEFEuro Summer School of Trends in Comp. Sci. 2000, volume 209Gct.
Notes Comp. SciSpringer, 2001, pp. 84-155.
[6] G. Balbo, Introduction to generalized stochastic Pegtis, in: Proc. ! SFM 2007, volume 4486 dfect. Notes Comp. SgSpringer, 2007,
pp. 83-131.
[7] F. Bause, P.S. Kritzinger, Stochastic Petri nets: arpihiction to the theory, Vieweg Verlag, 2002'd2dition, 218 pages, htifis4-
WWwWw.cs.tu-
dortmund.dEemgdehomeébausgbausekritzinger-spnbook print.pdf.
[8] J.A.Bergstra, J.W. Klop, Algebra of communicating peeses with abstraction, Theor. Comput. Sci. 37 (1985) 77-12
[9] M. Bernardo, Theory and application of extended Markovprocess algebra, University of Bologna, Italy, 1999.[Phhesis, 276 pages,
httpy/www.sti.uniurb.itbernardgdocumentgphdthesis.pdf.
[10] M. Bernardo, A survey of Markovian behavioral equivades, in: Proc. % SFM 2007, volume 4486 dfect. Notes Comp. SciSpringer,
2007, pp. 180-219. httgavww.sti.uniurb.itbernardgdocumentsfm07pe.tuto.pdf.
[11] M. Bernardo, On the trad@obetween compositionality and exactness in weak bisirtyldar integrated-time Markovian process calculi,
Theor. Comput. Sci. 563 (2015) 99-143. htpww.sti.uniurb.itbernardgdocumentgcs563.pdf.
[12] M. Bernardo, M. Bravetti, Reward based congruences: wa aggregate more?, in: Proc. PAPM-PROBMIV 2001, volum@s2df Lect.
Notes Comp. SciSpringer, 2001, pp. 136-151. hifmww.cs.unibo.ijfbravettipapergapmO01b.ps.
[13] M. Bernardo, L. Donatiello, R. Gorrieri, A formal apmch to the integration of performance aspects in the maglelimd analysis of
concurrent systems, Inform. Comput. 144 (1998) 83-15@;/httww.sti.uniurb.itbernardgdocumentsc144.pdf.
[14] M. Bernardo, R. Gorrieri, A tutorial on EMPA: a theory obncurrent processes with nondeterminism, prioritieshabilities and time,
Theor. Comput. Sci. 202 (1998) 1-54. httwww.sti.uniurb.itbernardgdocument4cs202.pdf.

92

[15] E. Best, R. Devillers, J.G. Hall, The box calculus: a reausal algebra with multi-label communication, in: Advesiin Petri Nets 1992,
volume 609 of_ect. Notes Comp. ScSpringer, 1992, pp. 21-69.

[16] E. Best, R. Devillers, M. Koutny, Petri net algebra, E2§ Monographs on Theor. Comput. Sci., Springer, 2001. 3g8ga

[17] E. Best, M. Koutny, A refined view of the box algebra, imoB. 16" ICATPN 1995, volume 935 dfect. Notes Comp. ScSpringer, 1995,
pp. 1-20. httpfparsys.informatik.uni-oldenburg.Aeestpublicationgpn95.ps.gz.

[18] J.T. Bradley, Semi-Markov PEPA: modelling with gerlbradistributed actions, International Journal of Simidat 6 (2005) 43-51.
httpy/pubs.doc.ic.ac.ykemi-markov-pepaemi-markov-pepa.pdf.

[19] M. Bravetti, Specification and analysis of stochasgalitime systems, University of Bologna, Italy, 2002. Ph.tBesis, 432 pages,
httpy/www.cs.unibo.if bravettipapergphdthesis.ps.gz.

[20] M. Bravetti, M. Bernardo, R. Gorrieri, Towards perfaance evaluation with general distributions in processtatag in: Proc. 9 CONCUR
1998, volume 1466 dfect. Notes Comp. ScBpringer, 1998, pp. 405-422. hffpiww.cs.unibo.if bravettipapergconcur98.ps.

[21] M. Bravetti, P.R. D’Argenio, Tutte le algebre insiemeoncepts, discussions and relations of stochastic pratgebras with general dis-
tributions, in: Validation of Stochastic Systems: A GuideQurrent Research, volume 2925Lafct. Notes Comp. SgiSpringer, 2004, pp.
44-88. http/www.cs.unibo.if bravettipapergvoss03.ps.

[22] E. Brinksma, H. Hermanns, Process algebra and Markainshin: Proc. ¥ EEFEuro Summer School of Trends in Comp. Sci. 2000,
volume 2090 ot ect. Notes Comp. ScBpringer, 2001, pp. 183-231.

[23] E. Brinksma, J.P. Katoen, R. Langerak, D. Latella, Achtmstic causality-based process algebra, Comp. J. 38)(5995565. httgieprints.
eemcs.utwente f838701/552.pdf.

[24] G. Bucci, L. Sassoli, E. Vicario, Correctness verifieatand performance analysis of real-time systems usinthastic preemptive time
Petri nets, IEEE Transactions on Software Engineering 8Q5p913-927. httpwww.dsi.unifi.if"vicario/Researcil SE05.pdf.

[25] P. Buchholz, Exact and ordinary lumpability in finite Nav chains, Journal of Applied Probability 31 (1994) 59-75

[26] P. Buchholz, Markovian process algebra: compositiod equivalence, in: Proc™® Int. Workshop on Process Algebras and Performance
Modelling (PAPM) 1994, number 27 in Arbeitsberichte des Il@MJniversity of Erlangen, Germany, 1994, pp. 11-30.

[27] P. Buchholz, A notion of equivalence for stochasticriregts, in: Proc. 18 ICATPN 1995, volume 935 dfect. Notes Comp. SeBpringer,
1995, pp. 161-180.

[28] P. Buchholz, Iterative decomposition and aggregatibtabeled GSPNSs, in: Proc. YACATPN 1998, volume 1420 dfect. Notes Comp.
Sci, Springer, 1998, pp. 226-245.

[29] P. Buchholz, 1.V. Tarasyuk, Net and algebraic appreacto probabilistic modeling, Joint Novosibirsk Computi@ignter and Institute of
Informatics Systems Bulletin, Series Computer Science2081) 31-64. Novosibirsk, Russia, htfjtar.iis.nsk.syfilesitar/pages
spnpancc.pdf.

[30] S. Cattani, R. Segala, Decision algorithms for proliti bisimulation, in: Proc. 18 CONCUR 2002, volume 2421 dfect. Notes Comp.
Sci, Springer, 2002, pp. 371-385. hifmww.cs.bham.ac.ykdxp/papergCS02.pdf.

[31] 1. Christdft, Testing equivalence and fully abstract models of proisilailprocesses, in: ProcSICONCUR 1990, volume 458 dfect. Notes
Comp. Sci.Springer, 1990, pp. 126—140.

[32] G. Ciardo, J.K. Muppala, K.S. Trivedi, On the solutidiGSPN reward models, Performance Evaluation 12 (1991) 223 -http//people.ee.
duke.edyiksYspn.papergspnrew.ps.

[33] C. Daws, Symbolic and parametric model checking of iztime Markov chains, in: ProcS1ICTAC 2004, volume 3407 dfect. Notes
Comp. Sci.Springer, 2005, pp. 280-294.

[34] P. Degano, C. Priami, Non-interleaving semantics fobiie processes, Theoretical Computer Science 216 (1833)270.

[35] S. Derisavi, H. Hermanns, W.H. Sanders, Optimal sta@ce lumping of Markov chains, Information Processingdrst37 (2003) 309-315.

[36] C. Eisentraut, H. Hermanns, J. Schuster, A. TurriniZhang, The quest for minimal quotients for probabilistitomuata, in: Proc. 10
TACAS 2013, volume 7795 dfect. Notes Comp. ScBpringer, 2013, pp. 16-31.

[37] J.M. Fourneau, Collaboration of discrete-time Marlnains: Tensor and product form, Performance Evaluatiof26Y0) 779—-796.

[38] S. Gilmore, J. Hillston, L. Kloul, M. Ribaudo, PEPA netsstructured performance modelling formalism, Perforoeavaluation 54 (2003)
79-104. http/www.dcs.ed.ac.ykepdpepanetsJournal.pdf.

[39] R.J.van Glabbeek, The linear time — branching time spetll: the semantics of sequential systems with silent @soExtended abstract,
in: Proc. 4" CONCUR 1993, volume 715 dfect. Notes Comp. ScBpringer, 1993, pp. 66-81.

[40] R.J. van Glabbeek, S.A. Smolka, B. 8ém, Reactive, generative, and stratified models of proké#bilprocesses, Inform. Comput. 121
(1995) 59-80. httgboole.stanford.edpulyprob.ps.gz.

[41] N.Gbtz, U. Herzog, M. Rettelbach, Multiprocessor algtributed system design: the integration of functiomeasfication and performance
analysis using stochastic process algebras, in: PrdtPEsformance 1993, volume 729loéct. Notes Comp. ScBpringer, 1993, pp. 121—
146.

[42] M.C. Guenther, N.J. Dingle, J.T. Bradley, W.J. Knotielt, Passage-time computation and aggregation stratégidarge semi-Markov
processes, Performance Evaluation 68 (2011) 221-236.

[43] T.Han, J.P. Katoen, A. Mereacre, Approximate paramgyeathesis for probabilistic time-bounded reachability, Proc. 24" IEEE Real-
Time Systems Symposium (RTSS) 2008, IEEE Computer SocretysPNew York, USA, 2008, pp. 173-182.

[44] V. Hashemi, H. Hermanns, L. Song, Reward-bounded ity probability for uncertain weighted MDPs, in: Prdc" VMCAI 2016,
volume 9583 oL ect. Notes Comp. ScBpringer, 2016, pp. 351-371.

[45] B.R.Haverkort, Markovian models for performance argehdability evaluation, in: ProcSEEFEuro Summer School of Trends in Comp.
Sci. 2000, volume 2090 dfect. Notes Comp. ScBpringer, 2001, pp. 38—83. hitfwww-i2.informatik.rwth-aachen.déeaching
SeminafVOSS200%have0l.pdf.

[46] R.A.Hayden, J.T. Bradley, A. Clark, Performance sfiegiion and evaluation with unified stochastic probes and éoalysis, IEEE Transac-
tions on Software Engineering 39 (2013) 97-118. fitpbs.doc.ic.ac.yRuid-unified-stochastic-probghiid-unified-stochastic-probes.pdf.

[47] H.Hermanns, M. Rettelbach, Syntax, semantics, etgrizes and axioms for MTIPP, in: Proddant. Workshop on Process Algebras and
Performance Modelling (PAPM) 1994, number 27 in Arbeitgtige des IMMD, University of Erlangen, Germany, 1994, pp-88.

93

(48]

[49]

[50]
[51]

[52]
(53]

[54]
[55]

[56]

[57]
(58]

[59]
[60]

[61]
[62]

[63]
[64]

[65]

[66]
[67]
[68]
[69]
[70]
[71]
[72]
[73]
[74]
[75]
[76]

[77]
(78]

[79]
(80]

(81]
(82]

(83]

J. Hillston, The nature of synchronisation, in: Prod tt. Workshop on Process Algebras and Performance Mode{RAPM) 1994,
number 27 in Arbeitsberichte des IMMD, University of Erlamg Germany, 1994, pp. 51-70. httwww.dcs.ed.ac.ubepa
synchronisation.pdf.

J. Hillston, A compositional approach to performancedelling, Cambridge University Press, UK, 1996. 158 pages,
httpy//www.dcs.ed.ac.ykpepdbook.pdf.

C.A.R. Hoare, Communicating sequential processemtiee-Hall, London, UK, 1985. httffwww.usingcsp.coriecspbook.pdf.

A. Horvath, M. Paolieri, L. Ridi, E. Vicario, Transi¢analysis of non-Markovian models using stochastic stateses, Performance Evalu-
ation 69 (2012) 315-335.

L. Jategaonkar, A.R. Meyer, Deciding true concurreaguivalences on safe, finite nets, Theor. Comput. Sci. 13961107-143.

C.C. Jou, S.A. Smolka, Equivalences, congruences amplete axiomatizations for probabilistic processesFroc. £! CONCUR 1990,
volume 458 ofLect. Notes Comp. S¢Springer, 1990, pp. 367-383.

G. Kahn, Natural semantics, in: Prod? 8TACS 1987, Springer, London, UK, 1987, pp. 22-39.

J.P. Katoen, Quantinative and qualitative extensimfrevent structures, CTIT Ph. D.-thesis series 96-09, @dntrTelematics and Informa-
tion Technology, University of Twente, Enschede, The Neéimels, 1996. Ph. D. thesis, 303 pages.

J.P. Katoen, E. Brinksma, D. Latella, R. Langerak, Bastic simulation of event structures, in: Pro€. l4t. Workshop on Process Algebra
and Performance Modelling (PAPM) 1996, CLUT Press, Toritaty, 1996, pp. 21-40. httffeprints.eemcs.utwente/648701/

263 KLLB96b.pdf.

J.P. Katoen, P.R. D’Argenio, General distributiongpincess algebra, in: Proc EEFEuro Summer School of Trends in Comp. Sci. 2000,
volume 2090 oL ect. Notes Comp. ScBpringer, 2001, pp. 375-429.

M. Koutny, A compositional model of time Petri nets, iroc. 28' ICATPN 2000, volume 1825 dfect. Notes Comp. SciSpringer, 2000,
pp. 303-322.

V.G. Kulkarni, Modeling and analysis of stochastic teyss, Texts in Statistical Science, Chapman and HaRC Press, 2009. 563 pages.
R. Lanotte, A. Maggiolo-Schettini, A. Troina, Parameprobabilistic transition systems for system design analysis, Formal Asp. Com-
put. 19 (2007) 93-109.

K.G. Larsen, A. Skou, Bisimulation through probalitistesting, Inform. Comput. 94 (1991) 1-28.

H. Macia, V. Valero, D. Cazorla, F. Cuartero, Introihg: the iteration in sPBC, in: Proc. #4FORTE 2004, volume 3235 dfect. Notes
Comp. Sci.Springer, 2004, pp. 292-308. hifpww.info-ab.uclm.eseticgpublicationg2004forte04.pdf.

H. Macia, V. Valero, F. Cuartero, D. de-Frutos, A comgnce relation for sPBC, Formal Methods in System Design28Rg) 85-128.
Springer, The Netherlands.

H. Macia, V. Valero, F. Cuartero, M.C. Ruiz, sPBC: a Mavrian extension of Petri box calculus with immediate nagltions, Fundamenta
Informaticae 87 (2008) 367—406. I0S Press, Amsterdam, Tthédands.

H. Macia, V. Valero, D. de-Frutos, sPBC: a Markoviartemsion of finite Petri box calculus, in: Proc¢h9EEE Int. Workshop on Petri
Nets and Performance Models (PNPM) 2001, IEEE ComputereSoéiress, Aachen, Germany, 2001, pp. 207-216./httpw.info-
ab.uclm.egeticgpublicationg200YpnpmO01.ps.

J. Markovski, P.R. D’Argenio, J.C.M. Baeten, E.P. dek/i Reconciling real and stochastic time: the need for fitistic refinement,
Formal Asp. Comput. 24 (2012) 497-518.

J. Markovski, A. Sokolova, N. Trcka, E.P. de Vink, Coasjtionality for Markov reward chains with fast and silerdrtsitions, Performance
Evaluation 66 (2009) 435-452.

J. Markovski, E.P. de Vink, Extending timed processhlg with discrete stochastic time, in: Proc™2MAST 2008, volume 5140 ofect.
Notes Comp. S¢iSpringer, 2008, pp. 268-283.

J. Markovski, E.P. de Vink, Performance evaluation stributed systems based on a discrete real- and stochiasticprocess algebra,
Fundamenta Informaticae 95 (2009) 157-186. IOS Press,ekdan, The Netherlands.

0. Marroquin, D. de-Frutos, Extending the Petri bolcatus with time, in: Proc. 2% ICATPN 2001, volume 2075 dfect. Notes Comp.
Sci, Springer, 2001, pp. 303-322.

M.A. Marsan, Stochastic Petri nets: an elementaryothiction, in: Advances in Petri Nets 1989, volume 424 eft. Notes Comp. Sci.
Springer, 1990, pp. 1-29.

M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Fresatgénis, Modelling with generalized stochastic Petri neédey Series in Parallel
Computing, John Wiley and Sons, 1995. 316 pages,/htpw.di.unito.if"greatsp/GSPN-Wiley.

P.M. Merlin, D.J. Farber, Recoverability of commurtioa protocols: implications of a theoretical study, IEEEfisactions on Communi-
cations 24 (1976) 1036-1043.

R.A.J. Milner, Communication and concurrency, PregiiHall, Upper Saddle River, NJ, USA, 1989. 260 pages.

R.A.J. Milner, J. Parrow, D. Walker, A calculus of mabjprocesses (i and ii), Inform. Comput. 100 (1992) 1-77.

M.K. Molloy, On the integration of the throughput andaemeasures in distributed processing models, Report 8813921, University of
California, Los Angeles, USA, 1981. Ph. D. thesis.

M.K. Molloy, Discrete time stochastic Petri nets, IEEEansactions on Software Engineering 11 (1985) 417-423.

U. Montanari, M. Pistore, D. Yankelevich fli¢ient minimization up to location equivalence, in: Pro.BSOP 1996, volume 1058 a&ct.
Notes Comp. SciSpringer, 1996, pp. 265-279.

T.N. Mudge, H.B. Al-Sadoun, A semi-Markov model for therformance of multiple-bus systems, IEEE Transaction€amputers C-34
(1985) 934-942. httywww.eecs.umich.edinmnypapergSemiMarkov.pdf.

A. Niaouris, An algebra of Petri nets with arc-basedetinastrictions, in: Proc.$1ICTAC 2004, volume 3407 ofect. Notes Comp. Sgi.
Springer, 2005, pp. 447-462.

R. Paige, R.E. Tarjan, Three partition refinement atgors, SIAM J. Comput. 16 (1987) 973-989.

G.D. Plotkin, A structural approach to operational satics, Technical Report DAIMI FN-19, Computer Science &épent, Aarhus
University, Aarhus, Denmark, 1981.

C. Priami, Stochastia-calculus with general distributions, in: Prod"4nt. Workshop on Process Algebra and Performance Modelling

94

(PAPM) 1996, CLUT Press, Torino, ltaly, 1996, pp. 41-57.

[84] C. Priami, Language-based performance predictiomlifsributed and mobile systems, Inform. Comput. 175 (200®)-145.

[85] C. Ramchandani, Perfomance evaluation of asynchmweoncurrent systems by timed Petri nets, Massachusetitit@f Technology,
Cambridge, USA, 1973. Ph. D. thesis.

[86] M. Rettelbach, Probabilistic branching in Markoviarmmgess algebras, The Computer Journal 38 (1995) 590-599.

[87] S.M. Ross, Stochastic processes, John Wiley and Save Ysrk, USA, 1996. 528 pages!@edition.

[88] I.V. Tarasyuk, Discrete time stochastic Petri box oals, Berichte aus dem Department fiir Informati@s Carl von Ossietzky Universitat
Oldenburg, Germany, 2005. 25 pages, itar.iis.nsk.syfiles/itar/pagegdtspbcih cov.pdf.

[89] I.V. Tarasyuk, Iteration in discrete time stochast@triPbox calculus, Bulletin of the Novosibirsk Computingri@er, Series Computer Science,
IIS Special Issue 24 (2006) 129-148. NCC Publisher, NowssibRussia, httgitar.iis.nsk.syfilesitar/pagegdtsitncc.pdf.

[90] I.V. Tarasyuk, Stochastic Petri box calculus with dige time, Fundamenta Informaticae 76 (2007) 189-218. I1@SsP Amsterdam, The
Netherlands, httpitar.iis.nsk.sfiles/itar/pagegtspbcfi.pdf.

[91] I.V. Tarasyuk, Equivalence relations for modular penfiance evaluation in dtsPBC, Math. Struct. Comp. Sci. D442 78-154 (€240103).
Cambridge University Press, Cambridge, UK, hifar.iis.nsk.sifiles/itar/pagegdtsdphms.pdf.

[92] 1.V. Tarasyuk, H. Macia, V. Valero, Discrete time stastic Petri box calculus with immediate multiactions, Ar@cal Report DIAB-10-03-1,
Department of Computer Systems, High School of Computegr8ei Engineering, University of Castilla - La Mancha, Aksag Spain,
2010. 25 pages, htiftar.iis.nsk.sifileg/itar/pagegdtsipbc.pdf.

[93] I.V. Tarasyuk, H. Macia, V. Valero, Discrete time shastic Petri box calculus with immediate multiactions BRC, in: Proc. & Int.
Workshop on Practical Applications of Stochastic Modgl{{PASM) 2012, London, UK, volume 296 &fectronic Notes in Theor. Comp.
Sci, Elsevier, 2013, pp. 229-252. hifftar.iis.nsk.sfileg/itar/pagegdtsipbcentcs. pdf.

[94] I.V. Tarasyuk, H. Macia, V. Valero, Performance arsigyof concurrent systems in algebra dtsiPBC, ProgrammmdgGomputer Software
40 (2014) 229-249. Pleiades Publishing, Ltd.

[95] I.V. Tarasyuk, H. Macia, V. Valero, Stochastic prosesduction for performance evaluation in dtsiPBC, SileE#ectronic Mathematical
Reports 12 (2015) 513-551. Sobolev Institute of Matheraahiovosibirsk, Russia, htfitar.iis.nsk.syfiles/itar/pagegtsipbcsemr.pdf.

[96] V. Valero, M.E. Cambronero, Using unified modelling darage to model the publigubscribe paradigm in the context of timed web services
with distributed resources, Mathematical and Computer élliody of Dynamical Systems (2017). 26 pages, DOI: 10.108873954.2016.
1277360.

[97] R. Wimmer, S. Derisavi, H. Hermanns, Symbolic partiti@finement with automatic balancing of time and space oRegnce Evaluation
67 (2010) 816-836.

[98] R. Zijal, G. Ciardo, G. Hommel, Discrete deterministind stochastic Petri nets, in: Proé! 9TG/GI Professional Meeting “Messung,
Modellierung und Bewertung von Rechen- und Kommunikasgageemen” (MMB) 1997, Freiberg, Germany, VDE-Verlag, BerGermany,
1997, pp. 103-117. htipawvww.cs.ucr.eddciardgpubg1997MMB-DDSPN.pdf.

[99] A. Zimmermann, J. Freiheit, G. Hommel, Discrete timecsiastic Petri nets for modeling and evaluation of reaktegstems, in: Proc.
9 Int. Workshop on Parallel and Distributed Real Time SystéW®DRTS) 2001, San Francisco, USA, pp. 282—286. fithv.cs.tu-
berlin.d¢ azjtext¢e WPDRTSO01.pdf.

Appendix A. Proofs

Appendix A.1l. Proof of Proposition 6.2

Like it has been done for strong equivalence in Propositi@rirom [49], we shall prove the following fact about
step stochastic bisimulation. Let us hatee 7, R : G G’ for some index sef. Then the transitive closure of
the union of all relation® = (UjcsR;)* is also an equivalence amtl: G- G'.

SinceVj € 7, R;is an equivalence, by definition &, we get thaiR is also an equivalence.

Let] € 7, then, by definition oR, (s1, 52) € R; implies (51,) € R. HenceVHjx € (DR(G)UDR(G"))/x;, AH €
(DR(G) UDR(G"))/#, Hix € H. MoreoverdJ’, H = Uxeg Hk.

We denoteR(n) = (UjegR;j)". Let (s1,) € R, then, by definition oiR, In > 0, (s,) € R(n). We shall prove
thatR : Ge G’ by induction om.

Itis clear thatVj € J, Rj : G G impliesVj € F, ([G]~,[G]:) € R; and we have (]~,[G'].) € R by
definition of R.

It remains to prove thass(, ;) € R impliesVH e (DR(G) U DR(G'))/x, YA e N

fin® PMA(Sl, 7-{) = PMA(SQ, 7-{)
e N= 1
In this case, ¢.5) € R implies3j € J, (s1,%) € Rj. SinceR; : G G, we getVH € (DR(G) U
DR(G"))/x, YA € N%

fin?

PMa(s1,H) =) PMa(s, Hi) = | PMa(s2, Hig) = PMa(sz, H).
keg” keg’

95

en—>n+1
Suppose tha¥m < n, (s,) € R(M) impliesVH € (DR(G) U DR(G"))/x, YA € N | PMa(s,, H) =
PMA(SQ, 7‘()
Then 61,) € R(n+1)impliesdj € T, (s1,) € RjoR(n), i.e. Is3 € (DR(G)UDR(G")), such that$;, s3) € R;
and &,) € R(n).
Then, like for the case = 1, we getPMa(s;, H) = PMa(s3, H). By the induction hypothesis, we get
PMa(Ss, H) = PMa(sz, H). Thus,YH € (DR(G) U DR(G"))/#, YA€ NE |

PMa(s1, H) = PMa(sz, H) = PMa(S2, H).

By definition, Rs{G, G’) is at least as large as the largest step stochastic bidiolbetweenG andG’. It fol-
lows from the proven above th&4G, G’) is an equivalence anls{G,G’) : G, G’, hence, it is the largest step
stochastic bisimulation betwe&@andG’. O

Appendix A.2. Proof of Proposition 8.1

By Proposition 6.1,DR(G) U DR(G"))/z = ((DRr(G) U DRt (G"))/=) ¥ ((DRy(G) U DRy(G'))/). Hence¥H €
(DR(G) U DR(G"))/«, all states fron¥ are tangible, whef{ € (DRr(G) U DRr(G’))/x, or all of them are vanishing,
whenH € (DRy(G) U DRy(G))/«.

By definition of the steady-state PMFs for SM@s,€ DRy(G), ¢(s) = 0 andvs € DRy(G'), ¢’(s) = 0. Thus,
VH € (DRV(G)UDRY(G'))/r, Xscrinprc) $(S) = Zsernor,@) $(S) = 0= Xserinpry(@) ¢’ (S) = Zsernore) ¢'(S)-

By Proposition 5.2Ys € DRr(G), ¢(S) = % andvs € DRy (G’), ¢'(S) = % wherey andy’

are the steady-state PMFs 9TMC(G) andDTMC(G’), respectively. Thus{H, H € (DR (G) U DRy (G)) /=,
_ _ W(s) _ XseHrorr @ ¥(S) _ Xsemnpry(e) ¥(S)
2setnbR©G) P(S) = LseHrDR () P(S) = LseHnDR(G) (ZésDRT(G) ¢(§)) D Yy Rl o S— and

, _ , _ W'(s) _ Zeernrr @) ¥ (S) _ Xeernprre) ¥'(S)
ZS’E‘HQDR(G’) 4 (S') - ZS’E‘HHDRT(G’) 4 (S/) - ZS’E'HQDRT(G’) (Z?sDRT(G’)‘V(g,)) T Tsore)v® T I ngel/%DRT(G’)‘//’(gl).

It remains to prove thatH € (DRr(G) U DRr(G'))/», X serinprr(6) ¥(S) = Lsernprre) ¥’ (S). Since DR(G) U
DR(G"))/% = ((DRr(G) U DRr(G"))/xr) W ((DRy(G) U DR (G"))/&), the previous equality is a consequence of the
following: YH € (DR(G) U DR(G"))/r, X scrnprie) ¥(S) = Zserrpra) ¥'(S)-

Standard proof continuation.

It is sufficient to prove the previous statement for transient PMFg, aiicey = limy_,., y[K] andy’ = limy_,. ¥/'[K].
We proceed by induction dn

[) k = O
The only nonzero values of the initial PMFs BTMC(G) and DTMC(G’) are ¢[0]([G]~) and y[0]([G]~).
Let Ho be the equivalence class containiitg]{ and [G']~. Then ¥ ey npre) YI0I(S) = ¢¥[0]([Cl:) = 1 =
' [0([G]x) = Xseronpree) ¥’ [0](S).
As for other equivalence class&i{ € ((DR(G) U DR(G'))/r) \ Ho, we have} s.4~pree) ¥[01(S) = 0 =
Zsernore) ¥'[01(S).

e ko k+1
LetH € (DR(G) UDR(G'))/x andsy, s, € H. We have/H e (DR(G) UDR(G))/x, YA€ N | 5 ArH o

A — —_—
s, —p H. ThereforePM(sy, H) = Zl'ﬂigle'ﬁ» o5 PT(T, s1) = Xaens, 2 s e, 505, oA PT(Y,s) =

Zaeng, PMa(s1, H) = Ypcnz PMa(S2, H) = Ypenz. ZIT\Hézeﬁ, 5%, LN)=A PT(T,s) =
Z(Tﬂgze“ﬁ;szlgz)

PT(T,s) = PM(SZ,?‘?). Since we have the previous equality foralls, € H, we can denote
PM(H,H) = PM(SM}?) = PM(SQ,ﬂ). Note that transitions from the statesR(G) always lead to those
from the same set, hencés € DR(G), PM(s, H) = PM(s, H N DR(G)). The same is true fdDR(G’).

96

By induction hypothesisy’ c4npr) ¥IKI(S) = Xsernpre) ¥ [KI(S). Further,

Z§e‘l—:{nDR(G l//[k + 1](5) = Z§e(lp—~{nDR(G ZSEDR(G) l/’[k](S)PM(S, §) = ZseDR(G) deﬁnDR(G) l//[k](S)PM(S, §) =
ZSEDR(G) lﬂfk](S) Z§E<F{QDR(G) PM(S» §)=2n ZséHnDR(G) lﬂ[k](S) Z§E<F{QDR(G PM(S» §) =

2t Zserinor) YIKI(S) Xeiinprio) stj)g;’ PT(T,s) = Xa Xserinpr) YIKI(S) Z‘TB&,%DR(G), L PT(T,s) =

S—§]
2t Lsernor) YIKI(PM(S, H) = E g Zserinoree) YIKI(S)PM(H, H) =
Y PM(H, H) YseqirpReG) lP[k](s)j Y PM(H, H) Xgerirore) t,b'[k](S'Zf
Y Lserrore) ¥ [KI(S)PM(H, H) = Y4t Xserrnore) ¥ [KI(S)PM(S, H) =
2 Lsernore) ¥ IKI(S) Z{TIHSVE(F{NDR(G’), ¢S PT(Y,s) =
Lo Lsernore) ¥ [KI(S) Zyernpre) Zinas. g PTHS) =
2H ZS’E(/'(ODR(G’) Y'[KI(S) Zg:gﬁnDR G') PM(s, %) = ZS’EDR(G’) Y'[K](S) ZglequDR(Gr) PM(s,8) =
Zs’eDR(G’) Zg'emeR(G/) l//’[k](S’)PMéS’, §/) = Z§’e‘]7mDR(G’) ZS'EDR(G’) l//’[k](S')PM(S’, §/) =
Lyeqinora) ¥ Tk + 1(8). 0
Alternative proof continuation.
Thus, we should now prove thafH € (DR(G) U DR(G'))/&, Xjijsenpr@) ¥i = ngjEmDR(G,), %.
The steady-state PMF = (1, .. ., ¥n) for DTMC(G) is a solution of the linear equation system

WP =y
ylh =1 -
Then, for alli (1 <i < n), we have
{ Y P = i
2?:1‘/’] =1

By definition of?;; (1 <, j < n) we have

{ 21 PM(sy, s)yj = ¥
Z?:l yi=1

Let H e (DR(G) U DR(G'))/x andsy, s, € H. We have/H € (DR(G) UDR(G'))/x, YA€ NE 5 Bp H o
A —_— —_—
S —p H. ThereforePM(sy, H) = Zl‘r\iéie’ﬁ s58) PT(T.51) = Eaent, Zmasefﬁ S58, L(1)=A) PT(Y. 1) =

ZAeN{-m PMa(s1, 'ﬁ) = ZAeNﬁn PMa(s2, H) = Zaenz 2

fin (TSEH 5%, L()=A) PT(T, %) =1, PT(Y,) =

TA%eH 5,5%)

PM(s,, 'ﬁ). Since we have the previous equality for all s, € H, we can denot@M(ﬂ,fO = PM(sl,?~{) =
PM(s,, 77). Note that transitions from the states@R(G) always lead to those from the same set, hence,
Vse DR(G), PM(s, H) = PM(s, H N DR(G)). The same is true fdR(G).

LetH € (DR(G) U DR(G"))/x. We sum the left and right sides of the first equation from getesm above for all
i such thats € ‘H N DR(G). The resulting equation is

D PMGsiswi= Y

{ilseHNDR(G)} j=1 {ilseHNDR(G)}

Let us denote the aggregate steady-state PMBIMC(G) by ¥#npri) = 2jisernpr) ¥i- Then, for the left-
hand side of the equation above, we get

YiilseHnDrRE) 2 j=1 PM(Sj, $)¥j = X1 ¥ Yiisernorey PM(S),) = X1y PM(s), H)y| =
Zﬂe(DR(G)UDR(G’))/R st,-gz?mDR(G)] PM(sj, H)yj = Z'ﬁe(DR(G)uDR(G’))/R le\sje‘]zﬂDR(G)] PM(H, H)y; =

Zﬂe(DR(G)UDR(G’))/R PM(H, H) 2(jls;eHNDR(G)) gj = Zﬂe(DR(G)UDR(G’))/R PM(H., W)w“ﬁmDR(G)'
For the left-hand side of the second equation from the syatsmae, we have

n - ¥ _ I _
LY = Z’HE(DR(G)UDR(G’))/.R Z{ jlsjeHNDR(G)} yj= Z’HE(DR(G)UDR(G’))/'R YfinoRo)"
97

Thus, the aggregate linear equation systenDfoMC(G) is

Zﬁe(DR(G)UDR(G’))/R PM(H, W)wﬂﬁDR(G) = YHNDR(©)
He(DRG)UDRG))/x VHADRG) = 1
Let us denote the aggregate steady-state PMFOIMC(G’) by WHHDR(G,) = 2y jIseHNDRG)) vl Then, in a
similar way, the aggregate linear equation systenDioMC(G’) is
{ Licoreuore) PMHLFWE ooy = Yioore)
— ’ —
Z'HE(DR(G)UDR(G’))/K ‘/’(,%DR(G,) -

Let (DR(G) U DR(G'))/x = {Hi,..., Hi}. Then the aggregate steady-state PMgpr) andy:, ADR(G) 1<
k < I) satisfy the same aggregate systenh-efl linear equations withindependent equations ahdnknowns. The
aggregate linear equation system has a unigue solutiom wiingle aggregate steady-state PMF exists. This is the
case here, since in Section 5 we have demonstratedfisliC(G) has a single steady staté $ MQG) has, and
aggregation preserves this property [25]. HewGgpr) = zp;{mDR(G,) A<k<. O

Appendix A.3. Proof of Theorem 8.1
Let H € (DR(G) U DR(G'))/x ands, s € H. We haveyH € (DR(G) U DR(G'))/x, YA € N£

fine S ﬁ)p 7’7 (=

s Ap 'ﬁ; The previous equality is valid for ai s € H, hence, we can rewrite it &/ —A>¢> H and denote
PMa(H, H) = PMa(s, H) = PMa(s H). Note that transitions from the statesDR(G) always lead to those from
the same set, henceés € DR(G), PMa(s, H) = PMa(s, H N DR(G)). The same is true fdDR(G’).

LetT = A;--- A, be a derived step trace & andG’. Then3dHo, ..., H, € (DR(G) U DR(G"))/z, Ho A—1>P1
Hi iipz i"wn H,. Now we intend to prove that the sum of probabilities of adl thaths starting in eversy € Hp

and going through the states fraM, . . ., H,, is equal to the product &, ..., Pn:

n n
> [TPTCris20) = [| PMa (His. 7).
T1 Tn) i=1 i=1
{T1...0 Yl S50, L()=A, seH; (1<isn)}
We prove this equality by induction on the derived step ttangthn.

en=1
. PT(Y1, S0) = PMa, (S0, H1) = PMa, (Ho, H1).
Z‘Tl‘&)gsl’ PSR (Y1, S0) A (S0, H1) A, (Ho, H1)
en—-n+1
n+1
T, PTG, S21) =
oty it oo B L(T)=A, seH; (1<isn+1) © =L (Ti. 8-) n
T PT(Y, s-1)PT(Yhi, =
Zm Tolsos s, LON)=A. S€H 1<) 1 Tnals: S 81, L0ni1)=Anet, o, S1€Hnoa) [TiL, PT(Yi, S-1)PT(Yns1, S)
T N PT(T, s PT(Vna1, S1) | =
Z‘Tl """ T”‘Sogmln)s"’ L(Ti)=Ai, seH; (1<i<n)} l—Lil (i» S 1) Z{‘Y‘ml‘sn‘rn—tlsmly L(Tni1)=Ani1, S$i€Hn, Snr1€Hn1) (n+l Sﬂl)
2 Ty L, PT(Yi, 521)PMa,., (S, Hnsr) =

(Y1, ol S0 S, L(0)=A, st (1<i<n)) 1=

n . S —_
(o TalSos B, £OF)=A, seH; (<icn)) — =1 PT(YS, S‘l)PM:"“((H”’ Hisa) =
[TiL, PT(Vi, s-1) =

PMa,., (Fn, Hne1) Zm ,,,,, Yoot DB, £(1)=A, s (1sis)
PMa,., (Hn, Hni1) [Tty PMa (Hi-1. Hi) = [115 PMa (Hi-1, H).

Let o, So € Ho. We havePT(A; - - - An, S) = - nPT(Y,S.1) =
%0 0 ° (A Ao 0) nzrr;%.,?%idsq, L(r)=A:. (1sizn) Plal 7{('(2)
Z(HI """ Ha Z{Tl ,,,,, Tn|50‘2'"m$n, L(T)=A, seH, (1<i<n)) i=1 (_h i—l) = 27"(1 Hn ni:l Ai(i-1, |) =
D Hy o~ T [, PT("i,5-1) =

(T Tl 105, £(T)=A, et (1<i<n))
98

[TL: PT(Yi,§-1) = PT(A1- - - An, S0).

-,Tn\50—> —>Sn L(T)=A,, (1<i<n)}

Since we have the previous equality for sl S € o, we can denot®T(A; - - - An, Ho) = PT(Ar- - An, S) =
PT(A1 - An,).
By Proposition 8.13 «.4npr) £(S) = Zsernpr) ¢ (). Now we can complete the proof:
2serror@) PSPT(E, S) = Xsernore) P(SPT(E, H) = PT(Z, H) Yscrrpre) ¢(S) =
PT(E, H) Xserinpre) ¢'(S) = Zserinpre) ¢ (S)PT(E, H) = Xserinpra) ¢ (S)PT(E, S). 0

Appendix A.4. Proof of Proposition 8.2
Let us present two facts, which will be used in the proof.

1.

By Proposition 6.1, IR(G) U DR(G"))/x = ((DRr(G) U DRt (G))/«) W ((DRy(G) U DRy(G"))/#). Hence,
YH € (DR(G) U DR(G"))/«, all states frony{ are tangible, whefH{ € (DRy(G) U DR (G"))/«, or all of them
are vanishing, whet{ € (DRy(G) U DRy(G"))/%.

. Let# e (DR(G) UDR(G'))/x ands;. s, € H. We have/H e (DR(G) UDR(G))/z, YAe NE 5 Bp H o

A —_— —_—
S S H. ThereforePM(s;, H) = lTIHSleH . PT(Y, 1) = Saent. Zmagle«ﬁ, 655 LO0A) PT(Y, s1) =

Zaent, PMa(st, H) = Zaent, PMa(s2, H) = 2AeNE, Z‘mgze(;,’ 5%, LN)=A PT(T,s) =
Z(mszew o5, PT(Y,s) = PM(SQ,?{). Since we have the previous equality forall s, € H, we can denote

PM(H, ?0 PM(sy, ?{) PM(SQ,??). The transitions from the statesDBR(G) always lead to those from the
same set, henc¥s € DR(G), PM@,??) = PMLs,'ﬁ N DR(G)). The same is true fdDR(G’). Hence, for all
se HNDR(G), we obtainPM(H, H) = PM(s, H) = PM(s, HNDR(G)) = PM(HNDR(G), HNDR(G)). The
same is true foDR(G’). Finally, PM(HNDR(G), HNDR(G)) = PM(H, H) = PM(HNDR(G"), HNDR(G")).

Let us now prove the proposition statement for the sojoune tiverages.

LetH € (DR\/(G) U DRv(G/))/fR.

Then we have{ N DR(G) = H N DRy(G) € DRy(G)/x andH N DR(G’") = H N DRy(G’) € DRy(G')/x.

By definition of the average sojourn time in an equivalenessbf states, we g8k pre)2(H N DR(G)) =
Sknpre)2(H N DRy(G)) = 0 = Sknpre)2(H N DRY(G")) = Sknapre)2(H N DR(G)).

LetH e (DRT(G) U DRT(G'))/R.

Then we have N DR(G) = H N DR (G) € DRy (G)/% andH N DR(G’) = H N DRy (G’) € DRy (G') /.
By definition of the average sojourn tlme in an equwalenaesbf states, we gSURm(DR(G))z (HNnDR(G)) =

S‘]Rﬁ(DR(G))Z(Hm DRr(G)) = - PM(HnDRT(G) HNDR;(G)) ~ 1I- PM(HnDR(G) HNDR(G)) ~ 1I- PM(H H) —
= PM(‘HmDR(G’)'HmDR(G’)) = PM(‘HmDRT(G’)'HmDRT(G’)) = Sknre)?(HNDR(G')) = Sknpre):(HNDR(G)).

Thus,YH € (DR(G) U DR(G’))/R we haveSJRm(DR(G))z ('7‘{ N DR(G)) = SJRQ(DR(Gr))z ('7‘{ N DR(G’))
The proposition statement for the sojourn time variancesdsed similarly to that for the averages. O

99

